Correlations between Iron Metabolism Parameters, Inflammatory Markers and Lipid Profile Indicators in Patients with Type 1 and Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Methods
2.4. Research Ethics
2.5. Statistical Analysis
3. Results
4. Discussion
- a negative relationship between HDL concentration and the level of microalbuminuria, reflecting the primary role of HDL deficiency, rather than the increase in atherogenic lipid fractions, in the development and progression of endothelial dysfunction, ultimately leading to the development and exacerbation of diabetic nephropathy. The role of diabetic nephropathy in lowering plasma level of HDL-C was been established. Both hypotheses take into account the existing literature data;
- a positive correlation between triglyceridemia and serum ferritin concentration. This relationship can be explained by the effects of functional activity of adipose tissue and an increase in the production of free fatty acids leading to the development of nonalcoholic steatohepatitis with increase in the inflammatory mesenchymal reaction of the liver.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rabinovitch, A.; Suarez-Pinzon, W.L. Roles of cytokines in the pathogenesis and therapy of type 1 diabetes. Cell Biophys. 2007, 48, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Schneider-Brachert, W.; Tchikov, V.; Neumeyer, J.; Jakob, M.; Winoto-Morbach, S.; Held-Feindt, J.; Heinrich, M.; Merkel, O.; Ehrenschwender, M.; Adam, D.; et al. Compartmentalization of TNF Receptor 1 Signaling. Immunity 2004, 21, 415–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uno, S.; Imagawa, A.; Okita, K.; Sayama, K.; Moriwaki, M.; Iwahashi, H.; Yamagata, K.; Tamura, S.; Matsuzawa, Y.; Hanafusa, T.; et al. Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-α in patients with recent-onset type 1 diabetes. Diabetologia 2007, 50, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Klimontov, V.V.; Tyan, N.V.; Fazullina, O.N.; Myakina, N.E.; Лыкoв, A.П.; Konenkov, V.; Валерьевич, К.В.; Виктoрoвна, Т.Н.; Никoлаевна, Ф.О.; Евгеньевна, М.Н.; et al. Clinical and metabolic factors associated with chronic low-grade inflammation in type 2 diabetic patients. Diabetes Mellit. 2016, 19, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Shen, X.-H.; Feng, W.-M.; Ye, G.-F.; Qiu, W.; Li, B. Analysis of Inflammatory Mediators in Prediabetes and Newly Diagnosed Type 2 Diabetes Patients. J. Diabetes Res. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Yamamoto, H. RAGE-Mediated Inflammation, Type 2 Diabetes, and Diabetic Vascular Complication. Front. Endocrinol. 2013, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pr. 2014, 105, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Dandona, P.; Aljada, A.; Chaudhuri, A.; Bandyopadhyay, A. The Potential Influence of Inflammation and Insulin Resistance on the Pathogenesis and Treatment of Atherosclerosis-Related Complications in Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2003, 88, 2422–2429. [Google Scholar] [CrossRef] [Green Version]
- Donath, M.Y.; Gross, D.J.; Cerasi, E.; Kaiser, N. Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes 1999, 48, 738–744. [Google Scholar] [CrossRef]
