Altered Interoceptive Perception and the Effects of Interoceptive Analgesia in Musculoskeletal, Primary, and Neuropathic Chronic Pain Conditions
Abstract
:1. Introduction
2. Materials and Methods Study 1
2.1. Participants
2.2. Chronic Pain Assessment and Classification
2.3. Experimental Procedure
2.4. Interoceptive Accuracy
2.5. Interoceptive Confidence
2.6. Interoceptive Sensibility
2.7. Pain and Mood Measures
2.8. Statistical Analyses
3. Results Study 1
3.1. Sample Characteristics, Pain Measures, and Psychological Measures
3.2. Interoceptive Accuracy
3.3. Interoceptive Confidence
3.4. Interoceptive Sensibility
3.5. Depression and Anxiety
3.6. The Relationship between CP, Interoception and Mood
3.7. A Check for Potential Confounding Factors of Medication and Comorbidity in CP Patients
4. Materials and Methods Study 2
4.1. Participants
4.2. Experimental Design and Procedure
4.3. Tactile Stimulation
4.4. Statistical Analyses
5. Results Study 2
Pain Reduction after Interoceptive Tactile Stimulation
6. Discussion
Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nicholas, M.; Vlaeyen, J.W.; Rief, W.; Barke, A.; Aziz, Q.; Benoliel, R.; Cohen, M.; Evers, S.; Giamberardino, M.A.; Goebel, A. The IASP classification of chronic pain for ICD-11: Chronic Primary Pain. Pain 2019, 160, 28–37. [Google Scholar] [CrossRef]
- Perrot, S.; Cohen, M.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.-D. The IASP classification of chronic pain for ICD-11: Chronic secondary musculoskeletal pain. Pain 2019, 160, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Treede, R.-D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B. Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the: International Classification of Diseases:(: ICD-11:). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gormsen, L.; Rosenberg, R.; Bach, F.W.; Jensen, T.S. Depression, anxiety, health-related quality of life and pain in patients with chronic fibromyalgia and neuropathic pain. Eur. J. Pain 2010, 14, 127.e1–127.e8. [Google Scholar] [CrossRef]
- McWilliams, L.A.; Goodwin, R.D.; Cox, B.J. Depression and anxiety associated with three pain conditions: Results from a nationally representative sample. Pain 2004, 111, 77–83. [Google Scholar] [CrossRef]
- Meints, S.M.; Edwards, R.R. Evaluating psychosocial contributions to chronic pain outcomes. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 87, 168–182. [Google Scholar] [CrossRef]
- Edwards, R.R.; Dworkin, R.H.; Sullivan, M.D.; Turk, D.C.; Wasan, A.D. The Role of Psychosocial Processes in the Development and Maintenance of Chronic Pain. J. Pain Off. J. Am. Pain Soc. 2016, 17, T70–T92. [Google Scholar] [CrossRef] [Green Version]
- McCarberg, B.; Peppin, J. Pain Pathways and Nervous System Plasticity: Learning and Memory in Pain. Pain Med. 2019, 20, 2421–2437. [Google Scholar] [CrossRef] [PubMed]
- Di Lernia, D.; Serino, S.; Riva, G. Pain in the body. Altered interoception in chronic pain conditions: A systematic review. Neurosci. Biobehav. Rev. 2016, 71, 328–341. [Google Scholar] [CrossRef]
- Craig, A.D. The sentient self. Brain Struct. Funct. 2010, 214, 563–577. [Google Scholar] [CrossRef]
- Khalsa, S.S.; Adolphs, R.; Cameron, O.G.; Critchley, H.D.; Davenport, P.W.; Feinstein, J.S.; Feusner, J.D.; Garfinkel, S.N.; Lane, R.D.; Mehling, W.E.; et al. Interoception and Mental Health: A Roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Starr, C.J.; Sawaki, L.; Wittenberg, G.F.; Burdette, J.H.; Oshiro, Y.; Quevedo, A.S.; Coghill, R.C. Roles of the insular cortex in the modulation of pain: Insights from brain lesions. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 2684–2694. [Google Scholar] [CrossRef]
- Segerdahl, A.R.; Mezue, M.; Okell, T.W.; Farrar, J.T.; Tracey, I. The dorsal posterior insula subserves a fundamental role in human pain. Nat. Neurosci. 2015, 18, 499–500. [Google Scholar] [CrossRef]
