The Cytokinesis-Block Micronucleus Assay on Human Isolated Fresh and Cryopreserved Peripheral Blood Mononuclear Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Blood Sampling
2.2. Isolation and Cryopreservation of Peripheral Blood Mononuclear Cells
2.2.1. Isolation by Density Gradient Centrifugation
2.2.2. Cryopreservation and Thawing Procedures
2.3. Whole Blood Cytokinesis-Block Micronucleus Assay
2.4. PBMC Cytokinesis-Block Micronucleus Assay
2.5. PBMC Cytokinesis-Block Micronucleus Assay in a Biodosimetry Setting
2.6. In Vitro Irradiation Procedure
2.7. Scoring Procedure
2.7.1. Micronuclei Scoring
2.7.2. Binucleated Yield and Nuclear Division Index
2.8. Statistical Analysis
3. Results
3.1. Comparison of CBMN Assay Results of Whole Blood, Fresh and Cryopreserved PBMCS
3.2. Effect of Cryopreservation Time on PBMC CBMN Assay Results
3.3. Radiosensitivity Assessment of Patient Samples Using the PBMC CBMN Assay
3.4. The CBMN Assay on PBMCs, Isolated from Small Blood Volumes
3.5. The CBMN Assay on PBMCS in a Biodosimetry Setting
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CBMN | Cytokinesis-block micronucleus |
MNi | Micronuclei |
BN | Binucleated |
FISH | Fluorescence in situ hybridization |
PBMCS | Peripheral blood mononuclear cells |
PBS | Phosphate buffered saline |
FCS | Fetal calf serum |
DMSO | Dimethylsulfoxide |
cRPMI | Complete RPMI |
PHA-L | Phytohaemagglutanin-L |
SARRP | Small animal radiation research platform |
NDI | Nuclear division index |
CV | Coefficient of variation |
WBC | Whole blood cultures |
w | Weeks |
DSB | Double stranded break |
References
- Collins, A.; Milic, M.; Bonassi, S.; Dusinska, M. The comet assay in human biomonitoring: Technical and epidemiological perspectives. Mutat. Res 2019, 843, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Baeyens, A.; Herd, O.; Francies, F.Z.; Cairns, A.; Katzman, G.; Murdoch, M.; Padiachy, D.; Morford, M.; Vral, A.; Slabbert, J.P. The influence of blood storage time and general anaesthesia on chromosomal radiosensitivity assessment. Mutagenesis 2016, 31, 181–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, S.; Buraczewska, I.; Kruszewski, M. Micronucleus Assay: The State of Art, and Future Directions. Int. J. Mol. Sci. 2020, 21, 1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lison, D.; Van Maele-Fabry, G.; Vral, A.; Vermeulen, S.; Bastin, P.; Haufroid, V.; Baeyens, A. Absence of genotoxic impact assessed by micronucleus frequency in circulating lymphocytes of workers exposed to cadmium. Toxicol. Lett. 2019, 303, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, S.; Znaor, A.; Ceppi, M.; Lando, C.; Chang, W.P.; Holland, N.; Kirsch-Volders, M.; Zeiger, E.; Ban, S.; Barale, R.; et al. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 2007, 28, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Francies, F.Z.; Wainwright, R.; Poole, J.; De Leeneer, K.; Coene, I.; Wieme, G.; Poirel, H.A.; Brichard, B.; Vermeulen, S.; Vral, A.; et al. Diagnosis of Fanconi Anaemia by ionising radiation- or mitomycin C-induced micronuclei. DNA Repair 2018, 61, 17–24. [Google Scholar] [CrossRef]