- Klüppelholz, B.; Thorand, B.; Koenig, W.; Gala, T.D.L.H.; Meisinger, C.; Huth, C.; Giani, G.; Franks, P.W.; Roden, M.; Rathmann, W.; et al. Association of subclinical inflammation with deterioration of glycaemia before the diagnosis of type 2 diabetes: The KORA S4/F4 study. Diabetologia 2015, 58, 2269–2277. [Google Scholar] [CrossRef] [Green Version]
- Ammirati, E.; Moroni, F.; Norata, G.; Magnoni, M.; Camici, P.G. Markers of Inflammation Associated with Plaque Progression and Instability in Patients with Carotid Atherosclerosis. Mediat. Inflamm. 2015, 2015, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soeki, T.; Sata, M. Inflammatory Biomarkers and Atherosclerosis. Int. Hear. J. 2016, 57, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hameed, I.; Masoodi, S.R.; A Mir, S.; Nabi, M.; Ghazanfar, K.; Ganai, B.A. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J. Diabetes 2015, 6, 598–612. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T. Anemia of Inflammation. N. Engl. J. Med. 2019, 381, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Kufelkina, T.Y.; Valeeva, F.; Kufelkina, T.Y. Anemia in patients with type 1 diabetes mellitus. Diabetes Mellit. 2010, 13, 49–53. [Google Scholar] [CrossRef]
- Semakova, A.D.; Brykova, Y.I.; Silina, M.N.; Volynkina, A.P. Estimation of the anemia prevalence in patients with diabetes mellitus. Cent. Sci. Her. 2019, 72, 7–8. [Google Scholar]
- Marynov, S.; Shestakova, M.V.; Shilov, E.M.; Shamkhalova, M.S.; Vikulova, O.; Sukhareva, O.Y.; Trubitsyna, N.P.; Egorova, D.; Bondarenko, O.N.; Dedov, I.I. Prevalence of anemia in patients with type 1 and type 2 diabetes mellitus with chronic renal disease. Diabetes Mellit. 2017, 20, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Frederickson, D.S.; Lee, R.S. A system for phenotyping hyperlipidemia. Circulation 1965, 31, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Waheed, P.; Naveed, A.K.; Farooq, F. Levels of inflammatory markers and their correlation with dyslipidemia in diabetics. J. Coll. Physicians Surg. Pak. 2009, 19, 207–210. [Google Scholar]
- De Boer, I.H.; Rue, T.C.; Cleary, P.A.; Lachin, J.M.; Molitch, M.E.; Steffes, M.W.; Sun, W.; Zinman, B.; Brunzell, J.D.; White, N.H.; et al. Long-term Renal Outcomes of Patients With Type 1 Diabetes Mellitus and Microalbuminuria: An Analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Cohort. Arch. Intern. Med. 2011, 171, 412–420. [Google Scholar] [CrossRef]
- Tziomalos, K.; Athyros, V.G. Diabetic Nephropathy: New Risk Factors and Improvements in Diagnosis. Rev. Diabet. Stud. 2015, 12, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wołkow, P.P.; Niewczas, M.A.; Perkins, B.; Ficociello, L.H.; Lipinski, B.; Warram, J.H.; Krolewski, A.S. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J. Am. Soc. Nephrol. 2008, 19, 789–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stehouwer, C.D.A.; Gall, M.-A.; Twisk, J.W.; Knudsen, E.; Emeis, J.J.; Parving, H.-H. Increased urinary albumin excretion, endothelial dysfunction, and chronic low-grade inflammation in type 2 diabetes: Progressive, interrelated, and independently associated with risk of death. Diabetes 2002, 51, 1157–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Bao, W.; Zhang, T.; Zhou, Y.; Yang, H.; Jia, H.; Wang, R.; Cao, Y.; Xiao, C. Independent relationship between serum ferritin levels and dyslipidemia in Chinese adults: A population study. PLoS ONE 2017, 12, e0190310. [Google Scholar] [CrossRef] [Green Version]
