Analysis of APPL1 Gene Polymorphisms in Patients with a Phenotype of Maturity Onset Diabetes of the Young
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murphy, R.; Ellard, S.; Hattersley, A.T. Clinical implication of a molecular genetic classification of monogenic β-cell diabetes. Nat. Clin. Pract. 2008, 4, 200–213. [Google Scholar] [CrossRef]
- Bonnefond, A.; Philippe, J.; Durand, E.; Dechaume, A.; Huyvaert, M.; Montagne, L.; Marre, M.; Balkau, B.; Fajardy, I.; Vambergue, A.; et al. Whole-exome sequencing and high throughput genotyping identified KCNJ11 as the thirteenth MODY gene. PLoS ONE 2012, 7, e37423. [Google Scholar] [CrossRef]
- Edghill, E.L.; Minton, J.A.; Groves, C.J.; Flanagan, S.E.; Patch, A.-M.; Rubio-Cabezas, O.; Shepherd, M.; Lenzen, S.; McCarthy, M.I.; Ellard, E.; et al. Sequencing of candidate genes selected by beta cell experts in monogenic diabetes of unknown aetiology. J. Pancreas 2010, 11, 14–17. [Google Scholar]
- Prudente, S.; Jungtrakoon, P.; Marucci, A.; Ludovico, O.; Buranasupkajorn, P.; Mazza, T.; Hastings, T.; Milano, T.; Morini, E.; Mercuri, E.; et al. Loss-of-Function Mutations in APPL1 in Familial Diabetes Mellitus. Am. J. Hum. Genet. 2015, 97, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.K.; Lam, K.S.; Wu, D.; Wang, Y.; Sweeney, G.; Hoo, R.L.C.; Zhang, J.; Xu, A. APPL1 potentiates insulin secretion in pancreatic β cells by enhancing protein kinase Akt-dependent expression of SNARE proteins in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 8919–8924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Xiao, T.; Peng, X.; Li, G.; Hu, F. APPLs: More than just adiponectin receptor binding proteins. Cell Signal. 2017, 32, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, M.; Yan, L.; Ding, S.; Xie, X. Serum APPL1 level is elevated in newly diagnosed cases of type 2 diabetes mellitus. Nan Fang Yi Ke Da Xue Xue Bao 2012, 32, 1373–1376. [Google Scholar]
- Oughtred, R.; Stark, C.; Breitkreutz, B.J.; Rust, J.; Boucher, L.; Chang, C.; Kolas, N.; O’Donnell, L.; Leung, G.; McAdam, R.; et al. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019, 47, D529–D541. [Google Scholar] [CrossRef] [Green Version]
- Combs, T.P.; Marliss, E.B. Adiponectin signaling in the liver. Rev. Endocr. Metab. Disord. 2014, 15, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, R.; Saidijam, M.; Mehdizadeh, M.; Shabab, N.; Yavangi, M.; Artimani, T. Evidence for decreased expression of APPL1 associated with reduced insulin and adiponectin receptors expression in PCOS patients. J. Endocrinol. Investig. 2016, 39, 1075–1082. [Google Scholar] [CrossRef]
- Schmid, P.M.; Resch, M.; Schach, C.; Birner, C.; Riegger, G.A.; Luchner, A.; Endemann, D.H. Antidiabetic treatment restores adiponectin serum levels and APPL1 expression, but does not improve adiponectin-induced vasodilation and endothelial dysfunction in Zucker diabetic fatty rats. Cardiovasc. Diabetol. 2013, 12, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galan-Davila, A.K.; Ryu, J.; Dong, K.; Xiao, Y.; Dai, Z.; Zhang, D.; Li, Z.; Dick, A.M.; Liu, K.D.; Kamat, A.; et al. Alternative splicing variant of the scaffold protein APPL1 suppresses hepatic adiponectin signaling and function. J. Biol. Chem. 2018, 293, 6064–6074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Z.; Tang, Z.; Li, M.; Zhang, Y.; Li, J.; Cao, Y.; Zhang, D.; Fu, Y.; Wang, C. APPL1 knockdown blocks adipogenic differentiation and promotes adipocyte lipolysis. Mol. Cell Endocrinol. 2020, 506, 110755. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.K.; Vadivel, S.; Raghavan, S.; Mohan, V.; Balasubramanyam, M.; Gokulakrishnan, K. High molecular weight adiponectin reduces glucolipotoxicity-induced inflammation and improves lipid metabolism and insulin sensitivity via APPL1-AMPK-GLUT4 regulation in 3T3-L1 adipocytes. Atherosclerosis 2019, 288, 67–75. [Google Scholar] [CrossRef]
