Correlation between F18-FDG PET/CT Imaging and BRAF V600E Genetic Mutation for the Early Assessment of Treatment Response in Papillary Thyroid Cancers
Abstract
:1. Introduction
2. Patients and Method
2.1. Patients
2.2. Genetic Analysis
2.3. Positron Emission Tomography/Computed Tomography (PET/CT) Imaging
2.4. Serologic Analysis
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Garnett, M.J.; Marais, R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell 2004, 6, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de la Fouchardiere, C.; Oussaid, N.; Derbel, O.; Decaussin-Petrucci, M.; Fondrevelle, M.-E.; Wang, Q.; Bringuier, P.-P.; Bournaud-Salinas, C.; Peix, J.-L.; Lifante, J.-C.; et al. Does Molecular Genotype Provide Useful Information in the Management of Radioiodine Refractory Thyroid Cancers? Results of a Retrospective Study. Target. Oncol. 2016, 11, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Sobrinho-Simões, M.; Eloy, C.; Vinagre, J.; Soares, P. Molecular pathology of thyroid tumors: Diagnostic and prognostic relevance. Int. J. Surg. Pathol. 2010, 18, 209S–212S. [Google Scholar] [CrossRef]
- Soares, P.; Celestino, R.; Melo, M.; Fonseca, E.; Sobrinho-Simões, M. Prognostic biomarkers in thyroid cancer. Virchows Arch. 2014, 464, 333–346. [Google Scholar] [CrossRef]
- Chang, J.W.; Park, K.W.; Heo, J.H.; Jung, S.-N.; Liu, L.; Kim, S.M.; Kwon, I.S.; Koo, B.S. Relationship Between (18)F-fluorodeoxyglucose Accumulation and the BRAF (V600E) Mutation in Papillary Thyroid Cancer. World J. Surg. 2018, 42, 114–122. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid Am. Thyroid Assoc. 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Fugazzola, L.; Elisei, R.; Fuhrer, D.; Jarzab, B.; Leboulleux, S.; Newbold, K.; Smit, J. 2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. Eur. Thyroid J. 2019, 8, 227–245. [Google Scholar] [CrossRef]
- Araque, K.A.; Gubbi, S.; Klubo-Gwiezdzinska, J. Updates on the Management of Thyroid Cancer. Horm. Metab. Res. 2020. [Google Scholar] [CrossRef]
- Fugazzola, L.; Puxeddu, E.; Avenia, N.; Romei, C.; Cirello, V.; Cavaliere, A.; Faviana, P.; Mannavola, D.; Moretti, S.; Rossi, S.; et al. Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma: Data from a multicentric Italian study and review of the literature. Endocr. Relat. Cancer 2006, 13, 455–464. [Google Scholar] [CrossRef]
- Larg, M.I.; Barbus, E.; Gabora, K.; Pestean, C.; Cheptea, M.; Piciu, D. 18F-FDG PET/CT in Differentiated Thyroid Carcinoma. Acta Endocrinol. (Buchar. Rom. 2005) 2019, 15, 203–208. [Google Scholar] [CrossRef]
- Smallridge, R.C.; Diehl, N.; Bernet, V. Practice trends in patients with persistent detectable thyroglobulin and negative diagnostic radioiodine whole body scans: A survey of American Thyroid Association members. Thyroid 2014, 24, 1501–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, P.; Sobrinho-Simões, M. Is BRAF mutation screening useful for preoperative risk stratification in papillary thyroid cancer? Future Oncol. 2009, 5, 1225–1229. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Lee, S.-W.; Pak, K.; Shim, S.-R. Diagnostic performance of PET in thyroid cancer with elevated anti-Tg Ab. Endocr. Relat. Cancer 2018, 25, 643–652. [Google Scholar] [CrossRef]
- Kim, T.Y.; Kim, W.B.; Song, J.Y.; Rhee, Y.S.; Gong, G.; Cho, Y.M.; Kim, S.Y.; Kim, S.C.; Hong, S.J.; Shong, Y.K. The BRAF mutation is not associated with poor prognostic factors in Korean patients with conventional papillary thyroid microcarcinoma. Clin. Endocrinol. (Oxf.) 2005, 63, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Santhanam, P.; Khthir, R.; Solnes, L.B.; Ladenson, P.W. The Relationship Of BRAF(V600E) Mutation Status to FDG PET/CT Avidity in Thyroid Cancer: A Review And Meta-Analysis. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2018, 24, 21–26. [Google Scholar]