- Adiels, M.; Olofsson, S.-O.; Taskinen, M.-R.; Borén, J. Overproduction of Very Low–Density Lipoproteins Is the Hallmark of the Dyslipidemia in the Metabolic Syndrome. Arter. Thromb. Vasc. Boil. 2008, 28, 1225–1236. [Google Scholar] [CrossRef]
- Krauss, R.M.; Siri, P.W. Dyslipidemia in type 2 diabetes. Med. Clin. N. Am. 2004, 88, 897–909. [Google Scholar] [CrossRef]
- Krentz, A.J. Lipoprotein abnormalities and their consequences for patients with Type 2 diabetes. Diabetes Obes. Metab. 2003, 5, s19–s27. [Google Scholar] [CrossRef]
- Reiner, Z.; Catapano, A.L.; De Backer, G.; Graham, I.; Taskinen, M.R.; Wiklund, O.; Agewall, S.; Alegria, E.; Chapman, M.J.; Durrington, P.; et al. ESC/EAS Guidelines for the management of dyslipidaemias: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Hear. J. 2011, 32, 1769–1818. [Google Scholar] [CrossRef] [Green Version]
- Kawanami, D.; Matoba, K.; Utsunomiya, K. Dyslipidemia in diabetic nephropathy. Ren. Replace. Ther. 2016, 2, 225. [Google Scholar] [CrossRef] [Green Version]
- Angel, P.M.; Spraggins, J.M.; Baldwin, H.S.; Caprioli, R.M. Enhanced Sensitivity for High Spatial Resolution Lipid Analysis by Negative Ion Mode Matrix Assisted Laser Desorption Ionization Imaging Mass Spectrometry. Anal. Chem. 2012, 84, 1557–1564. [Google Scholar] [CrossRef] [Green Version]
- Kaysen, G.A.; Eiserich, J.P. The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. J. Am. Soc. Nephrol. 2004, 15, 538–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, B.B.; Schmidt, M.I.; Pankow, J.S.; Ballantyne, C.M.; Couper, D.; Vigo, A.; Hoogeveen, R.; Folsom, A.R.; Heiss, G. Low-grade systemic inflammation and the development of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes 2003, 52, 1799–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, M.P. Diabetes and cardiovascular disease. The “common soil” hypothesis. Diabetes 1995, 44, 369–374. [Google Scholar] [CrossRef]
- Montero, R.M.; Covic, A.; Gnudi, L.; Goldsmith, D. Diabetic nephropathy: What does the future hold? Int. Urol. Nephrol. 2015, 48, 99–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Rifai, N.; Pfeffer, M.A.; Sacks, F.; Braunwald, E. Long-Term Effects of Pravastatin on Plasma Concentration of C-reactive Protein. Circulation 1999, 100, 230–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albert, M.; Danielson, E.; Rifai, N.; Ridker, P. Effect of statin therapy on C-reactive protein levels. The pravastatin inflammation/CRP evaluation (PRINCE): A randomized trial and cohort study. ACC Curr. J. Rev. 2001, 10, 30. [Google Scholar] [CrossRef]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: A prospective study of the JUPITER trial. Lancet 2009, 373, 1175–1182. [Google Scholar] [CrossRef]
- Vakkilainen, J.; Steiner, G.; Ansquer, J.C.; Aubin, F.; Rattier, S.; Foucher, C.; Hamsten, A.; Taskinen, M.R. Relationships between low-density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: The Diabetes Atherosclerosis Intervention Study (DAIS). ACC Curr. J. Rev. 2003, 12, 35. [Google Scholar] [CrossRef]