- Fan, L.; Ye, H.; Wan, Y.; Qin, L.; Zhu, L.; Su, J.; Zhu, X.; Zhang, L.; Miao, Q.; Zhang, Q.; et al. Adaptor protein APPL1 coordinates HDAC3 to modulate brown adipose tissue thermogenesis in mice. Metabolism 2019, 100, 153955. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zhou, Y.; Wu, K.K.; Chen, Z.; Xu, A.; Cheng, K.K. APPL1 prevents pancreatic beta cell death and inflammation by dampening NFκB activation in a mouse model of type 1 diabetes. Diabetologia 2017, 60, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.C.; Jia, W.P.; Gao, F.; Zhang, R.; Hu, C.; Wang, C.-R.; Wang, C.; Ma, X.-M.; Lu, J.-X.; Xu, J.; et al. Association of variants in APPL1 gene with body fat and its distribution in Chinese patients with type 2 diabetic mellitus. Zhonghua Yi Xue Za Zhi 2008, 88, 369–373. [Google Scholar]
- Ma, X.W.; Ding, S.; Ma, X.D.; Gu, N.; Guo, X.H. Genetic variability in adapter proteins with APPL1/2 is associated with the risk of coronary artery disease in type 2 diabetes mellitus in Chinese Han population. Chin. Med. J. 2011, 124, 3618–3621. [Google Scholar] [CrossRef]
- Wang, B.; Wang, B.; Wang, Y.; Wen, B.; Liu, S.; Sang, L.; Chen, Y.; Zhang, D. Association of APPL1 Gene Polymorphism with Non-Alcoholic Fatty Liver Disease Susceptibility in a Chinese Han Population. Clin. Lab. 2015, 61, 1659–1666. [Google Scholar] [CrossRef]
- Chial, H.J.; Wu, R.; Ustach, C.V.; McPhail, L.C.; Mobley, W.C.; Chen, Y.Q. Membrane targeting by APPL1 and APPL2: Dynamic scaffolds that oligomerize and bind phosphoinositides. Traffic 2008, 9, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Sambrook, J.; Russell, D.W. Purification of nucleic acids by extraction with phenol: Chloroform. Cold Spring Harb. Protoc. 2006, 2006, 4455. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [Green Version]
- Stenson, P.D.; Ball, E.V.; Mort, M.; Phillips, A.D.; Shiel, J.A.; Thomas, N.S.T.; Abeysinghe, S.; Krawczak, M.; Cooper, D.N. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat. 2003, 21, 577–581. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Sim, N.-L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the Functional Effect of Amino Acid Substitutions and Indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [Green Version]
- Malhis, N.; Jones, S.J.M.; Gsponer, J. Improved measures for evolutionary conservation that exploit taxonomy distances. Nat. Commun. 2019, 10, 1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, J.M.; Cooper, D.N.; Schuelke, M.; Seelow, D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat. Methods 2014, 11, 361–362. [Google Scholar] [CrossRef] [PubMed]
- Pajak, A.; Szafraniec, K.; Kubinova, R.; Malyutina, S.; Peasey, A.; Pikhart, H.; Nikitin, Y.; Marmot, M.; Bobak, M. Binge drinking and blood pressure: Cross-sectional results of the HAPIEE study. PLoS ONE 2013, 8, e65856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deepa, S.S.; Dong, L.Q. APPL1: Role in adiponectin signaling and beyond. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E22–E36. [Google Scholar] [CrossRef] [Green Version]
- Cox, A.J.; Lambird, J.E.; An, S.S.; Register, T.C.; Langefeld, C.D.; Carr, J.J.; Freedman, B.I.; Bowden, D.W. Variants in adiponectin signaling pathway genes show little association with subclinical CVD in the diabetes heart study. Obesity 2013, 21, E456–E462. [Google Scholar] [CrossRef]