- Lu, C.; Yang, T.; Zhao, H.; Zhang, M.; Meng, F.; Fu, H.; Xie, Y.; Xu, H. Insular cortex is critical for the perception, modulation, and chronification of pain. Neurosci. Bull. 2016, 32, 191–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flodin, P.; Martinsen, S.; Altawil, R.; Waldheim, E.; Lampa, J.; Kosek, E.; Fransson, P. Intrinsic Brain Connectivity in Chronic Pain: A Resting-State fMRI Study in Patients with Rheumatoid Arthritis. Front. Hum. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Cottam, W.J.; Iwabuchi, S.J.; Drabek, M.M.; Reckziegel, D.; Auer, D.P. Altered connectivity of the right anterior insula drives the pain connectome changes in chronic knee osteoarthritis. Pain 2018, 159, 929–938. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Choi, S.H.; Jang, J.H.; Lee, D.H.; Lee, K.J.; Lee, W.J.; Moon, J.Y.; Kim, Y.C.; Kang, D.H. Impaired insula functional connectivity associated with persistent pain perception in patients with complex regional pain syndrome. PLoS ONE 2017, 12, e0180479. [Google Scholar] [CrossRef] [Green Version]
- Schandry, R. Heart Beat Perception and Emotional Experience. Psychophysiology 1981, 18, 483–488. [Google Scholar] [CrossRef]
- Garfinkel, S.N.; Seth, A.K.; Barrett, A.B.; Suzuki, K.; Critchley, H.D. Knowing your own heart: Distinguishing interoceptive accuracy from interoceptive awareness. Biol. Psychol. 2015, 104, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Solcà, M.; Park, H.D.; Bernasconi, F.; Blanke, O. Behavioral and neurophysiological evidence for altered interoceptive bodily processing in chronic pain. NeuroImage 2020. [Google Scholar] [CrossRef]
- Duschek, S.; Montoro, C.I.; Reyes Del Paso, G.A. Diminished Interoceptive Awareness in Fibromyalgia Syndrome. Behav. Med. 2015, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.; Sack, M.; Henningsen, P.; Pollatos, O. On the Interaction of Self-Regulation, Interoception and Pain Perception. Psychopathology 2014, 47, 377–382. [Google Scholar] [CrossRef]
- Garfinkel, S.N.; Manassei, M.F.; Hamilton-Fletcher, G.; den Bosch, Y.I.; Critchley, H.D.; Engels, M. Interoceptive dimensions across cardiac and respiratory axes. Phil. Trans. R. Soc. B 2016, 371, 20160014. [Google Scholar] [CrossRef] [Green Version]
- Ackerley, R.; Backlund Wasling, H.; Liljencrantz, J.; Olausson, H.; Johnson, R.D.; Wessberg, J. Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 2879–2883. [Google Scholar] [CrossRef]
- Olausson, H.; Lamarre, Y.; Backlund, H.; Morin, C.; Wallin, B.G.; Starck, G.; Ekholm, S.; Strigo, I.; Worsley, K.; Vallbo, A.B.; et al. Unmyelinated tactile afferents signal touch and project to insular cortex. Nat. Neurosci. 2002, 5, 900–904. [Google Scholar] [CrossRef]
- Olausson, H.; Wessberg, J.; McGlone, F. Affective Touch and the Neurophysiology of CT Afferents; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Olausson, H.; Wessberg, J.; Morrison, I.; McGlone, F.; Vallbo, A. The neurophysiology of unmyelinated tactile afferents. Neurosci. Biobehav. Rev. 2010, 34, 185–191. [Google Scholar] [CrossRef]
- Gordon, I.; Voos, A.C.; Bennett, R.H.; Bolling, D.Z.; Pelphrey, K.A.; Kaiser, M.D. Brain mechanisms for processing affective touch. Hum. Brain Mapp. 2013, 34, 914–922. [Google Scholar] [CrossRef]
- Vallbo, A.B.; Olausson, H.; Wessberg, J. Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J. Neurophysiol. 1999, 81, 2753–2763. [Google Scholar] [CrossRef] [Green Version]
- McGlone, F.; Wessberg, J.; Olausson, H. Discriminative and affective touch: Sensing and feeling. Neuron 2014, 82, 737–755. [Google Scholar] [CrossRef] [Green Version]
- Triscoli, C.; Croy, I.; Steudte-Schmiedgen, S.; Olausson, H.; Sailer, U. Heart rate variability is enhanced by long-lasting pleasant touch at CT-optimized velocity. Biol. Psychol. 2017, 128, 71–81. [Google Scholar] [CrossRef]
- Manzotti, A.; Cerritelli, F.; Esteves, J.E.; Lista, G.; Lombardi, E.; La Rocca, S.; Gallace, A.; McGlone, F.P.; Walker, S.C. Dynamic touch reduces physiological arousal in preterm infants: A role for c-tactile afferents? Dev. Cogn. Neurosci. 2019, 39, 100703. [Google Scholar] [CrossRef]