- Keech, A.; Simes, R.J.; Barter, P.; Best, J.; Scott, R.; Taskinen, M.-R.; Forder, P.; Pillai, A.; Davis, T.; Glasziou, P.; et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet 2005, 366, 1849–1861. [Google Scholar] [CrossRef]
Variables | Type 1 DM n = 48 | Type 2 DM n = 81 | Control Group (Healthy Individuals) n = 17 |
---|---|---|---|
Age, years | 34.00 (26.00–52.00) ** | 60.00 (56.00–65.00) * | 40.00 (32.00–58.00) |
Duration of the disease, years | 9.0 (3.00–17.00) | 11.00 (8.00–15.00) | -- |
BMI, kg/m2 | 23.67 (21.43–26.03) ** | 33.80 (29.55–38.82) * | 25.10 (23.10–27.65) |
HbA1c, % | 8.80 (6.95–10.30) * | 9.10 (7.97–11.03) * | 5.20 (4.90–5.85) |
eGFR, mL/min/1.73 m2 | 95.00 (71.75–112.75) ** | 80.50 (63.00–93.00) * | 96.50 (93.00–106.00) |
MA, mg/L | 20.50 (9.25–39.25) | 13.55 (8.53–30.00) | -- |
AST (IU/L) | 20.00 (16.60–27.00) | 19.40 (15.00–28.00) | 20.00 (16.50–22.50) |
AST (IU/L) | 16.00 (12.00–24.00) ** | 20.00 (14.00–29.75) | 18.00 (11.50–21.00) |
Variables | Type 1 DM n = 48 | Type 2 DM n = 81 | Control Group (Healthy Individuals) n = 17 |
---|---|---|---|
TNF-α, pg/mL | 15.28 (12.41–24.41) *,** | 8.54 (6.27–11.60) | 9.68 (5.68–15.38) |
CRP, ng/mL | 2.00 (1.05–4.05) ** | 7.00 (3.00–11.85) | -- |
ESR, mm/h | 14.00 (5.00–21.25) ** | 18.00 (9.00–27.00) * | 7.00 (5.00–9.00) |
Leucocyte count, ×109/L | 6.55 (5.30–7.83) | 7.38 (6.08–8.74) | 6.08 (5.25–7.53) |
Hemoglobin, g/L | 138.50 (122.50–151.00) | 141.00 (125.25–151.00) | 146.00 (135.00–150.00) |
Erythrocyte count, ×1012/L | 4.69 (4.38–5.09) | 4.79 (4.39–5.19) | 4.80 (4.49–5.02) |
Reticulocytes, % | 1.51 (1.12–1.75) | 1.76 (1.54–1.91) | 1.60 (1.40–1.66) |
Hematocrit, % | 40.95 (38.40–43.65) | 42.05 (38.00–44.55) | 42.70 (40.70–44.85) |
Iron, μmol/L | 12.00 (8.00–17.00) | 13.00 (11.00–18.25) | 16.00 (11.00–20.50) |
Ferritin, ng/mL | 44.48 (18.35–148.50) ** | 96.52 (42.93–189.0) | 72.05 (43.23–148.60) |
Transferrin, mg/dL | 284.00 (250.00–334.00) | 293.00 (267.00–321.50) | 267.50 (208.75–306.50) |
Variables | Type 1 DM n = 48 | Type 2 DM n = 81 | Control Group (Healthy Individuals) n = 17 |
---|---|---|---|
TC, mmol/L | 4.98 (4.33–5.68) | 5.41 (4.58–6.40) | 4.90 (4.50–5.35) |
HDL-C, mmol/L | 1.50 (1.23–1.84) ** | 1.04 (0.90–1.30) * | 1.60 (1.33–1.90) |
LDL-C, mmol/L | 2.95 (2.55–3.28) | 3.25 (2.28–4.00) ** | 3.00 (2.25–3.24) |
VLDL-C, mmol/L | 0.50 (0.36–0.68) ** | 1.00 (0.73–1.31) * | 0.41 (0.29–0.70) |
TG, mmol/L | 1.05 (0.73–1.58) ** | 2.20 (1.60–2.70) * | 0.90 (0.65–1.45) |
Atherogenic coefficient | 2.38 (1.80–3.83) ** | 4.00 (2.95–5.11) * | 2.30 (1.88–2.85) |
Variables | Total (n = 146) | Type 1 DM n = 48 | Type 2 DM n = 81 | Control Group (Healthy Individuals) n = 17 |
---|---|---|---|---|
Hyperlipidemia, %(n) | 80.1 (117) | 83.3 (40) | 95.1 (77) | 0.0 (0) |
Absence of hyperlipidemia, %(n) | 19.8 (29) | 16.7 (8) | 4.9 (4) | 100.0 (17) |
TC | HDL-C | LDL-C | VLDL-C | TG | Atherogenic Coefficient | |||
---|---|---|---|---|---|---|---|---|
Age | r | 0.235 * | −0.287 * | 0.256 * | ns | ns | 0.308 * | |
Spearman r | BMI | r | ns | −0.561 * | ns | 0.529 * | 0.524 * | 0.502 * |
eGFR | r | −0.187 * | 0.233 * | ns | −0.362 * | −0.385 * | −0.256 * | |
ESR | r | 0.200 * | ns | 0.200 * | 0.261 * | 0.271 * | 0.233 * | |
TNF-α | r | ns | 0.298 * | ns | −0.343 * | ns | −0.325 * | |
