Drug Use among Nursing Home Residents in Denmark for Drugs Having Pharmacogenomics Based (PGx) Dosing Guidelines: Potential for Preemptive PGx Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Dosing Guidelines
2.2. Ethics
2.3. Inclusion of Residents with Polypharmacy and Identifying Treatment with Drugs with AG
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization Medication Safety in Polypharmacy: Technical Report. Available online: https://www.who.int/publications-detail/medication-safety-in-polypharmacy-technical-report (accessed on 20 February 2020).
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Ageing United Nations. Available online: https://www.un.org/en/sections/issues-depth/ageing/ (accessed on 22 June 2020).
- Onder, G.; Liperoti, R.; Fialova, D.; Topinkova, E.; Tosato, M.; Danese, P.; Gallo, P.F.; Carpenter, I.; Finne-Soveri, H.; Gindin, J.; et al. Polypharmacy in nursing home in Europe: Results from the SHELTER study. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 698–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin, L.; Laroche, M.L.; Texier, G.; Johnell, K. Prevalence of potentially inappropriate medication use in older adults living in nursing homes: A systematic review. J. Am. Med. Dir. Assoc. 2016. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, V.; Sehgal, R.; Bajaj, A.; Bajwa, S.J.; Khaira, U.; Kresse, V. Polypharmacy and potentially inappropriate medication use as the precipitating factor in readmissions to the hospital. J. Fam. Med. Prim. Care 2013, 2, 194. [Google Scholar] [CrossRef]
- Andersen, J.S.; Bro, F.; Søndergaard, J.; Thomsen, J.L. Polyfarmaci og almen praksis. Ugeskr. Laeger 2019, 181, V70235. [Google Scholar]
- Lundby, C.; Jensen, J.; Larsen, S.P.; Hoffmann, H.; Pottegård, A.; Reilev, M. Use of medication among nursing home residents: A Danish drug utilisation study. Age Ageing 2020. [Google Scholar] [CrossRef]
- Muth, C.; Blom, J.W.; Smith, S.M.; Johnell, K.; Gonzalez-Gonzalez, A.I.; Nguyen, T.S.; Brueckle, M.S.; Cesari, M.; Tinetti, M.E.; Valderas, J.M. Evidence supporting the best clinical management of patients with multimorbidity and polypharmacy: A systematic guideline review and expert consensus. J. Intern. Med. 2019. [Google Scholar] [CrossRef] [Green Version]
- Høj, K.; Mygind, A.; Livbjerg, S.; Bro, F. Deprescribing of inappropriate medication in primary care. Ugeskr. Laeger 2019, 181, 24. [Google Scholar]
- Deprescribing.org—Optimizing Medication Use. Available online: https://deprescribing.org/ (accessed on 3 April 2020).
- Sinnott, C.; McHugh, S.; Browne, J.; Bradley, C. GPs’ perspectives on the management of patients with multimorbidity: Systematic review and synthesis of qualitative research. BMJ Open 2013, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef] [PubMed]
- Sharp, C.N.; Linder, M.W.; Valdes, R. Polypharmacy: A healthcare conundrum with a pharmacogenetic solution. Crit. Rev. Clin. Lab. Sci. 2019. [Google Scholar] [CrossRef] [PubMed]
- Bahar, M.A.; Setiawan, D.; Hak, E.; Wilffert, B. Pharmacogenetics of drug–drug interaction and drug–drug–gene interaction: A systematic review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics 2017, 18, 701–739. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.N.; Tan, B.H.; Pan, Y.; Ong, C.E. Cytochrome P450 genotype-guided drug therapies: An update on current states. Clin. Exp. Pharmacol. Physiol. 2018, 45, 991–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbarino, J.M.; Whirl-Carrillo, M.; Altman, R.B.; Klein, T.E. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018, 10, e1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaedigk, A.; Dinh, J.; Jeong, H.; Prasad, B.; Leeder, J. Ten years’ experience with the cyp2d6 activity score: A perspective on future investigations to improve clinical predictions for precision therapeutics. J. Pers. Med. 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Caudle, K.E.; Dunnenberger, H.M.; Freimuth, R.R.; Peterson, J.F.; Burlison, J.D.; Whirl-Carrillo, M.; Scott, S.A.; Rehm, H.L.; Williams, M.S.; Klein, T.E.; et al. Standardizing terms for clinical pharmacogenetic test results: Consensus terms from the Clinical Pharmacogenetics Implementation Consortium (CPIC). Genet. Med. 2017, 19, 215–223. [Google Scholar] [CrossRef]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Müller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; LLerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, L.B.; Johnson, S.G.; Caudle, K.E.; Haidar, C.E.; Voora, D.; Wilke, R.A.; Maxwell, W.D.; McLeod, H.L.; Krauss, R.M.; Roden, D.M.; et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1 and Simvastatin-Induced Myopathy: 2014 Update. Clin. Pharmacol. Ther. 2014, 96, 423–428. [Google Scholar] [CrossRef]
- Shah, R.R.; Smith, R.L. Addressing phenoconversion: The Achilles’ heel of personalized medicine. Br. J. Clin. Pharmacol. 2015, 79, 222–240. [Google Scholar] [CrossRef] [Green Version]
- Storelli, F.; Matthey, A.; Lenglet, S.; Thomas, A.; Desmeules, J.; Daali, Y. Impact of CYP2D6 Functional Allelic Variations on Phenoconversion and Drug-Drug Interactions. Clin. Pharmacol. Ther. 2018, 104, 148–157. [Google Scholar] [CrossRef]
- Westergaard, N.; Nielsen, R.S.; Jørgensen, S.; Vermehren, C. Drug Use in Denmark for Drugs Having Pharmacogenomics (PGx) Based Dosing Guidelines from CPIC or DPWG for CYP2D6 and CYP2C19 Drug–Gene Pairs: Perspectives for Introducing PGx Test to Polypharmacy Patients. J. Pers. Med. 2020, 10, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization Collaborating Centre for Drug Statistics Methodology. WHOCC—ATC/DDD Index. Available online: https://www.whocc.no/atc_ddd_index/ (accessed on 7 October 2019).