- Robbins, R.J.; Wan, Q.; Grewal, R.K.; Reibke, R.; Gonen, M.; Strauss, H.W.; Tuttle, R.M.; Drucker, W.; Larson, S.M. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J. Clin. Endocrinol. Metab. 2006, 91, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: A randomised, double-blind, phase 3 trial. Lancet (Lond. Engl.) 2014, 384, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Kish, J.K.; Chatterjee, D.; Wan, Y.; Yu, H.-T.; Liassou, D.; Feinberg, B.A. Lenvatinib and Subsequent Therapy for Radioactive Iodine-Refractory Differentiated Thyroid Cancer: A Real-World Study of Clinical Effectiveness in the United States. Adv. Ther. 2020, 37, 2841–2852. [Google Scholar] [CrossRef]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Tumino, D.; Frasca, F.; Newbold, K. Updates on the Management of Advanced, Metastatic, and Radioiodine Refractory Differentiated Thyroid Cancer. Front. Endocrinol. (Lausanne) 2017, 8, 312. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Parghane, R.V. Grouping of Metastatic Thyroid Carcinoma by Molecular Imaging Features to Allow for Individualized Treatment, with Emphasis on the TENIS Syndrome. J. Nucl. Med. Technol. 2016, 44, 184–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooray, S.D.; Topliss, D.J. The management of metastatic radioiodine-refractory differentiated thyroid cancer requires an integrated approach including both directed and systemic therapies. Endocrinol. Diabetes Metab. Case Rep. 2017, 2017. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Chang, J.S.; Huang, S.-M.; Hung, C.-J.; Hung, C.-L.; Chang, C.-T.; Yang, H.-R.; Hsieh, T.-C.; Huang, Y.-H.; Tsai, H.-J. Experience of sorafenib treatment in differentiated thyroid cancer from Taiwan. J. Formos. Med. Assoc. 2020. [Google Scholar] [CrossRef]
- Berdelou, A.; Lamartina, L.; Klain, M.; Leboulleux, S.; Schlumberger, M. Treatment of refractory thyroid cancer. Endocr. Relat. Cancer 2018, 25, R209–R223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No | Sex | BRAF status | SUV | Age yo | T | N | M | L | V | R | EET | Stage |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M | + | 21.57 | 69 | T4a | N1b | 0 | 1 | 1 | 1 | Yes | III |
2 | M | + | 16.57 | 72 | T3b | N1b | 0 | 1 | 0 | 1 | Yes | II |
3 | M | - | 4.8 | 53 | T3b | N1b | 0 | 0 | 1 | 1 | Yes | II |
4 | F | - | 17.09 | 62 | T2 | N1b | 0 | 1 | 0 | 0 | Yes | II |
5 | F | + | 2.86 | 58 | T3b | N1b | 0 | 0 | 0 | 0 | Yes | II |
6 | F | + | 15 | 60 | T4a | N1b | 0 | 1 | 1 | 1 | Yes | III |
7 | F | - | 3.76 | 39 | T3a | N1b | 0 | 0 | 0 | 0 | Yes | I |
8 | M | + | 5.7 | 41 | T3b | N1b | 0 | 1 | 0 | 1 | Yes | I |
9 | M | + | 2.6 | 63 | T1a | N0 | 0 | 0 | 0 | 0 | Yes | I |
10. | F | - | 3.94 | 61 | T2 | N1b | 0 | 1 | 0 | 1 | Yes | II |
11. | F | N/a | 3.11 | 62 | T2 | N1b | 0 | 0 | 0 | 0 | No | I |
12. | F | + | 2.56 | 66 | T4a | N1b | 0 | 0 | 0 | 1 | Yes | III |
13. | M | - | 4.68 | 22 | T3a | N1b | 0 | 1 | 1 | 1 | Yes | I |
14. | F | - | 4.82 | 71 | T3b | N0 | 0 | 0 | 1 | 0 | Yes | II |
15. | F | - | 17.78 | 72 | T3b | N1b | 1 | 1 | 1 | 1 | Yes | IVB |
16. | M | + | 5.61 | 41 | T2 | N1a | 0 | 1 | 1 | 0 | No | I |
17. | F | - | 9.86 | 62 | T3a | N1b | 0 | 0 | 0 | 0 | No | II |
18. | F | + | 15 | 59 | T2 | N0 | 1 | 0 | 0 | 1 | No | IVB |
19. | M | - | 5.25 | 65 | T3a | N0 | 1 | 1 | 1 | 0 | Yes | IVB |
20. | F | + | 2.5 | 74 | T1b | N0 | 1 | 0 | 0 | 0 | Yes | IVB |
Parameter | SUV | Age | T | N | M | L | V | R | Stage | Tg | Anti-Tg | EET |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Student t-test (P) | 0.74 | 0.55 | 0.25 | 0.55 | 0.91 | 0.82 | 0.28 | 0.52 | 0.73 | 0.93 | 0.84 | 0.61 |
Variable | Correlation Coefficient | P | Interpretation |
---|---|---|---|
SUV | 0.080 | 0.743 | Low-intensity positive correlation, statistically insignificant |
Age | 0.148 | 0.543 | Low-intensity positive correlation, statistically insignificant |
T | 0.270 | 0.262 | Low-intensity positive correlation, statistically insignificant |
N | –0.145 | 0.552 | Low-intensity negative correlation, statistically insignificant |
M | –0.027 | 0.911 | Low-intensity negative correlation, statistically insignificant |