- Barbieri, M.; Marfella, R.; Esposito, A.; Rizzo, M.R.; Angellotti, E.; Mauro, C.; Siniscalchi, M.; Chirico, F.; Caiazzo, P.; Furbatto, F.; et al. Incretin treatment and atherosclerotic plaque stability: Role of adiponectin/APPL1 signaling pathway. J. Diabetes Complicat. 2017, 31, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Özdemir, T.R.; Kırbıyık, Ö.; Dündar, B.N.; Abacı, A.; Kaya, Ö.Ö.; Çatlı, G.; Özyılmaz, B.; Acar, S.; Koç, A.; Güvenç, M.S.; et al. Targeted next generation sequencing in patients with maturity-onset diabetes of the young (MODY). J. Pediatr. Endocrinol. Metab. 2018, 31, 1295–1304. [Google Scholar] [CrossRef]
Name of an SNV. | Location | Substitution (NM_012096.3) | Minor Allele Frequency (gnomAD) |
---|---|---|---|
rs113307246 | 5′UTR | c.-151= | 0.005 |
rs79282761 | Exon 1 | Thr12Thr c.36G>C | C = 0.01 |
rs6789847 | Intron 1 | c.54+2907T>A | T = 0.07 |
rs200584055 | Intron 12 | c.1096-30del | delA = 0.03 |
rs62251992 | Intron 17 | c.1484-71A>G | G = 0.12 |
rs10510791 | Intron 17 | c.1658+38C>G | G = 0.46 |
rs1533272 | Intron 18 | c.1695+114T>A | C = 0.38 |
rs11544593 | Exon 22 | Glu700Gly c.2099A>G | G = 0.13 |
rs138485817 | Exon 22 | Ser673Cys c.2018 C>G | G = 0.0006 |
rs1046545 | 3′UTR | c.*1455= | T = 0.19 |
rs3204124 | 3′UTR | c.*1528= | G = 0.68 |
rs3087684 | 3′UTR | c.*2604= | C = 0.68 |
rs1913302 | 3′UTR | c.*3246= | A = 0.68 |
MODY (n = 151) | T2DM (n = 169) | General Population (n = 276) | OR (An Odds Ratio), 95% CI (A Confidence Interval) | p | |
---|---|---|---|---|---|
Genotypes | |||||
AA | 67.55 (102) | 76.33 (129) | 78.62 (217) | 1 vs. 3, 0.57 (0.36–0.89) | 0.014 |
2 vs. 3, 0.88 (0.56–1.38) | >0.05 | ||||
AG | 29.80 (45) | 21.30 (36) | 18.84 (52) | 1 vs. 3, 1.83 (1.15–2.90) | 0.011 |
2 vs. 3, 1.17 (0.72–1.88) | >0.05 | ||||
GG | 2.65 (4) | 2.37 (4) | 2.54 (7) | 1 vs. 3, 1.05 (0.30–3.63) | >0.05 |
2 vs. 3, 0.93 (0.27–3.23) | >0.05 | ||||
Alleles | |||||
A | 82.3 | 86.98 | 88.04 | 1 vs. 3, 1.57 (1.06–2.32) | 0.03 |
G | 17.7 | 13.02 | 11.96 | 2 vs. 3, 0.91 (0.60–1.37) | >0.05 |
rs11544593 Genotypes | MODY Phenotype Patients X (Sx) | T2DM Patients X (Sx) | General Population X (Sx) |
---|---|---|---|
AA | 6.9 (0.2) | 11.9 (0.4) | 5.2 (0.1) |
AG | 6.0 (0.3) | 12.2 (0.8) | 5.8 (0.2) |
GG | 8.7 (0.8) | 14.5 (2.) | 5.4 (0.6) |
Age (p) | 0.000 * | 0.508 | 0.508 |
Sex (p) | 0.422 | 0.334 | 0.379 |
Genotype (p) | 0.004 * | 0.523 | 0.050 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanoshchuk, D.E.; Shakhtshneider, E.V.; Rymar, O.D.; Ovsyannikova, A.K.; Mikhailova, S.V.; Orlov, P.S.; Ragino, Y.I.; Voevoda, M.I. Analysis of APPL1 Gene Polymorphisms in Patients with a Phenotype of Maturity Onset Diabetes of the Young. J. Pers. Med. 2020, 10, 100. https://doi.org/10.3390/jpm10030100
Ivanoshchuk DE, Shakhtshneider EV, Rymar OD, Ovsyannikova AK, Mikhailova SV, Orlov PS, Ragino YI, Voevoda MI. Analysis of APPL1 Gene Polymorphisms in Patients with a Phenotype of Maturity Onset Diabetes of the Young. Journal of Personalized Medicine. 2020; 10(3):100. https://doi.org/10.3390/jpm10030100
Chicago/Turabian StyleIvanoshchuk, Dinara E., Elena V. Shakhtshneider, Oksana D. Rymar, Alla K. Ovsyannikova, Svetlana V. Mikhailova, Pavel S. Orlov, Yuliya I. Ragino, and Mikhail I. Voevoda. 2020. "Analysis of APPL1 Gene Polymorphisms in Patients with a Phenotype of Maturity Onset Diabetes of the Young" Journal of Personalized Medicine 10, no. 3: 100. https://doi.org/10.3390/jpm10030100
APA StyleIvanoshchuk, D. E., Shakhtshneider, E. V., Rymar, O. D., Ovsyannikova, A. K., Mikhailova, S. V., Orlov, P. S., Ragino, Y. I., & Voevoda, M. I. (2020). Analysis of APPL1 Gene Polymorphisms in Patients with a Phenotype of Maturity Onset Diabetes of the Young. Journal of Personalized Medicine, 10(3), 100. https://doi.org/10.3390/jpm10030100