- Walker, S.C.; Trotter, P.D.; Swaney, W.T.; Marshall, A.; Mcglone, F.P. C-tactile afferents: Cutaneous mediators of oxytocin release during affiliative tactile interactions? Neuropeptides 2017, 64, 27–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liljencrantz, J.; Strigo, I.; Ellingsen, D.; Krämer, H.; Lundblad, L.; Nagi, S.; Leknes, S.; Olausson, H. Slow brushing reduces heat pain in humans. Eur. J. Pain 2017, 21, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Habig, K.; Schanzer, A.; Schirner, W.; Lautenschlager, G.; Dassinger, B.; Olausson, H.; Birklein, F.; Gizewski, E.R.; Kramer, H.H. Low threshold unmyelinated mechanoafferents can modulate pain. BMC Neurol. 2017, 17, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Mohr, M.; Krahe, C.; Beck, B.; Fotopoulou, A. The social buffering of pain by affective touch: A laser-evoked potential study in romantic couples. Soc. Cogn. Affect. Neurosci. 2018, 13, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Krahé, C.; Drabek, M.M.; Paloyelis, Y.; Fotopoulou, A. Affective touch and attachment style modulate pain: A laser-evoked potentials study. Phil. Trans. R. Soc. B 2016, 371, 20160009. [Google Scholar] [CrossRef] [PubMed]
- Delfini, M.-C.; Mantilleri, A.; Gaillard, S.; Hao, J.; Reynders, A.; Malapert, P.; Alonso, S.; François, A.; Barrere, C.; Seal, R. TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice. Cell Rep. 2013, 5, 378–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Perl, E.R. A specific inhibitory pathway between substantia gelatinosa neurons receiving direct C-fiber input. J. Neurosci. 2003, 23, 8752–8758. [Google Scholar] [CrossRef]
- Nummenmaa, L.; Tuominen, L.; Dunbar, R.; Hirvonen, J.; Manninen, S.; Arponen, E.; Machin, A.; Hari, R.; Jääskeläinen, I.P.; Sams, M. Social touch modulates endogenous μ-opioid system activity in humans. NeuroImage 2016, 138, 242–247. [Google Scholar] [CrossRef]
- Di Lernia, D.; Cipresso, P.; Pedroli, E.; Riva, G. Toward an Embodied Medicine: A Portable Device with Programmable Interoceptive Stimulation for Heart Rate Variability Enhancement. Sensors 2018, 18, 2469. [Google Scholar] [CrossRef] [Green Version]
- Pollatos, O.; Fustos, J.; Critchley, H.D. On the generalised embodiment of pain: How interoceptive sensitivity modulates cutaneous pain perception. Pain 2012, 153, 1680–1686. [Google Scholar] [CrossRef]
- Dunn, B.D.; Dalgleish, T.; Ogilvie, A.D.; Lawrence, A.D. Heartbeat perception in depression. Behav. Res. Ther. 2007, 45, 1921–1930. [Google Scholar] [CrossRef]
- Pollatos, O.; Traut-Mattausch, E.; Schandry, R. Differential effects of anxiety and depression on interoceptive accuracy. Depress. Anxiety 2009, 26, 167–173. [Google Scholar] [CrossRef]
- Jensen, T.S.; Baron, R.; Haanpää, M.; Kalso, E.; Loeser, J.D.; Rice, A.S.; Treede, R.-D. A new definition of neuropathic pain. Pain 2011, 152, 2204–2205. [Google Scholar] [CrossRef]
- Treede, R.-D.; Jensen, T.S.; Campbell, J.; Cruccu, G.; Dostrovsky, J.; Griffin, J.; Hansson, P.; Hughes, R.; Nurmikko, T.; Serra, J. Neuropathic pain: Redefinition and a grading system for clinical and research purposes. Neurology 2008, 70, 1630–1635. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Haroutounian, S.; Kamerman, P.; Baron, R.; Bennett, D.L.; Bouhassira, D.; Cruccu, G.; Freeman, R.; Hansson, P.; Nurmikko, T. Neuropathic pain: An updated grading system for research and clinical practice. Pain 2016, 157, 1599. [Google Scholar] [CrossRef] [Green Version]
- La Cesa, S.; Tamburin, S.; Tugnoli, V.; Sandrini, G.; Paolucci, S.; Lacerenza, M.; Marchettini, P.; Cruccu, G.; Truini, A. How to diagnose neuropathic pain? The contribution from clinical examination, pain questionnaires and diagnostic tests. Neurol. Sci. 2015, 36, 2169–2175. [Google Scholar] [CrossRef]
- van Dyck, Z.; Schulz, A.; Blechert, J.; Herbert, B.M.; Vögele, C. Gastric interoception and gastric myoelectrical activity in bulimia nervosa and binge eating disorder. Int. J. Eat. Disord. 2016, 18, 320. [Google Scholar]
- Ferentzi, E.; Bogdány, T.; Szabolcs, Z.; Csala, B.; Horváth, Á.; Köteles, F. Multichannel Investigation of Interoception: Sensitivity Is Not a Generalizable Feature. Front. Hum. Neurosci. 2018, 12, 223. [Google Scholar] [CrossRef]