L | –0.055 | 0.821 | Low-intensity negative correlation, statistically insignificant |
V | –0.258 | 0.285 | Low-intensity negative correlation, statistically insignificant |
R | 0.155 | 0524 | Low-intensity positive correlation, statistically insignificant |
EET | –0.121 | 0.619 | Low-intensity negative correlation, statistically insignificant |
Stage | 0.082 | 0.737 | Low-intensity positive correlation, statistically insignificant |
Tg | 0.020 | 0.933 | Low-intensity positive correlation, statistically insignificant |
Anti-Tg | –0.049 | 0.839 | Low-intensity negative correlation, statistically insignificant |
Variable | Correlation Coefficient | p Value | Interpretation |
---|---|---|---|
SUV | 0.367 | 0.122 | Low-intensity positive correlation, statistically insignificant |
BRAF V600E | 0.082 | 0.737 | Low-intensity positive correlation, statistically insignificant |
Age | 0.653 | 0.002 | Positive medium-intensity, statistically significant correlation |
T | −0.147 | 0.547 | Low-intensity negative correlation, statistically insignificant |
N | −0.307 | 0.200 | Low-intensity negative correlation, statistically insignificant |
M | 0.806 | 0.001 | Positive correlation of strong intensity, statistically significant |
L | −0.015 | 0.95 | Low-intensity negative correlation, statistically insignificant |
V | 0.145 | 0.551 | Low-intensity positive correlation, statistically insignificant |
A | 0.180 | 0.460 | Low-intensity positive correlation, statistically insignificant |
EET | −0.007 | 0.977 | Low-intensity negative correlation, statistically insignificant |
Tg | 0.131 | 0.592 | Low-intensity positive correlation, statistically insignificant |
Anti-Tg | 0.115 | 0.639 | Low-intensity positive correlation, statistically insignificant |
Variable | Correlation Coefficient | p | Interpretation |
---|---|---|---|
Age | 0.251 | 0.483 | Low-intensity positive correlation, statistically insignificant |
T | 0.128 | 0.722 | Low-intensity positive correlation, statistically insignificant |
N | 0.277 | 0.437 | Low-intensity positive correlation, statistically insignificant |
M | −0.017 | 0.96 | Low-intensity negative correlation, statistically insignificant |
L | 0.566 | 0.087 | Positive medium-intensity, statistically insignificant correlation |
V | 0.482 | 0.157 | Low-intensity positive correlation, statistically insignificant |
R | 0.666 | 0.035 | Positive medium-intensity, statistically significant correlation |
EET | −0.095 | 0.793 | Low-intensity negative correlation, statistically insignificant |
Stage | 0.316 | 0.372 | Low-intensity positive correlation, statistically insignificant |
Tg | 0.025 | 0.943 | Low-intensity positive correlation, statistically insignificant |
Anti-Tg | −0.300 | 0.399 | Low-intensity negative correlation, statistically insignificant |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piciu, A.; Larg, M.-I.; Piciu, D. Correlation between F18-FDG PET/CT Imaging and BRAF V600E Genetic Mutation for the Early Assessment of Treatment Response in Papillary Thyroid Cancers. J. Pers. Med. 2020, 10, 52. https://doi.org/10.3390/jpm10020052
Piciu A, Larg M-I, Piciu D. Correlation between F18-FDG PET/CT Imaging and BRAF V600E Genetic Mutation for the Early Assessment of Treatment Response in Papillary Thyroid Cancers. Journal of Personalized Medicine. 2020; 10(2):52. https://doi.org/10.3390/jpm10020052
Chicago/Turabian StylePiciu, Andra, Maria-Iulia Larg, and Doina Piciu. 2020. "Correlation between F18-FDG PET/CT Imaging and BRAF V600E Genetic Mutation for the Early Assessment of Treatment Response in Papillary Thyroid Cancers" Journal of Personalized Medicine 10, no. 2: 52. https://doi.org/10.3390/jpm10020052
APA StylePiciu, A., Larg, M. -I., & Piciu, D. (2020). Correlation between F18-FDG PET/CT Imaging and BRAF V600E Genetic Mutation for the Early Assessment of Treatment Response in Papillary Thyroid Cancers. Journal of Personalized Medicine, 10(2), 52. https://doi.org/10.3390/jpm10020052