- Baeyens, A.; Swanson, R.; Herd, O.; Ainsbury, E.; Mabhengu, T.; Willem, P.; Thierens, H.; Slabbert, J.P.; Vral, A. A semi-automated micronucleus-centromere assay to assess low-dose radiation exposure in human lymphocytes. Int. J. Radiat. Biol. 2011, 87, 923–931. [Google Scholar] [CrossRef]
- Vinnikov, V.; Belyakov, O. Clinical Applications of Biomarkers of Radiation Exposure: Limitations and Possible Solutions through Coordinated Research. Radiat. Prot. Dosim. 2019, 186, 3–8. [Google Scholar] [CrossRef]
- Baselet, B.; Sonveaux, P.; Baatout, S.; Aerts, A. Pathological effects of ionizing radiation: Endothelial activation and dysfunction. Cell. Mol. Life Sci. 2019, 76, 699–728. [Google Scholar] [CrossRef] [Green Version]
- Kazmierczak, U.; Banas, D.; Braziewicz, J.; Buraczewska, I.; Czub, J.; Jaskola, M.; Kazmierczak, L.; Korman, A.; Kruszewski, M.; Lankoff, A.; et al. Investigation of the bystander effect in CHO-K1 cells. Rep. Pract. Oncol. Radiother. 2014, 19, S37–S41. [Google Scholar] [CrossRef] [Green Version]
- Marin, A.; Martin, M.; Linan, O.; Alvarenga, F.; Lopez, M.; Fernandez, L.; Buchser, D.; Cerezo, L. Bystander effects and radiotherapy. Rep. Pract. Oncol. Radiother. 2015, 20, 12–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva-Barbosa, I.; Pereira-Magnata, S.; Amaral, A.; Sotero, G.; Melo, H.C. Dose assessment by quantification of chromosome aberrations and micronuclei in peripheral blood lymphocytes from patients exposed to gamma radiation. Genet. Mol. Biol. 2005, 28, 452–457. [Google Scholar] [CrossRef]
- World Health Organization. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies; International Atomic Energy Agency: Vienna, Austria, 2011. [Google Scholar]
- Fenech, M.; Morley, A.A. Measurement of micronuclei in lymphocytes. Mutat. Res. 1985, 147, 29–36. [Google Scholar] [CrossRef]
- Fenech, M. Cytokinesis-block micronucleus cytome assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baeyens, A. Chromosomal radiosensitivity of lymphocytes in South African breast cancer patients of different ethnicity: An indirect measure of cancer susceptibility. S. Afr. Med. J. Suid-Afrik. Tydskr. Geneeskd. 2015, 105, 675–678. [Google Scholar] [CrossRef] [Green Version]
- Baeyens, A.; Vandenbulcke, K.; Philippe, J.; Thierens, H.; De Ridder, L.; Vral, A. The use of IL-2 cultures to measure chromosomal radiosensitivity in breast cancer patients. Mutagenesis 2004, 19, 493–498. [Google Scholar] [CrossRef] [Green Version]
- Bonassi, S.; El-Zein, R.; Bolognesi, C.; Fenech, M. Micronuclei frequency in peripheral blood lymphocytes and cancer risk: Evidence from human studies. Mutagenesis 2011, 26, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Zizza, A.; Grima, P.; Andreassi, M.G.; Tumolo, M.R.; Borghini, A.; de Donno, A.; Negro, P.; Guido, M. HIV infection and frequency of micronucleus in human peripheral blood cells. J. Prev. Med. Hyg. 2019, 60, E191–E196. [Google Scholar] [CrossRef]
- Katic, J.; Cemeli, E.; Baumgartner, A.; Laubenthal, J.; Bassano, I.; Stolevik, S.B.; Granum, B.; Namork, E.; Nygaard, U.C.; Lovik, M.; et al. Evaluation of the genotoxicity of 10 selected dietary/environmental compounds with the in vitro micronucleus cytokinesis-block assay in an interlaboratory comparison. Food Chem. Toxicol. 2010, 48, 2612–2623. [Google Scholar] [CrossRef]