- Dunn, B.D.; Galton, H.C.; Morgan, R.; Evans, D.; Oliver, C.; Meyer, M.; Cusack, R.; Lawrence, A.D.; Dalgleish, T. Listening to your heart: How interoception shapes emotion experience and intuitive decision making. Psychol. Sci. 2010, 21, 1835–1844. [Google Scholar] [CrossRef] [Green Version]
- Füstös, J.; Gramann, K.; Herbert, B.M.; Pollatos, O. On the embodiment of emotion regulation: Interoceptive awareness facilitates reappraisal. Soc. Cogn. Affect. Neurosci. 2013, 8, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Critchley, H.D.; Wiens, S.; Rotshtein, P.; Ohman, A.; Dolan, R.J. Neural systems supporting interoceptive awareness. Nat. Neurosci. 2004, 7, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Pollatos, O.; Schandry, R. Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential. Psychophysiology 2004, 41, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Pollatos, O.; Schandry, R.; Auer, D.P.; Kaufmann, C. Brain structures mediating cardiovascular arousal and interoceptive awareness. Brain Res. 2007, 1141, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, O.; Corneille, O.; Luminet, O.; Murphy, J.; Bird, G.; Maurage, P. Contribution of Time Estimation and Knowledge to Heartbeat Counting Task Performance under Original and Adapted Instructions. Biolog. Psychol. 2020. [Google Scholar] [CrossRef]
- Yoris, A.; García, A.M.; Traiber, L.; Santamaría-García, H.; Martorell, M.; Alifano, F.; Kichic, R.; Moser, J.S.; Cetkovich, M.; Manes, F.; et al. The inner world of overactive monitoring: Neural markers of interoception in obsessive-compulsive disorder. Psychol. Med. 2017, 47, 1957–1970. [Google Scholar] [CrossRef] [Green Version]
- Critchley, H.D.; Ewing, D.L.; Gould van Praag, C.; Habash-Bailey, H.; Eccles, J.A.; Meeten, F.; Garfinkel, S.N. Transdiagnostic expression of interoceptive abnormalities in psychiatric conditions. SSRN 2019, 19012393. [Google Scholar] [CrossRef]
- Di Lernia, D.; Serino, S.; Polli, N.; Cacciatore, C.; Persani, L.; Riva, G. Interoceptive Axes Dissociation in Anorexia Nervosa: A Single Case Study with Follow Up Post-recovery Assessment. Front. Psychol. 2019, 9. [Google Scholar] [CrossRef]
- Allen, M.; Levy, A.; Parr, T.; Friston, K.J. In the Body’s Eye: The Computational Anatomy of Interoceptive Inference. BioRxiv 2019, 603928. [Google Scholar]
- Mehling, W.E.; Price, C.; Daubenmier, J.J.; Acree, M.; Bartmess, E.; Stewart, A. The Multidimensional Assessment of Interoceptive Awareness (MAIA). PLoS ONE 2012, 7, e48230. [Google Scholar] [CrossRef] [Green Version]
- Cleeland, C.S.; Ryan, K.M. Pain assessment: Global use of the Brief Pain Inventory. Ann. Acad. Med. Singap. 1994, 23, 129–138. [Google Scholar]
- Beck, A.T.; Ward, C.H.; Mendelson, M.; Mock, J.; Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 1961, 4, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Steer, R.A.; Ball, R.; Ranieri, W.F.; Beck, A.T. Dimensions of the Beck Depression Inventory-II in clinically depressed outpatients. J. Clin. Psychol. 1999, 55, 117–128. [Google Scholar] [CrossRef]
- Storch, E.A.; Roberti, J.W.; Roth, D.A. Factor structure, concurrent validity, and internal consistency of the Beck Depression Inventory-Second Edition in a sample of college students. Depress. Anxiety 2004, 19, 187–189. [Google Scholar] [CrossRef]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.E. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1970. [Google Scholar]
- Di Lernia, D.; Serino, S.; Pezzulo, G.; Pedroli, E.; Cipresso, P.; Riva, G. Feel the Time. Time Perception as a Function of Interoceptive Processing. Front. Hum. Neurosci. 2018, 12. [Google Scholar] [CrossRef]
- Aiken, L.S.; West, S.G.; Reno, R.R. Multiple Regression: Testing and Interpreting Interactions; Sage: New York, NY, USA, 1991. [Google Scholar]
- Patil, I.; Powell, C. Ggstatsplot:“ggplot2” Based Plots with Statistical Details; CRAN: 2018. Available online: https://cloud.r-project.org/package=ggstatsplot (accessed on 29 October 2020).