- Medscape Drug Interactions Checker—Medscape Drug Reference Database. Available online: https://reference.medscape.com/drug-interactionchecker (accessed on 7 October 2019).
- Danish Medicines Agency Interaktionsdatabasen.dk. Available online: http://www.interaktionsdatabasen.dk/Default.aspx (accessed on 30 April 2020).
- Columna Cura by Systematic. Available online: https://systematic.com/healthcare/solutions/care/columna-cura/?lang=en (accessed on 7 July 2020).
- Flockhart, D.A. Drug Interactions: Cytochrome P450 Drug Interaction Table. Indiana University School of Medicine. Available online: https://drug-interactions.medicine.iu.edu/home.aspx (accessed on 2 June 2020).
- van der Wouden, C.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.; Dávila-Fajardo, C.; Deneer, V.; Dolžan, V.; Ingelman-Sundberg, M.; Jönsson, S.; Karlsson, M.; et al. Implementing Pharmacogenomics in Europe: Design and Implementation Strategy of the Ubiquitous Pharmacogenomics Consortium. Clin. Pharmacol. Ther. 2017, 101, 341–358. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Skierka, J.M.; Blommel, J.H.; Moore, B.E.; VanCuyk, D.L.; Bruflat, J.K.; Peterson, L.M.; Veldhuizen, T.L.; Fadra, N.; Peterson, S.E.; et al. Preemptive Pharmacogenomic Testing for Precision Medicine. J. Mol. Diagnostics 2016, 18, 438–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukerjee, G.; Huston, A.; Kabakchiev, B.; Piquette-Miller, M.; van Schaik, R.; Dorfman, R. User considerations in assessing pharmacogenomic tests and their clinical support tools. NPJ Genom. Med. 2018, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Jürgens, G.; Jacobsen, C.B.; Rasmussen, H.B.; Werge, T.; Nordentoft, M.; Andersen, S.E. Utility and adoption of CYP2D6 and CYP2C19 genotyping and its translation into psychiatric clinical practice. Acta Psychiatr. Scand. 2012, 125, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Samwald, M.; Xu, H.; Blagec, K.; Empey, P.E.; Malone, D.C.; Ahmed, S.M.; Ryan, P.; Hofer, S.; Boyce, R.D. Incidence of exposure of patients in the united states to multiple drugs for which pharmacogenomic guidelines are available. PLoS ONE 2016, 11, e0164972. [Google Scholar] [CrossRef] [Green Version]
- Christensen, L.D.; Reilev, M.; Juul-Larsen, H.G.; Jørgensen, L.M.; Kaae, S.; Andersen, O.; Pottegård, A.; Petersen, J. Use of prescription drugs in the older adult population-a nationwide pharmacoepidemiological study. Eur. J. Clin. Pharmacol. 2019, 75, 1125–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavares, L.C.; Marcatto, L.R.; Santos, P.C. Genotype-guided warfarin therapy: Current status. Pharmacogenomics 2018, 19, 667–685. [Google Scholar] [CrossRef]
- Sundhedsdatastyrelsen—Statistikker. Available online: http://www.medstat.dk/ (accessed on 11 July 2018).