- Odongo, G.A.; Skatchkov, I.; Herz, C.; Lamy, E. Optimization of the alkaline comet assay for easy repair capacity quantification of oxidative DNA damage in PBMC from human volunteers using aphidicolin block. DNA Repair 2019, 77, 58–64. [Google Scholar] [CrossRef]
- Miszczyk, J.; Rawojc, K. Effects of culturing technique on human peripheral blood lymphocytes response to proton and X-ray radiation. Int. J. Radiat. Biol. 2020, 96, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Betsou, F.; Gaignaux, A.; Ammerlaan, W.; Norris, P.J.; Stone, M. Biospecimen Science of Blood for Peripheral Blood Mononuclear Cell (PBMC) Functional Applications. Curr. Pathobiol. Rep. 2019, 7, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Davila, J.A.A.; De Los Rios, A.H. An Overview of Peripheral Blood Mononuclear Cells as a Model for Immunological Research of Toxoplasma gondii and Other Apicomplexan Parasites. Front. Cell. Infect. Microbiol. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Mosallaei, M.; Ehtesham, N.; Rahimirad, S.; Saghi, M.; Vatandoost, N.; Khosravi, S. PBMCs: A new source of diagnostic and prognostic biomarkers. Arch. Physiol. Biochem. 2020. [Google Scholar] [CrossRef]
- Forkman, J. Estimator and Tests for Common Coefficients of Variation in Normal Distributions. Commun. Stat. Theory Methods 2009, 38, 233–251. [Google Scholar] [CrossRef] [Green Version]
- Zangerle, P.F.; Degroote, D.; Lopez, M.; Meuleman, R.J.; Vrindts, Y.; Fauchet, F.; Dehart, I.; Jadoul, M.; Radoux, D.; Franchimont, P. Direct Stimulation of Cytokines (Il-1-Beta, Tnf-Alpha, Il-6, Il-2, Ifn-Gamma and Gm-Csf) in Whole-Blood: II. Application to Rheumatoid-Arthritis and Osteoarthritis. Cytokine 1992, 4, 568–575. [Google Scholar] [CrossRef]
- Centurione, L.; Aiello, F.B. DnA Repair and Cytokines: TGF-beta, IL-6, and Thrombopoietin as Different Biomarkers of Radioresistance. Front. Oncol. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Fenech, M.; Rinaldi, J. A comparison of lymphocyte micronuclei and plasma micronutrients in vegetarians and non-vegetarians. Carcinogenesis 1995, 16, 223–230. [Google Scholar] [CrossRef]
- Odagiri, Y.; Uchida, H. Influence of serum micronutrients on the incidence of kinetochore-positive or -negative micronuclei in human peripheral blood lymphocytes. Mutat. Res. Genet. Toxicol. Environ. 1998, 415, 35–45. [Google Scholar] [CrossRef]
- Ho, C.K.; Choi, S.W.; Siu, P.M.; Benzie, I.F.F. Cryopreservation and Storage Effects on Cell Numbers and DNA Damage in Human Lymphocytes. Biopreserv. Biobank. 2011, 9, 343–347. [Google Scholar] [CrossRef]
- Koppen, G.; De Prins, S.; Jacobs, A.; Nelen, V.; Schoeters, G.; Langie, S.A.S. The comet assay in human biomonitoring: Cryopreservation of whole blood and comparison with isolated mononuclear cells. Mutagenesis 2018, 33, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Duthie, S.J.; Pirie, L.; Jenkinson, A.M.; Narayanan, S. Cryopreserved versus freshly isolated lymphocytes in human biomonitoring: Endogenous and induced DNA damage, antioxidant status and repair capability. Mutagenesis 2002, 17, 211–214. [Google Scholar] [CrossRef] [PubMed]