- Leknes, S.; Berna, C.; Lee, M.C.; Snyder, G.D.; Biele, G.; Tracey, I. The importance of context: When relative relief renders pain pleasant. Pain 2013, 154, 402–410. [Google Scholar] [CrossRef] [Green Version]
- Nees, F.; Usai, K.; Loffler, M.; Flor, H. The evaluation and brain representation of pleasant touch in chronic and subacute back pain. Neurobiol. Pain 2019, 5, 100025. [Google Scholar] [CrossRef]
- Macefield, V.G. Tactile C Fibers. In Encyclopedia of Neuroscience; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3995–3998. [Google Scholar]
- Vallbo, A.B.; Olausson, H.; Wessberg, J.; Kakuda, N. Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects. J. Physiol. 1995, 483, 783–795. [Google Scholar] [CrossRef]
- Ackerley, R.; Carlsson, I.; Wester, H.; Olausson, H.; Backlund Wasling, H. Touch perceptions across skin sites: Differences between sensitivity, direction discrimination and pleasantness. Front. Behav. Neurosci. 2014, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Roudaut, Y.; Lonigro, A.; Coste, B.; Hao, J.; Delmas, P.; Crest, M. Touch sense: Functional organization and molecular determinants of mechanosensitive receptors. Channels 2012, 6, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Ackerley, R.; Eriksson, E.; Wessberg, J. Ultra-late EEG potential evoked by preferential activation of unmyelinated tactile afferents in human hairy skin. Neurosci. Lett. 2013, 535, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Ackerley, R.; Hassan, E.; Curran, A.; Wessberg, J.; Olausson, H.; McGlone, F. An fMRI study on cortical responses during active self-touch and passive touch from others. Front. Behav. Neurosci. 2012, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- McGlone, F.; Olausson, H.; Boyle, J.A.; Jones-Gotman, M.; Dancer, C.; Guest, S.; Essick, G. Touching and feeling: Differences in pleasant touch processing between glabrous and hairy skin in humans. Eur. J. Neurosci. 2012, 35, 1782–1788. [Google Scholar] [CrossRef]
- Wessberg, J.; Olausson, H.; Fernstrom, K.W.; Vallbo, A.B. Receptive field properties of unmyelinated tactile afferents in the human skin. J. Neurophysiol. 2003, 89, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Bell-Krotoski, J.; Weinstein, S.; Weinstein, C. Testing sensibility, including touch-pressure, two-point discrimination, point localization, and vibration. J. Hand Ther. Off. J. Am. Soc. Hand Ther. 1993, 6, 114–123. [Google Scholar] [CrossRef]
- Luke, S.G. Evaluating significance in linear mixed-effects models in R. Behav. Res. Methods 2017, 49, 1494–1502. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Bolker, B.M. Ecological Models and Data in R; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2008. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Lenth, R. Package ‘lsmeans’. Am. Stat. 2018, 34, 216–221. [Google Scholar]
- de Boer, M.R.; Waterlander, W.E.; Kuijper, L.D.J.; Steenhuis, I.H.M.; Twisk, J.W.R. Testing for baseline differences in randomized controlled trials: An unhealthy research behavior that is hard to eradicate. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Borg, C.; Chouchou, F.; Dayot-Gorlero, J.; Zimmerman, P.; Maudoux, D.; Laurent, B.; Michael, G.A. Pain and emotion as predictive factors of interoception in fibromyalgia. J. Pain Res. 2018, 11, 823. [Google Scholar] [CrossRef] [Green Version]
- Ribera d’Alcalà, C.; Webster, D.G.; Esteves, J.E. Interoception, body awareness and chronic pain: Results from a case–control study. Int. J. Osteopath. Med. 2015, 18, 22–32. [Google Scholar] [CrossRef]
- Scheuren, R.; Sutterlin, S.; Anton, F. Rumination and interoceptive accuracy predict the occurrence of the thermal grill illusion of pain. BMC Psychol. 2014, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Vlaeyen, J.W.; Linton, S.J. Fear-avoidance model of chronic musculoskeletal pain: 12 years on. Pain 2012, 153, 1144–1147. [Google Scholar] [CrossRef]
- Vlaeyen, J.W.; Linton, S.J. Fear-avoidance and its consequences in chronic musculoskeletal pain: A state of the art. Pain 2000, 85, 317–332. [Google Scholar] [CrossRef] [Green Version]
- Von Korff, M.; Simon, G. The relationship between pain and depression. Br. J. Psychiatry 1996, 168, 101–108. [Google Scholar] [CrossRef]
- Katon, W.; Lin, E.H.; Kroenke, K. The association of depression and anxiety with medical symptom burden in patients with chronic medical illness. Gen. Hosp. Psychiatry 2007, 29, 147–155. [Google Scholar] [CrossRef]
- Dunn, B.D.; Stefanovitch, I.; Evans, D.; Oliver, C.; Hawkins, A.; Dalgleish, T. Can you feel the beat? Interoceptive awareness is an interactive function of anxiety- and depression-specific symptom dimensions. Behav. Res. 2010, 48, 1133–1138. [Google Scholar] [CrossRef] [Green Version]
- Sliz, D.; Hayley, S. Major depressive disorder and alterations in insular cortical activity: A review of current functional magnetic imaging research. Front. Hum. Neurosci. 2012, 6, 323. [Google Scholar] [CrossRef] [Green Version]
- Sprengelmeyer, R.; Steele, J.D.; Mwangi, B.; Kumar, P.; Christmas, D.; Milders, M.; Matthews, K. The insular cortex and the neuroanatomy of major depression. J. Affect. Disord. 2011, 133, 120–127. [Google Scholar] [CrossRef]
- Stephan, K.E.; Manjaly, Z.M.; Mathys, C.D.; Weber, L.A.; Paliwal, S.; Gard, T.; Tittgemeyer, M.; Fleming, S.M.; Haker, H.; Seth, A.K.; et al. Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-Induced Fatigue and Depression. Front. Hum. Neurosci. 2016, 10, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratmann, M.; Konrad, C.; Kugel, H.; Krug, A.; Schoning, S.; Ohrmann, P.; Uhlmann, C.; Postert, C.; Suslow, T.; Heindel, W.; et al. Insular and hippocampal gray matter volume reductions in patients with major depressive disorder. PLoS ONE 2014, 9, e102692. [Google Scholar] [CrossRef] [Green Version]
- Wiebking, C.; de Greck, M.; Duncan, N.W.; Tempelmann, C.; Bajbouj, M.; Northoff, G. Interoception in insula subregions as a possible state marker for depression-an exploratory fMRI study investigating healthy, depressed and remitted participants. Front. Behav. Neurosci. 2015, 9, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollatos, O.; Traut-Mattausch, E.; Schroeder, H.; Schandry, R. Interoceptive awareness mediates the relationship between anxiety and the intensity of unpleasant feelings. J. Anxiety Disord. 2007, 21, 931–943. [Google Scholar] [CrossRef]
- Rosso, I.M.; Makris, N.; Britton, J.C.; Price, L.M.; Gold, A.L.; Zai, D.; Bruyere, J.; Deckersbach, T.; Killgore, W.D.; Rauch, S.L. Anxiety sensitivity correlates with two indices of right anterior insula structure in specific animal phobia. Depress. Anxiety 2010, 27, 1104–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niikura, K.; Narita, M.; Butelman, E.R.; Kreek, M.J.; Suzuki, T. Neuropathic and chronic pain stimuli downregulate central μ-opioid and dopaminergic transmission. Trends Pharmacol. Sci. 2010, 31, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Goodin, R.B.; Ness, T.J.; Robbins, T.M. Oxytocin-a multifunctional analgesic for chronic deep tissue pain. Curr. Pharm. Des. 2015, 21, 906–913. [Google Scholar] [CrossRef] [Green Version]
- Tracy, L.M.; Georgiou-Karistianis, N.; Gibson, S.J.; Giummarra, M.J. Oxytocin and the modulation of pain experience: Implications for chronic pain management. Neurosci. Biobehav. Rev. 2015, 55, 53–67. [Google Scholar] [CrossRef]
- Riva, G.; Silvia, S.; Di Lernia, D.; Enea, F.P.; Antonios, D. Embodied Medicine: Mens Sana in Corpore Virtuale Sano. Front Hum. Neurosci. 2017, 11, 120. [Google Scholar]
- Di Lernia, D.; Silvia, S.; Pietro, C.; Giuseppe, R. Ghosts in the Machine. Interoceptive Modeling for Chronic Pain Treatment. Front Neurosci. 2016, 10, 314. [Google Scholar]
- Di Lernia, D.; Riva, G.; Pietro, C. iStim. A New Portable Device for Interoceptive Stimulation. In Pervasive Computing Paradigms for Mental Health; Springer: Cham, Switzerland, 2018; pp. 42–49. [Google Scholar]
- Brener, J.; Ring, C. Towards a psychophysics of interoceptive processes: The measurement of heartbeat detection. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [Green Version]
- Neumann, S.; Doubell, T.P.; Leslie, T.; Woolf, C.J. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature 1996, 384, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Beinert, K.; Englert, V.; Taube, W. After-effects of neck muscle vibration on sensorimotor function and pain in neck pain patients and healthy controls—A case-control study. Disabil. Rehabil. 2019, 41, 1906–1913. [Google Scholar] [CrossRef] [PubMed]
- Yarnitsky, D.; Kunin, M.; Brik, R.; Sprecher, E. Vibration reduces thermal pain in adjacent dermatomes. Pain 1997, 69, 75–77. [Google Scholar] [CrossRef]
- Breivik, H.; Collett, B.; Ventafridda, V.; Cohen, R.; Gallacher, D. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. Eur. J. Pain 2006, 10, 287–333. [Google Scholar] [CrossRef]
- Cavalera, C.; Pepe, A.; Zurloni, V.; Diana, B.; Realdon, O. A short version of the State Shame and Guilt Scale (SSGS-8). TPM–Test. Psychometrics Methodol. Appl. Psychol 2017, 24, 99–106. [Google Scholar]
- Inghilleri, P.; Riva, G.; Riva, E. Introduction: Positive change in a global world: Creative individuals and complex societies. Enabling Positive Change: Flow and Complexity in Daily Experience. In Enabling Positive Change; De Gruyter: Berlin, Germany, 2015; pp. 1–5. [Google Scholar]
Diagnosis | Cluster Assignment | ||
---|---|---|---|
Chronic Primary Pain | Chronic Secondary Musculoskeletal Pain | Chronic Neuropathic Pain | |
Chronic primary pelvic pain | 2 | ||
Chronic tension-type headache | 1 | ||
Fibromyalgia | 20 | ||
Arthritis | 8 | ||
Osteoarthrosis | 4 | ||
Traumatic Rib Injury | 1 | ||
Low Back Pain / Spondylosis | 5 | ||
Paget’s disease | 1 | ||
Central Neuropathic Pain | |||
Syringomyelia | DNP: 2 | ||
Spinal cord injury | DNP: 1 | ||
Peripheral Neuropathic Pain | |||
Peripheral nerve injury | DNP: 6, PRNP: 3 | ||
Polyneuropathy | DNP: 3 | ||
Painful cervical radiculopathy | DNP: 2 | ||
Postherpetic neuralgia | DNP: 1 | ||
Total(N) | 23 | 19 | 18 |
Healthy | Chronic Pain | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pain-Free (N = 20) | Primary Pain (N = 23) | Secondary Musculoskeletal Pain (N = 19) | Neuropathic Pain (N = 18) | |||||||||||||||
Demo | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | p | |
Age | 54.0 | 20.7 | 22 | 75 | 57.5 | 13.7 | 31 | 79 | 60.3 | 10.0 | 42 | 77 | 56.7 | 16.5 | 31 | 81 | 0.95 | |
BMI | 24.1 | 4.5 | 18.4 | 33.9 | 23.5 | 4.3 | 16.4 | 31.9 | 23.7 | 4.2 | 16.2 | 40.0 | 24.5 | 3.8 | 15.6 | 30.4 | 0.76 | |
Pain | ||||||||||||||||||
PainYRS | - | - | - | - | 12.7 | 7.1 | 1.5 | 30 | 10.5 | 7.7 | 1 | 20 | 8.3 | 7.8 | 1 | 20 | 0.16 | |
PainNRS | - | - | - | - | 5.5 | 2.9 | 0 | 10 | 3.2 | 2.8 | 0 | 9 | 3.7 | 1.9 | 0 | 7 | 0.01 | |
PSS | - | - | - | - | 5.7 | 2.3 | 0 | 9 | 3.5 | 2.2 | 0 | 6.8 | 4.8 | 1.3 | 2.5 | 7.3 | 0.003 | |
PIS | - | - | - | - | 5.5 | 2.6 | 0 | 9.3 | 4.3 | 2.9 | 0 | 8.3 | 4.8 | 2.0 | 0.9 | 8.3 | 0.33 | |
Mood | ||||||||||||||||||
BDI_tot | 7.5 | 6.9 | 0 | 24 | 18.8 | 10.4 | 4 | 45 | 17.8 | 14.7 | 0 | 48 | 16.1 | 8.8 | 0 | 30 | 0.002 | |
BDI_cogn | 4.8 | 6.0 | 0 | 21 | 12.4 | 8.6 | 0 | 32 | 12.3 | 12.0 | 0 | 39 | 10.8 | 7.0 | 0 | 22 | 0.01 | |
BDI_som | 2.8 | 1.8 | 0 | 6 | 6.4 | 2.6 | 3 | 13 | 5.5 | 3.2 | 0 | 9 | 5.3 | 2.7 | 0 | 11 | <0.001 | |
STAI_S | 29.5 | 5.8 | 20 | 44 | 41.0 | 9.5 | 28 | 68 | 38.0 | 15.9 | 20 | 76 | 41.8 | 14.2 | 27 | 72 | <0.001 | |
IA | ||||||||||||||||||
IAcc | 0.6 | 0.2 | 0.2 | 1.0 | 0.3 | 0.3 | 0 | 1.0 | 0.4 | 0.3 | 0 | 1.0 | 0.4 | 0.3 | 0 | 1.0 | 0.01 | |
IAconf | 59.1 | 16.4 | 26.0 | 90.7 | 31.9 | 29.3 | 0 | 82.7 | 32.7 | 29.0 | 0 | 84 | 36.0 | 30.2 | 0 | 92.7 | 0.01 | |
MAIA | ||||||||||||||||||
NO | 3.1 | 1.1 | 0.8 | 4.8 | 3.2 | 1.1 | 1.3 | 5 | 3.4 | 1.3 | 0.5 | 5 | 3.1 | 1.3 | 0 | 4.8 | 0.75 | |
ND | 2.2 | 1.1 | 0.7 | 4.0 | 2.3 | 1.2 | 0 | 5 | 1.6 | 0.9 | 0.3 | 3.7 | 2.5 | 1.4 | 1 | 5 | 0.12 | |
NW | 2.6 | 1.3 | 0 | 4.7 | 2.6 | 1.3 | 0 | 5 | 2.4 | 1.6 | 0 | 5.0 | 2.5 | 1.6 | 0 | 5 | 0.93 | |
AR | 2.3 | 1.1 | 0.1 | 4.1 | 2.4 | 1.2 | 0.4 | 5 | 2.7 | 0.9 | 1.4 | 5.0 | 2.7 | 1.2 | 1.3 | 5 | 0.72 | |
EA | 3.3 | 1.1 | 0.6 | 5.0 | 3.5 | 1.1 | 1.2 | 5 | 3.5 | 1.1 | 1.0 | 5.0 | 3.1 | 1.2 | 0.2 | 5 | 0.62 | |
SR | 2.5 | 1.4 | 0 | 4.8 | 2.3 | 1.4 | 0 | 5 | 2.3 | 1.2 | 0 | 4.8 | 2.3 | 1.5 | 0.5 | 5 | 0.85 | |
BL | 2.4 | 1.3 | 0 | 4.7 | 2.4 | 1.3 | 0.3 | 5 | 2.4 | 1.4 | 0.3 | 5.0 | 2.3 | 1.3 | 0.7 | 5 | 0.99 | |
TR | 3.3 | 1.3 | 1.0 | 5.0 | 2.6 | 1.6 | 0 | 5 | 2.7 | 1.6 | 0 | 5.0 | 2.9 | 1.3 | 0 | 5 | 0.51 |
Age | BMI | PainYrs | PainNRS | PSS | PSI | BDI | STAI_S | IAcc | IAconf | |
---|---|---|---|---|---|---|---|---|---|---|
Age | — | |||||||||
— | ||||||||||
BMI | 0.16 | — | ||||||||
0.24 | — | |||||||||
PainYrs | 0.05 | −0.01 | — | |||||||
0.73 | 0.96 | — | ||||||||
PainNRS | −0.04 | 0.12 | 0.12 | — | ||||||
0.76 | 0.35 | 0.36 | — | |||||||
PSS | −0.04 | 0.14 | 0.16 | 0.75 *** | — | |||||
0.78 | 0.29 | 0.22 | <0.001 | — | ||||||
PIS | −0.3 * | 0.12 | −0.03 | 0.53 *** | 0.73 *** | — | ||||
0.02 | 0.37 | 0.85 | <0.001 | <0.001 | — | |||||
BDI | −0.13 | 0.16 | −0.14 | 0.41 ** | 0.47 *** | 0.63 *** | — | |||
0.32 | 0.23 | 0.27 | 0.001 | <0.001 | <0.001 | — | ||||
STAI_S | −0.01 | 0.13 | −0.03 | 0.37 ** | 0.38 ** | 0.44 *** | 0.66 *** | — | ||
0.94 | 0.35 | 0.81 | 0.004 | 0.003 | <0.001 | <0.001 | — | |||
IAcc | 0.1 | −0.19 | −0.07 | 0.07 | −0.13 | −0.15 | −0.15 | −0.28 * | — | |
0.46 | 0.15 | 0.58 | 0.62 | 0.34 | 0.27 | 0.26 | 0.03 | — | ||
IAconf | 0.19 | −0.18 | −0.14 | −0.17 | −0.16 | −0.2 | −0.24 * | −0.28 * | 0.61 *** | — |
0.16 | 0.18 | 0.31 | 0.19 | 0.23 | 0.13 | 0.03 | 0.03 | <0.001 | — |
Frequency (n) | Percent (%) | |
---|---|---|
Psychiatric Comorbidities | ||
Depression | 17 | 28.33 |
Anxiety | 4 | 6.66 |
Medications | ||
Anxiolitic | 14 | 23.33 |
Antidepressant | 37 | 61.67 |
Opiates | 18 | 30.00 |
Non-opiates analgesic | 18 | 30.00 |
Antiepilectic | 31 | 51.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lernia, D.; Lacerenza, M.; Ainley, V.; Riva, G. Altered Interoceptive Perception and the Effects of Interoceptive Analgesia in Musculoskeletal, Primary, and Neuropathic Chronic Pain Conditions. J. Pers. Med. 2020, 10, 201. https://doi.org/10.3390/jpm10040201
Di Lernia D, Lacerenza M, Ainley V, Riva G. Altered Interoceptive Perception and the Effects of Interoceptive Analgesia in Musculoskeletal, Primary, and Neuropathic Chronic Pain Conditions. Journal of Personalized Medicine. 2020; 10(4):201. https://doi.org/10.3390/jpm10040201
Chicago/Turabian StyleDi Lernia, Daniele, Marco Lacerenza, Vivien Ainley, and Giuseppe Riva. 2020. "Altered Interoceptive Perception and the Effects of Interoceptive Analgesia in Musculoskeletal, Primary, and Neuropathic Chronic Pain Conditions" Journal of Personalized Medicine 10, no. 4: 201. https://doi.org/10.3390/jpm10040201
APA StyleDi Lernia, D., Lacerenza, M., Ainley, V., & Riva, G. (2020). Altered Interoceptive Perception and the Effects of Interoceptive Analgesia in Musculoskeletal, Primary, and Neuropathic Chronic Pain Conditions. Journal of Personalized Medicine, 10(4), 201. https://doi.org/10.3390/jpm10040201