CRP | r | ns | ns | ns | ns | 0,276 * | ns | |
Leucocytes | r | ns | −0.324 * | ns | 0.322 * | 0.238 * | 0.253 * | |
Ferritin | r | ns | −0.325 * | ns | 0.365 * | 0.415 * | 0.402 * | |
Transferrin | r | ns | 0.362 * | ns | ns | ns | ns | |
Reticulocytes | r | −0.346 * | −0.325 * | −0.504 * | ns | ns | ns | |
ALT | r | ns | −0.200 * | ns | 0.321 * | 0.315 * | 0.237 * |
TC | HDL-C | LDL-C | VLDL-C | TG | Atherogenic Coefficient | |||
---|---|---|---|---|---|---|---|---|
Age | r | 0.436 * | ns | 0.407 * | ns | ns | ns | |
Spearman r | eGFR | r | −0.618 * | ns | −0.480 * | −0.490 * | −0.533 * | −0.459 * |
Creatinine | r | 0.442 * | ns | 0.417 * | 0.387 * | 0.436 * | 0.550 * | |
MA | r | ns | −0.293 * | ns | 0.339 * | ns | ns | |
ESR | r | 0.371 * | ns | ns | 0.642 * | 0.546 * | ns | |
CRP | r | ns | ns | ns | ns | 0.567 * | 0.592 * | |
Leucocytes | r | ns | −0.331 * | ns | 0.406 * | ns | 0.391 * | |
Ferritin | r | 0.384 * | ns | 0.361 * | ns | 0.346 * | ns | |
Transferrin | r | ns | 0.490 * | ns | ns | ns | ns | |
ALT | r | ns | ns | ns | ns | 0.363 * | ns |
TC | HDL-C | LDL-C | VLDL-C | TG | Atherogenic Coefficient | |||
---|---|---|---|---|---|---|---|---|
Age | r | ns | ns | ns | 0.299 * | 0.233 * | ns | |
Spearman r | BMI | r | ns | −0.326 * | ns | 0.255 * | 0.230 * | ns |
MA | r | ns | −0.272 * | ns | ns | ns | ns | |
TNF-α | r | ns | −0.440 * | ns | ns | ns | ns | |
Ferritin | r | ns | −0.328 * | ns | ns | 0.244 * | 0.328 * | |
Reticulocytes | r | −0.505 * | ns | −0.496 * | ns | ns | ns |
TC | HDL-C | LDL-C | VLDL-C | TG | Atherogenic Coefficient | |||
---|---|---|---|---|---|---|---|---|
Age | r | 0.519 * | ns | ns | ns | ns | ns | |
Spearman r | BMI | r | ns | ns | ns | ns | ns | 0.591 * |
Leucocytes | r | ns | −0.617 * | ns | ns | ns | ns | |
Ferritin | r | ns | ns | ns | 0.661 * | 0.674 * | 0.583 * | |
Transferrin | r | ns | 0.572 * | ns | ns | ns | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
N. Musina, N.; V. Saprina, T.; S. Prokhorenko, T.; Kanev, A.; P. Zima, A. Correlations between Iron Metabolism Parameters, Inflammatory Markers and Lipid Profile Indicators in Patients with Type 1 and Type 2 Diabetes Mellitus. J. Pers. Med. 2020, 10, 70. https://doi.org/10.3390/jpm10030070
N. Musina N, V. Saprina T, S. Prokhorenko T, Kanev A, P. Zima A. Correlations between Iron Metabolism Parameters, Inflammatory Markers and Lipid Profile Indicators in Patients with Type 1 and Type 2 Diabetes Mellitus. Journal of Personalized Medicine. 2020; 10(3):70. https://doi.org/10.3390/jpm10030070
Chicago/Turabian StyleN. Musina, Nadezhda, Tatiana V. Saprina, Tatiana S. Prokhorenko, Alexander Kanev, and Anastasia P. Zima. 2020. "Correlations between Iron Metabolism Parameters, Inflammatory Markers and Lipid Profile Indicators in Patients with Type 1 and Type 2 Diabetes Mellitus" Journal of Personalized Medicine 10, no. 3: 70. https://doi.org/10.3390/jpm10030070
APA StyleN. Musina, N., V. Saprina, T., S. Prokhorenko, T., Kanev, A., & P. Zima, A. (2020). Correlations between Iron Metabolism Parameters, Inflammatory Markers and Lipid Profile Indicators in Patients with Type 1 and Type 2 Diabetes Mellitus. Journal of Personalized Medicine, 10(3), 70. https://doi.org/10.3390/jpm10030070