TET2 rs1548483 SNP Associating with Susceptibility to Molecularly Annotated Polycythemia Vera and Primary Myelofibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Ethics Considerations
2.2. Patients and Controls
2.3. Genotyping Methods
2.4. Statistical Analysis
3. Results
3.1. Association between TET2 rs154843 SNP and MPN Subtypes—Allelic Model
3.2. Association between TET2 rs154843 SNP and MPN Phenotypes—Genotypic Models
3.3. Association between TET2 rs154843 SNP and MPN Molecular Subtypes—Genotypic Models
3.3.1. JAK2 V617F Mutation
3.3.2. CALR Mutations
3.4. Epistatic Two-Way SNPs Interaction Stratified by MPN Subtypes
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Omar, A.W.; Levine, L.R. Genetics of the Myeloproliferative Neoplasms in Myeloproliferative Neoplasms: Biology and Therapy, 1st ed.; Verstovsek, S., Tefferi, A., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 39–68. [Google Scholar] [CrossRef]
- Dameshek, W. Editorial: Some Speculations on the Myeloproliferative Syndromes. Blood 1951, 6, 372–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tefferi, A.; Thiele, J.; Vardiman, J.W. The 2008 World Health Organization classification system for myeloproliferative neoplasms. Cancer 2009, 115, 3842–3847. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Thiele, J.; Gisslinger, H.; Kvasnicka, H.M.; Vannucchi, A.M.; Guglielmelli, P.; Orazi, A.; Tefferi, A. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: Document summary and in-depth discussion. Blood Cancer J. 2018, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Pardanani, A. Myeloproliferative Neoplasms. JAMA Oncol. 2015, 1, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Nangalia, J.; Green, A.R. Myeloproliferative neoplasms: From origins to outcomes. Blood 2017, 130, 2475–2483. [Google Scholar] [CrossRef]
- Tefferi, A.; Lasho, T.L.; Guglielmelli, P.; Finke, C.M.; Rotunno, G.; Elala, Y.; Pacilli, A.; Hanson, C.A.; Pancrazzi, A.; Ketterling, R.P.; et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016, 1, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Tefferi, A.; Lasho, T.L.; Finke, C.M.; Elala, Y.; Hanson, C.A.; Ketterling, R.P.; Gangat, N.; Pardanani, A. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016, 1, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef] [Green Version]
- Lou, H.; Li, H.; Ho, K.J.; Cai, L.L.; Huang, A.S.; Shank, T.R.; Verneris, M.R.; Nickerson, M.L.; Dean, M.; Anderson, S.K. The Human TET2 Gene Contains Three Distinct Promoter Regions with Differing Tissue and Developmental Specificities. Front. Cell Dev. Biol. 2019, 7, 99. [Google Scholar] [CrossRef]
- Dawlaty, M.M.; Breiling, A.; Le, T.; Raddatz, G.; Barrasa, M.I.; Cheng, A.W.; Gao, Q.; Powell, B.E.; Li, Z.; Xu, M.; et al. Combined Deficiency of Tet1 and Tet2 Causes Epigenetic Abnormalities but Is Compatible with Postnatal Development. Dev. Cell 2013, 24, 310–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, M.G.; Bandukwala, H.S.; An, J.; Lamperti, E.D.; Thompson, E.C.; Hastie, R.; Tsangaratou, A.; Rajewsky, K.; Koralov, S.B.; Rao, A. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl. Acad. Sci. USA 2011, 108, 14566–14571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; D’Alessio, A.C.; Taranova, O.V.; Hong, K.; Sowers, L.C.; Zhang, Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nat. Cell Biol. 2010, 466, 1129–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, M.; Huang, Y.; Jankowska, A.M.; Pape, U.J.; Tahiliani, M.; Bandukwala, H.S.; An, J.; Lamperti, E.D.; Koh, K.P.; Ganetzky, R.; et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nat. Cell Biol. 2010, 468, 839–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doege, C.A.; Inoue, K.; Yamashita, T.; Rhee, D.B.; Travis, S.; Fujita, R.; Guarnieri, P.; Bhagat, G.; Vanti, W.B.; Shih, A.; et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nat. Cell Biol. 2012, 488, 652–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delhommeau, F.; Dupont, S.; Della Valle, V.; James, C.; Trannoy, S.; Massé, A.; Kosmider, O.; Le Couedic, J.-P.; Robert, F.; Alberdi, A.; et al. Mutation inTET2in Myeloid Cancers. N. Engl. J. Med. 2009, 360, 2289–2301. [Google Scholar] [CrossRef]
- Langemeijer, S.M.C.; Kuiper, R.P.; Berends, M.; Knops, R.; Aslanyan, M.G.; Massop, M.; Stevens-Linders, E.; Van Hoogen, P.; Van Kessel, A.G.; Raymakers, R.A.P.; et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat. Genet. 2009, 41, 838–842. [Google Scholar] [CrossRef]
- Gotlib, J.; Oh, S. Faculty Opinions recommendation of Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Fac. Opin. Post Publ. Peer Rev. Biomed. Lit. 2008, 112, 2199–2204. [Google Scholar] [CrossRef]
- Jones, A.V.; Chase, A.; Silver, R.T.; Oscier, D.; Zoi, K.; Wang, Y.L.; Cario, H.; Pahl, H.L.; Collins, A.; Reiter, A.; et al. JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat. Genet. 2009, 41, 446–449. [Google Scholar] [CrossRef] [Green Version]
- Kilpivaara, O.; Mukherjee, S.; Schram, A.M.; Wadleigh, M.; Mullally, A.; Ebert, B.L.; Bass, A.; Marubayashi, S.; Heguy, A.; Garcia-Manero, G.; et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms. Nat. Genet. 2009, 41, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Olcaydu, D.; Harutyunyan, A.; Jäger, R.; Berg, T.; Gisslinger, B.; Pabinger, I.; Gisslinger, H.; Kralovics, R. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat. Genet. 2009, 41, 450–454. [Google Scholar] [CrossRef] [PubMed]
- Trifa, A.P.; Banescu, C.; Tevet, M.; Bojan, A.S.; Dima, D.; Urian, L.; Trifa, A.P.; Banescu, C.; Tevet, M.; Bojan, A.S.; et al. TERT rs2736100 A>C SNP and JAK2 46/1 haplotype significantly contribute to the occurrence of JAK2 V617F and CALR mutated myeloprolifera- tive neoplasms—A multicentric study on 529 patients. Br. J. Haematol. 2016, 174, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Trifa, A.P.; Bănescu, C.; Bojan, A.S.; Voina, C.M.; Popa, Ș.; Vișan, S.; Ciubean, A.D.; Tripon, F.; Dima, D.; Popov, V.M.; et al. MECOM, HBS1L-MYB, THRB-RARB, JAK2, and TERT polymorphisms defining the genetic predisposition to myeloproliferative neoplasms: A study on 939 patients. Am. J. Hematol. 2017, 93, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oddsson, A.; Kristinsson, S.Y.; Helgason, H.; Gudbjartsson, D.F.; Masson, G.; Sigurdsson, A.; Jonasdottir, A.; Steingrimsdottir, H.; Vidarsson, B.; Reykdal, S.; et al. The germline sequence variant rs2736100_C in TERT associates with myeloproliferative neoplasms. Leukemia 2014, 28, 1371–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tapper, W.; Jones, A.V.; Kralovics, R.; Harutyunyan, A.S.; Zoi, K.; Leung, W.; Godfrey, A.L.; Guglielmelli, P.; Callaway, A.; Ward, D.; et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat. Commun. 2015, 6, 6691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinds, D.; Barnholt, K.E.; Mesa, R.A.; Kiefer, A.K.; Do, C.B.; Eriksson, N.; Mountain, J.L.; Francke, U.; Tung, J.Y.; Nguyen, H.; et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood 2016, 128, 1121–1128. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.V.; Kreil, S.; Zoi, K.; Waghorn, K.; Curtis, C.; Zhang, L.; Score, J.; Seear, R.; Chase, A.J.; Grand, F.H.; et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 2005, 106, 2162–2168. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, J.V.; Ivey, A.; Vannucchi, A.M.; Lippert, E.; Leibundgut, E.O.; Cassinat, B.; Pallisgaard, N.; Maroc, N.; Hermouet, S.; Nickless, G.; et al. Establishing optimal quantitative-polymerase chain reaction assays for routine diagnosis and tracking of minimal residual disease in JAK2-V617F-associated myeloproliferative neoplasms: A joint European LeukemiaNet/MPN&MPNr-EuroNet (COST action BM0902) study. Leukemia 2013, 27, 2032–2039. [Google Scholar] [CrossRef] [Green Version]
- Trifa, A.P.; Cucuianu, A.; Popp, R.A. Familial Essential Thrombocythemia Associated with MPL W515L Mutation in Father and JAK2 V617F Mutation in Daughter. Case Rep. Hematol. 2014, 2014, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Van Dongen, J.; Macintyre, E.A.; Gabert, J.A.; Delabesse, E.; Rossi, V.; Saglio, G.; Gottardi, E.; Rambaldi, A.; Dotti, G.; Griesinger, F.; et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia 1999, 13, 1901–1928. [Google Scholar] [CrossRef]
- González, J.R.; Armengol, L.; Guinó, E.; Solé, X.; Moreno, V. SNPassoc: SNPs-Based Whole Genome Association Studies. R Package Version 1.9-2. 2014. Available online: https://CRAN.R-project.org/package=SNPassoc (accessed on 10 June 2020).
- Moore, C.; Jacobson, S. Genpwr: Power Calculations Under Genetic Model Misspecification. R Package Version 1.0.2. 2020. Available online: https://CRAN.R-project.org/package=genpwr (accessed on 20 November 2020).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: http://www.R-project.org/ (accessed on 4 October 2020).
- Shen, X.-H.; Sun, N.-N.; Yin, Y.-F.; Liu, S.-F.; Liu, X.-L.; Peng, H.-L.; Dai, C.-W.; Xu, Y.-X.; Deng, M.-Y.; Luo, Y.-Y.; et al. A TET2 rs3733609 C/T genotype is associated with predisposition to the myeloproliferative neoplasms harboring JAK2V617F and confers a proliferative potential on erythroid lineages. Oncotarget 2016, 7, 9550–9560. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, X.L.; Shen, X.H.; Deng, M.Y.; Liu, S.F.; Zhang, G.S. Relationship between TET2 Gene SNP rs3733609 C/T and JAK2V617F Allele Burden in Patients with Myeloproliferative Neoplasms. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2019, 27, 1574–1579. [Google Scholar] [CrossRef]
- Dammag, E.A.; Hamed, N.A.; Halawani, N.A.E.; Kassem, H.S.; Ayad, M.W. The Prognostic Significance of Tet2 Single Nucleotide Polymorphism in Egyptian Chronic Myeloid Leukemia. Mediterr. J. Hematol. Infect. Dis. 2020, 12, e2020004. [Google Scholar] [CrossRef]
- Hermouet, S.; Vilaine, M. The JAK2 46/1 haplotype: A marker of inappropriate myelomonocytic response to cytokine stimulation, leading to increased risk of inflammation, myeloid neoplasm, and impaired defense against infection? Haematology 2011, 96, 1575–1579. [Google Scholar] [CrossRef]
- Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. The JAK2 GGCC (46/1) Haplotype in Myeloproliferative Neoplasms: Causal or Random? Int. J. Mol. Sci. 2018, 19, 1152. [Google Scholar] [CrossRef] [Green Version]
- