Benefit of Wearing an Activity Tracker in Sarcoidosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Subjects and Controls
2.2. Lung Function Tests
2.3. Exercise Capacity
2.4. Outcome Measures: Activity and Fatigue Monitoring
2.5. Intervention
2.6. Statistical Analysis
3. Results
3.1. Comparing Activity Tracker Users (Group I) and Controls (Group II)
3.2. Comparing Activity Tracker Users with (Group Ia) and without Coaching (Group Ib)
3.3. Evaluation and Feedback Activity Tracker Users
4. Discussion
4.1. Benefits for Caregivers
4.2. Benefits for Patients Themselves
4.3. Limitations
5. Conclusions
Data Availability
Disclosure Statement
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Ethical Approval
References
- Valeyre, D.; Prasse, A.; Nunes, H.; Uzunhan, Y.; Brillet, P.Y.; Muller-Quernheim, J. Sarcoidosis. Lancet 2014, 383, 1155–1167. [Google Scholar] [CrossRef]
- Drent, M.; Strookappe, B.; Hoitsma, E.; De Vries, J. Consequences of Sarcoidosis. Clin. Chest Med. 2015, 36, 727–737. [Google Scholar] [CrossRef]
- Voortman, M.; Hendriks, C.M.R.; Elfferich, M.D.P.; Bonella, F.; Moller, J.; De Vries, J.; Costabel, U.; Drent, M. The Burden of Sarcoidosis Symptoms from a Patient Perspective. Lung 2019, 197, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Tavee, J.; Culver, D. Nonorgan manifestations of sarcoidosis. Curr. Opin. Pulm. Med. 2019, 25, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Marcellis, R.G.; Lenssen, A.F.; Elfferich, M.D.; De Vries, J.; Kassim, S.; Foerster, K.; Drent, M. Exercise capacity, muscle strength and fatigue in sarcoidosis. Eur. Respir. J. 2011, 38, 628–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, P.S.P.; Vasudevan, S.; Maddocks, M.; Spinou, A.; Chamberlain Mitchell, S.; Wood, C.; Jolley, C.J.; Birring, S.S. Physical Inactivity in Pulmonary Sarcoidosis. Lung 2019, 197, 285–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahmer, T.; Watz, H.; Develaska, M.; Waschki, B.; Rabe, K.F.; Magnussen, H.; Kirsten, D.; Kirsten, A.M. Physical Activity and Fatigue in Patients with Sarcoidosis. Respiration 2018, 95, 18–26. [Google Scholar] [CrossRef]
- Froidure, S.; Kyheng, M.; Grosbois, J.M.; Lhuissier, F.; Stelianides, S.; Wemeau, L.; Wallaert, B. Daily life physical activity in patients with chronic stage IV sarcoidosis: A multicenter cohort study. Health Sci. Rep. 2019, 2, e109. [Google Scholar] [CrossRef] [Green Version]
- Drent, M.; Lower, E.E.; De Vries, J. Sarcoidosis-associated fatigue. Eur. Respir. J. 2012, 40, 255–263. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, A.N.; Sahu, K.K.; Gupta, D. Fatigue and health-related quality of life in patients with pulmonary sarcoidosis treated by oral Corticosteroids. Sarcoidosis Vasc. Diffus. Lung Dis. 2016, 33, 124–129. [Google Scholar]
- Hendriks, C.; Drent, M.; De Kleijn, W.; Elfferich, M.; Wijnen, P.; De Vries, J. Everyday cognitive failure and depressive symptoms predict fatigue in sarcoidosis: A prospective follow-up study. Respir. Med. 2018, 138, S24–S30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriks, C.M.R.; Saketkoo, L.A.; Elfferich, M.D.P.; De Vries, J.; Wijnen, P.; Drent, M. Sarcoidosis and work participation: The need to develop a disease-specific core set for assessment of work ability. Lung 2019, 197, 407–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jastrzebski, D.; Ziora, D.; Lubecki, M.; Zieleznik, K.; Maksymiak, M.; Hanzel, J.; Poczatek, A.; Kolczynska, A.; Nguyen Thi, L.; Zebrowska, A.; et al. Fatigue in sarcoidosis and exercise tolerance, dyspnea, and quality of life. Adv. Exp. Med. Biol. 2015, 833, 31–36. [Google Scholar] [PubMed]
- De Vries, J.; Van Heck, G.L.; Drent, M. Gender differences in sarcoidosis: Symptoms, quality of life, and medical consumption. Women Health 1999, 30, 99–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcellis, R.; Van der Veeke, M.; Mesters, I.; Drent, M.; De Bie, R.; De Vries, G.; Lenssen, A. Does physical training reduce fatigue in sarcoidosis? Sarcoidosis Vasc. Diffus. Lung Dis. 2015, 32, 53–62. [Google Scholar]
- Strookappe, B.; Elfferich, M.; Swigris, J.; Verschoof, A.; Veschakelen, J.; Knevel, T.; Drent, M. Benefits of physical training in patients with idiopathic or end-stage sarcoidosis-related pulmonary fibrosis: A pilot study. Sarcoidosis Vasc. Diffus. Lung Dis. 2015, 32, 43–52. [Google Scholar]
- Strookappe, B.; Swigris, J.; De Vries, J.; Elfferich, M.; Knevel, T.; Drent, M. Benefits of Physical Training in Sarcoidosis. Lung 2015, 193, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Lingner, H.; Buhr-Schinner, H.; Hummel, S.; van der Meyden, J.; Grosshennig, A.; Nowik, D.; Schultz, K. Short-Term Effects of a Multimodal 3-Week Inpatient Pulmonary Rehabilitation Programme for Patients with Sarcoidosis: The ProKaSaRe Study. Respiration 2018, 95, 343–353. [Google Scholar] [CrossRef]
- Broekhuizen, K.; Kroeze, W.; van Poppel, M.N.; Oenema, A.; Brug, J. A systematic review of randomized controlled trials on the effectiveness of computer-tailored physical activity and dietary behavior promotion programs: An update. Ann. Behav. Med. 2012, 44, 259–286. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.S.; While, A.E. Maximizing the healthcare environment: A systematic review exploring the potential of computer technology to promote self-management of chronic illness in healthcare settings. Patient Educ. Couns. 2013, 92, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Marcus, B.H.; Ciccolo, J.T.; Sciamanna, C.N. Using electronic/computer interventions to promote physical activity. Br. J. Sports Med. 2009, 43, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.P.; Blunt, W.; Boa Sorte Silva, N.C.; Stiller-Moldovan, C.; Zou, G.Y.; Petrella, R.J. The HealtheSteps lifestyle prescription program to improve physical activity and modifiable risk factors for chronic disease: A pragmatic randomized controlled trial. BMC Public Health 2019, 19, 841. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaes, A.W.; Cheung, A.; Atakhorrami, M.; Groenen, M.T.; Amft, O.; Franssen, F.M.; Wouters, E.F.; Spruit, M.A. Effect of ‘activity monitor-based’ counseling on physical activity and health-related outcomes in patients with chronic diseases: A systematic review and meta-analysis. Ann. Med. 2013, 45, 397–412. [Google Scholar] [CrossRef]
- Sehgal, S.; Chowdhury, A.; Rabih, F.; Gadre, A.; Park, M.M.; Li, M.; Wang, X.; Highland, K.B. Counting Steps: A New Way to Monitor Patients with Pulmonary Arterial Hypertension. Lung 2019, 197, 501–508. [Google Scholar] [CrossRef]
- Hendriks, C.M.R.; Deenstra, D.D.; Elfferich, M.D.P.; Strookappe, B.; Wijnen, P.A.H.M.; De Vries, J.; Drent, M. Experience with activity monitors of patients with COPD, sarcoidosis and pulmonary fibrosis in the Netherlands. Psychol. Behav. Sci. Int. J. 2019, 12, 555843. [Google Scholar]
- Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am. J. Respir. Crit. Care Med. 1999, 160, 736–755. [Google Scholar]
- ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef]
- Gibbons, W.J.; Fruchter, N.; Sloan, S.; Levy, R.D. Reference values for a multiple repetition 6-minute walk test in healthy adults older than 20 years. J. Cardiopulm. Rehabil. 2001, 21, 87–93. [Google Scholar] [CrossRef]
- Fokkema, T.; Kooiman, T.J.; Krijnen, W.P.; van der Schans, C.P.; de Groot, M. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed. Med. Sci. Sports. Exerc. 2017, 49, 793–800. [Google Scholar] [CrossRef]
- Gorny, A.W.; Liew, S.J.; Tan, C.S.; Muller-Riemenschneider, F. Fitbit Charge HR Wireless Heart Rate Monitor: Validation Study Conducted Under Free-Living Conditions. JMIR Mhealth Uhealth 2017, 5, e157. [Google Scholar] [CrossRef] [PubMed]
- Michielsen, H.J.; Drent, M.; Peros-Golubicic, T.; De Vries, J. Fatigue is associated with quality of life in sarcoidosis patients. Chest 2006, 130, 989–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michielsen, H.J.; De Vries, J.; Drent, M.; Peros-Golubicic, T. Psychometric qualities of the Fatigue Assessment Scale in Croatian sarcoidosis patients. Sarcoidosis Vasc. Diffus. Lung Dis. 2005, 22, 133–138. [Google Scholar]
- Strookappe, B.; Saketkoo, L.A.; Elfferich, M.; Holland, A.; De Vries, J.; Knevel, T.; Drent, M. Physical activity and training in sarcoidosis: Review and experience-based recommendations. Expert Rev. Respir. Med. 2016, 10, 1057–1068. [Google Scholar] [CrossRef] [Green Version]
- Moor, C.C.; Gur-Demirel, Y.; Wijsenbeek, M.S. Feasibility of a Comprehensive Home Monitoring Program for Sarcoidosis. J. Pers. Med. 2019, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- van der Weegen, S.; Verwey, R.; Spreeuwenberg, M.; Tange, H.; van der Weijden, T.; de Witte, L. It’s LiFe! Mobile and Web-Based Monitoring and Feedback Tool Embedded in Primary Care Increases Physical Activity: A Cluster Randomized Controlled Trial. J. Med. Internet Res. 2015, 17, e184. [Google Scholar] [CrossRef] [Green Version]
- Cox, N.S.; McDonald, C.F.; Alison, J.A.; Mahal, A.; Wootton, R.; Hill, C.J.; Bondarenko, J.; Macdonald, H.; O’Halloran, P.; Zanaboni, P.; et al. Telerehabilitation versus traditional centre-based pulmonary rehabilitation for people with chronic respiratory disease: Protocol for a randomised controlled trial. BMC Pulm. Med. 2018, 18, 71. [Google Scholar] [CrossRef]
- Aikens, J.E.; Rosland, A.M.; Piette, J.D. Improvements in illness self-management and psychological distress associated with telemonitoring support for adults with diabetes. Prim. Care Diabetes 2015, 9, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Piette, J.D.; Aikens, J.E.; Rosland, A.M.; Sussman, J.B. Rethinking the frequency of between-visit monitoring for patients with diabetes. Med. Care 2014, 52, 511–518. [Google Scholar] [CrossRef] [Green Version]
- Green, B.B.; Cook, A.J.; Ralston, J.D.; Fishman, P.A.; Catz, S.L.; Carlson, J.; Carrell, D.; Tyll, L.; Larson, E.B.; Thompson, R.S. Effectiveness of home blood pressure monitoring, Web communication, and pharmacist care on hypertension control: A randomized controlled trial. JAMA 2008, 299, 2857–2867. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Xu, L.; Liu, X.; Huang, J.; Xu, W.; Chen, W. Web-based telemedicine for management of type 2 diabetes through glucose uploads: A randomized controlled trial. Int. J. Clin. Exp. Pathol. 2014, 7, 8848–8854. [Google Scholar] [PubMed]
- Gold, D.T. Understanding patient compliance and persistence with osteoporosis therapy. Drugs Aging 2011, 28, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Day, S.J.; Altman, D.G. Statistics notes: Blinding in clinical trials and other studies. BMJ 2000, 321, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, C.; Deering, B.M.; Blake, C.; Fullen, B.M.; McCormack, N.M.; Spruit, M.A.; Costello, R.W. Short term and long term effects of pulmonary rehabilitation on physical activity in COPD. Respir. Med. 2012, 106, 1671–1679. [Google Scholar] [CrossRef] [Green Version]
Group I | Group Ia | Group Ib | Exclusion | Group II | |
---|---|---|---|---|---|
Demographics | |||||
Subjects, n | 54 | 27 | 27 | 9 | 41 |
sex, male/female, n | 28/26 | 14/13 | 14/13 | 4/5 | 10/31 |
age, years, median (range) | 48 (26–72) | 48 (26–65) | 47 (29–72) | 47 (30–69) | 48 (29–73) |
time since diagnosis, years, median (range) | 5.0 (0–22) | 4.0 (0–14) | 8.0 (1–22) | 9.0 (4–25) | 4.0 (0–23) |
BMI, kg/m2 | 27.4 ± 5.5 | 27.1 ± 3.6 | 27.8 ± 6.9 | 24.1 ± 4.5 | 27.9 ± 5.3 |
Treatment | |||||
no treatment, n | 18 (33.3%) | 8 (29.6%) | 10 (37.0%) | 4 (44.4%) | 13 (31.7%) |
glucocorticoids, n | 20 (37.0%) | 11 (40.7%) | 10 (37.0%) | 3 (33.3%) | 15 (36.6%) |
Other #, n | 16 (29.6%) | 8 (29.6%) | 7 (26.0%) | 2 (22.2%) | 13 (31.7%) |
Lung Function Tests | |||||
DLCO, % predicted | 77.2 ± 14.4 | 79.6 ± 11.8 | 74.7 ± 16.5 | 74.9 ± 20.2 | 77.9 ± 18.9 |
FEV1, % predicted | 90.9 ± 20.9 | 91.0 ± 19.0 | 90.8 ± 22.9 | 66.9 ± 28.7 | 85.7 ± 21.8 |
FVC, % predicted | 101.2 ± 19.4 | 99.9 ± 16.3 | 102.5 ± 22.3 | 97.4 ± 13.0 | 94.8 ± 18.0 |
Chest Radiographs Stages | |||||
0/I/II/III/IV | 11/12/24/4/3 | 6/6/12/2/1 | 5/6/12/2/2 | 0/0/2/3/4 | 2/10/21/3/5 |
Inflammatory Status | |||||
CRP (mg/L) | 4.1 ± 5.7 | 3.3 ± 3.1 | 4.9 ± 7.5 | 7.1 ± 14.6 | 4.6 ± 4.0 |
sIL-2R (U/mL) | 4385 ± 4454 | 4046 ± 4710 | 4725 ± 4246 | 3008 ± 1381 | 6467 ± 11,807 |
Fatigue | |||||
FAS | 32.9 ± 7.5 | 33.3 ± 7.4 | 32.6 ± 7.6 | 27.8 ± 7.8 | 30.2 ± 9.0 |
Group I | Group Ia | Group Ib | Group II | |
---|---|---|---|---|
Subjects, number | 54 | 27 | 27 | 41 |
Sex, male/female, n | 28/26 | 13/14 | 13/14 | 10/31 |
6MWD, meters | ||||
At baseline | 566 ± 124 | 564 ± 138 | 569 ± 110 | 530 ± 104 |
At follow-up | 595 ± 130 | 593 ± 149 | 597 ± 109 | 534 ± 110 |
p-value within groups | 0.003 | 0.011 | 0.082 | 0.892 |
∆6MWD, meters | 29.5 ± 69.1 * | 28.7 ± 55.8 | 30.2 ± 81.4 | 4.7 ± 33.7 |
6MWD, % predicted | ||||
At baseline | 81.6 ± 18.1 | 81.4 ± 20.8 | 81.7 ± 15.5 | 75.3 ± 14.3 |
At follow-up | 86.1 ± 17.1 | 85.9 ± 20.0 | 86.2 ± 13.8 | 76.1 ± 15.2 |
p-value within groups | 0.001 | 0.001 | 0.049 | 0.832 |
∆ 6MWD, % predicted | 4.4 ± 9.1 * | 4.4 ± 6.6 | 4.4 ± 11.2 | 0.7 ± 5.0 |
SRT, watts | ||||
At baseline | 265 ± 79 | 261 ± 85.9 | 269 ± 74 | 286 ± 74 |
At follow-up | 278 ± 85 | 281 ± 91.9 | 275 ± 80 | 298 ± 78 |
p-value within groups | 0.004 | 0.005 | 0.269 | 0.497 |
∆ SRT, watts | 12.8 ± 30.9 | 20.2 ± 33.8 # | 5.7 ± 26.4 | 11.6 ± 29.5 |
SRT, VO2 max, % predicted | ||||
At baseline | 25.2 ± 6.1 | 24.7 ± 6.6 | 25.7 ± 5.7 | 26.2 ± 6.4 |
At follow-up | 26.4 ± 6.4 | 26.3 ± 6.8 | 26.5 ± 6.1 | 26.6 ± 6.7 |
p-value within groups | 0.001 | 0.005 | 0.088 | 0.770 |
∆ SRT, VO2 max, % predicted | 1.2 ± 2.5 * | 1.6 ± 2.6 # | 0.7 ± 2.3 | 0.6 ± 2.4 |
FAS | ||||
At baseline | 32.9 ± 7.5 | 33.3 ± 7.4 | 32.6 ± 7.6 | 30.3 ± 9.0 |
At follow-up | 29.1 ± 8.7 | 29.5 ± 8.8 | 28.6 ± 8.7 | 28.6 ± 9.0 |
p-value within groups | 0.001 | <0.001 | 0.007 | 0.408 |
∆ FAS | −3.9 ± 5.7 * | −3.7 ± 4.0 | −4.0 ± 7.1 | −1.8 ± 5.3 |
Did You Find the Intervention Study Helpful? | |
---|---|
yes | 90% |
I have gained more insight into what I can do, and what I do in one day | 42% |
I have gained more insight into how I can best alternate activity and rest | 10% |
It has encouraged me to be more active | 38% |
no | 10% |
I already had sufficient insight | 2% |
It didn’t help me | 6% |
Monitoring my activities stimulated me too much | 2% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drent, M.; Elfferich, M.; Breedveld, E.; Vries, J.D.; Strookappe, B. Benefit of Wearing an Activity Tracker in Sarcoidosis. J. Pers. Med. 2020, 10, 97. https://doi.org/10.3390/jpm10030097
Drent M, Elfferich M, Breedveld E, Vries JD, Strookappe B. Benefit of Wearing an Activity Tracker in Sarcoidosis. Journal of Personalized Medicine. 2020; 10(3):97. https://doi.org/10.3390/jpm10030097
Chicago/Turabian StyleDrent, Marjolein, Marjon Elfferich, Ellen Breedveld, Jolanda De Vries, and Bert Strookappe. 2020. "Benefit of Wearing an Activity Tracker in Sarcoidosis" Journal of Personalized Medicine 10, no. 3: 97. https://doi.org/10.3390/jpm10030097
APA StyleDrent, M., Elfferich, M., Breedveld, E., Vries, J. D., & Strookappe, B. (2020). Benefit of Wearing an Activity Tracker in Sarcoidosis. Journal of Personalized Medicine, 10(3), 97. https://doi.org/10.3390/jpm10030097