- He, J.L.; Chen, W.L.; Jin, L.F.; Jin, H.Y. Comparative evaluation of the in vitro micronucleus test and the comet assay for the detection of genotoxic effects of X-ray radiation. Mutat. Res. Genet. Toxicol. Environ. 2000, 469, 223–231. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, L.E.; Spitz, M.R.; Wei, Q. Cryopreserving whole blood for functional assays using viable lymphocytes in molecular epidemiology studies. Cancer Lett. 2001, 166, 155–163. [Google Scholar] [CrossRef]
- Fowke, K.R.; Behnke, J.; Hanson, C.; Shea, K.; Cosentino, M. Apoptosis: A method for evaluating the cryopreservation of whole blood and peripheral blood mononuclear cells. J. Immunol. Methods 2000, 244, 139–144. [Google Scholar] [CrossRef]
- Zijno, A.; Saini, F.; Crebelli, R. Suitability of cryopreserved isolated lymphocytes for the analysis of micronuclei with the cytokinesis-block method. Mutagenesis 2007, 22, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Risom, L.; Knudsen, L.E. Use of cryopreserved peripheral mononuclear blood cells in biomonitoring. Mutat. Res. Genet. Toxicol. Environ. 1999, 440, 131–138. [Google Scholar] [CrossRef]
- Djuzenova, C.S.; Muhl, B.; Fehn, M.; Oppitz, U.; Muller, B.; Flentje, M. Radiosensitivity in breast cancer assessed by the Comet and micronucleus assays. Br. J. Cancer 2006, 94, 1194–1203. [Google Scholar] [CrossRef] [Green Version]
WBC (n = 10) | Fresh PBMCS (n = 10) | |||||||
---|---|---|---|---|---|---|---|---|
Dose (Gy) | 0 | 0.5 | 1 | 2 | 0 | 0.5 | 1 | 2 |
Mean | 25 | 113 | 251 | 650 | 17 | 98 | 199 | 507 |
SD | 16 | 18 | 47 | 95 | 10 | 23 | 24 | 55 |
CV (%) | 63 | 16 | 19 | 15 | 57 | 24 | 12 | 11 |
Range | 13–66 | 93–155 | 179–348 | 506–815 | 3–33 | 73–142 | 166–232 | 401–594 |
Cryopreserved (2 w) PBMCS (n = 10) | Cryopreserved (25 w) PBMCS (n = 9) | |||||||
Dose (Gy) | 0 | 0.5 | 1 | 2 | 0 | 0.5 | 1 | 2 |
Mean | 9 | 86 | 241 | 630 | 17 | 114 | 232 | 608 |
SD | 6 | 17 | 44 | 129 | 6 | 18 | 59 | 123 |
CV (%) | 71 | 20 | 18 | 21 | 39 | 16 | 26 * | 20 |
Range | 2–22 | 67–115 | 190–338 | 494–943 | 11–29 | 82–135 | 158–350 | 424–793 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sioen, S.; Cloet, K.; Vral, A.; Baeyens, A. The Cytokinesis-Block Micronucleus Assay on Human Isolated Fresh and Cryopreserved Peripheral Blood Mononuclear Cells. J. Pers. Med. 2020, 10, 125. https://doi.org/10.3390/jpm10030125
Sioen S, Cloet K, Vral A, Baeyens A. The Cytokinesis-Block Micronucleus Assay on Human Isolated Fresh and Cryopreserved Peripheral Blood Mononuclear Cells. Journal of Personalized Medicine. 2020; 10(3):125. https://doi.org/10.3390/jpm10030125
Chicago/Turabian StyleSioen, Simon, Karlien Cloet, Anne Vral, and Ans Baeyens. 2020. "The Cytokinesis-Block Micronucleus Assay on Human Isolated Fresh and Cryopreserved Peripheral Blood Mononuclear Cells" Journal of Personalized Medicine 10, no. 3: 125. https://doi.org/10.3390/jpm10030125
APA StyleSioen, S., Cloet, K., Vral, A., & Baeyens, A. (2020). The Cytokinesis-Block Micronucleus Assay on Human Isolated Fresh and Cryopreserved Peripheral Blood Mononuclear Cells. Journal of Personalized Medicine, 10(3), 125. https://doi.org/10.3390/jpm10030125