- Bank, P.C.D.; Swen, J.J.; Guchelaar, H.J. Estimated nationwide impact of implementing a preemptive pharmacogenetic panel approach to guide drug prescribing in primary care in The Netherlands. BMC Med. 2019, 17, 110. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Y.; Chen, M.; Zhu, L.L.; Yu, L.S.; Zeng, S.; Xiang, M.X.; Zhou, Q. Pharmacokinetic drug interactions with clopidogrel: Updated review and risk management in combination therapy. Ther. Clin. Risk Manag. 2015, 11, 449–467. [Google Scholar]
- Fulton, C.R.; Zang, Y.; Desta, Z.; Rosenman, M.B.; Holmes, A.M.; Decker, B.S.; Zhang, Y.; Callaghan, T.J.; Pratt, V.M.; Levy, K.D.; et al. Drug-gene and drug-drug interactions associated with tramadol and codeine therapy in the INGENIOUS trial. Pharmacogenomics 2019. [Google Scholar] [CrossRef] [PubMed]
- Knisely, M.R.; Carpenter, J.S.; Draucker, C.B.; Skaar, T.; Broome, M.E.; Holmes, A.M.; Von Ah, D. CYP2D6 drug-gene and drug-drug-gene interactions among patients prescribed pharmacogenetically actionable opioids. Appl. Nurs. Res. 2017, 38, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Bahar, M.A.; Kamp, J.; Borgsteede, S.D.; Hak, E.; Wilffert, B. The impact of CYP2D6 mediated drug-drug interaction: A systematic review on a combination of metoprolol and paroxetine/fluoxetine. Br. J. Clin. Pharmacol. 2018, 84, 2704–2715. [Google Scholar] [CrossRef] [PubMed]
- Swen, J.J.; Nijenhuis, M.; van Rhenen, M.; de Boer-Veger, N.J.; Buunk, A.-M.; Houwink, E.J.F.; Mulder, H.; Rongen, G.A.; van Schaik, R.H.N.; van der Weide, J.; et al. Pharmacogenetic Information in Clinical Guidelines: The European Perspective. Clin. Pharmacol. Ther. 2018, 103, 795–801. [Google Scholar] [CrossRef] [PubMed]
Total | Age Groups (Year) | |||
---|---|---|---|---|
65–74 | 75–84 | 85–98 | ||
No. of residents. | 141 | 22 (15.6) | 51 (36.2) | 68 (48.2) |
No. of female gender | 80 (56.7) | 13 | 31 | 36 |
Mean no. of drugs | 12.0 | 12.2 | 13.0 | 11.5 |
No. of prescriptions (PGx-target) | ||||
CYP2C19 (AG/N-AG) | 133/3 | 23/1 | 59/1 | 51/1 |
CYP2D6 (AG/N-AG) | 54/75 | 8/16 | 16/26 | 30/33 |
CYP2C9 (AG/N-AG) | 3/0 | 0/0 | 1/0 | 2/0 |
SLCO1B1 (AG/N-AG) | 42/0 | 9/0 | 23/0 | 10/0 |
Total for PGx targets (AG/N-AG) | 232/78 | 40/17 | 99/27 | 93/34 |
PGx Target | Total Number of Residents. (%) | AGE Groups (Year) Number (%) | ||
---|---|---|---|---|
65–74 | 75–84 | 85–98 | ||
PGx-drugs (all) | 119 | 20 | 46 | 53 |
CYP2C19 drugs | 87 (73.1) | 15 (75.0) | 38 (82.6) | 35 (66.0) |
1 drug | 50 (42.0) | 8 (40.0) | 21 (45.7) | 21 (39.6) |
2 drugs | 30 (25.2) | 6 (30.0) | 11 (23.9) | 13 (24.5) |
3 drugs | 6 (5.0) | 1 (5.0) | 5 (10.9) | 0 (-) |
4 drugs | 1 (0.8) | 0 (-) | 0 (-) | 1 (1.9) |
CYP2D6 drugs | 47 (39.5) | 6 (30.8) | 14 (30.4) | 27 (50.9) |
1 drug | 40 (33.6) | 4 (20.0) | 12 (26.1) | 24 (45.3) |
2 drugs | 7 (5.9) | 2 (10.0) | 2 (4.3) | 3 (5.7) |
CYP2C9 drug | 3 (2.5) | 0 (0) | 1 (2.2) | 2 (3.8) |
SLCO1B1 drug | 42 (35.2) | 9 (45.0) | 23 (50.0) | 10 (18.9) |
Drug | ATC Code | No. of Residents | CYP | RM | EM | IM | PM |
---|---|---|---|---|---|---|---|
Pantoprazole 2) | A02BC02 | 32 | CYP2C19 | x | |||
Lansoprazole 2) | A02BC03 | 7 | CYP2C19 | x | |||
Omeprazole 2) | A02BC01 | 3 | CYP2C19 | x | |||
Esomeprazole 1) | A02BC05 | 3 | CYP2C19 * | ||||
Glimepiride | A10BB12 | 1 | CYP2C9 * | ||||
Clopidogrel | B01AC04 | 42 | CYP2C19 | x | x | ||
Warfarin | B01AA03 | 3 | CYP2C9 | x | x | x | |
Amiodarone | C01BD01 | 1 | CYP2D6 * | ||||
Metoprolol | C07AB02 | 25 | CYP2D6 | x | x | x | |
Carvedilol | C07AG02 | 2 | CYP2D6 * | ||||
Atenolol | C07AB03 | 1 | CYP2D6 * | ||||
Bisoprolol | C07AB07 | 1 | CYP2D6 * | ||||
Tramadol | N02AX02 | 12 | CYP2D6 | x | x | x | |
Oxycodone | N02AA05 | 5 | CYP2D6 * | ||||
Codeine | R05DA04 | 8 | CYP2D6 | x | x | x | |
Quetiapine | N05AH04 | 25 | CYP2D6 * | ||||
Olanzapine | N05AH03 | 9 | CYP2D6 * | ||||
Risperidone | N05AX08 | 4 | CYP2D6 * | ||||
Aripiprazole | N05AX12 | 2 | CYP2D6 | x | |||
Haloperidol 4) | N05AD01 | 1 | CYP2D6 | x | x | ||
Citalopram 2,4) | N06AB04 | 24 | CYP2C19 | x | x | ||
Sertraline 4) | N06AB06 | 22 | CYP2C19 | x | |||
Mirtazapine | N06AX11 | 17 | CYP2D6 * | ||||
Amitriptyline | N06AA09 | 7 | CYP2D6 | x | x | x | |
Amitriptyline | - | CYP2C19 | x | x | |||
Venlafaxine | N06AX16 | 5 | CYP2D6 | x | x | x | |
Escitalopram 2,4) | N06AB10 | 2 | CYP2C19 | x | x | x | |
Duloxetine 3) | N06AX21 | 2 | CYP2D6 * | ||||
Fluoxetine 3) | N06AB03 | 1 | CYP2D6 * | ||||
Nortriptyline | N06AA10 | 1 | CYP2D6 | x | x | x | |
L-F | IM-F | N-F | |||||
Simvastatin | C10AA01 | 30 | SLCO1B1 | x | x | ||
Atorvastin | C10AA05 | 12 | SLCO1B1 | x | x |
Clopidogrel | Citalopram 2,4) | Sertraline 3) | Venlafaxine | ||
---|---|---|---|---|---|
42 | 24 | 22 | 5 | ||
Omeprazole 2) | 3 | 1 A) | 1 A) | 1 | - |
Lansoprazole 2) | 7 | 5 A) | 1 | - | - |
Pantoprazole 2) | 32 | 12 A) | 7 | 3 | - |
Esomeprazole 1) | 3 | 1 A) | - | 1 | - |
Metoprolol | 25 | - | 2 B) | 2 B) | 1 B) |
Oxycodone | 5 | - | - | 2 B) | 1 B) |
Codeine | 8 | - | - | 2 B) | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vermehren, C.; Søgaard Nielsen, R.; Jørgensen, S.; Drastrup, A.M.; Westergaard, N. Drug Use among Nursing Home Residents in Denmark for Drugs Having Pharmacogenomics Based (PGx) Dosing Guidelines: Potential for Preemptive PGx Testing. J. Pers. Med. 2020, 10, 78. https://doi.org/10.3390/jpm10030078
Vermehren C, Søgaard Nielsen R, Jørgensen S, Drastrup AM, Westergaard N. Drug Use among Nursing Home Residents in Denmark for Drugs Having Pharmacogenomics Based (PGx) Dosing Guidelines: Potential for Preemptive PGx Testing. Journal of Personalized Medicine. 2020; 10(3):78. https://doi.org/10.3390/jpm10030078
Chicago/Turabian StyleVermehren, Charlotte, Regitze Søgaard Nielsen, Steffen Jørgensen, Anne Mette Drastrup, and Niels Westergaard. 2020. "Drug Use among Nursing Home Residents in Denmark for Drugs Having Pharmacogenomics Based (PGx) Dosing Guidelines: Potential for Preemptive PGx Testing" Journal of Personalized Medicine 10, no. 3: 78. https://doi.org/10.3390/jpm10030078
APA StyleVermehren, C., Søgaard Nielsen, R., Jørgensen, S., Drastrup, A. M., & Westergaard, N. (2020). Drug Use among Nursing Home Residents in Denmark for Drugs Having Pharmacogenomics Based (PGx) Dosing Guidelines: Potential for Preemptive PGx Testing. Journal of Personalized Medicine, 10(3), 78. https://doi.org/10.3390/jpm10030078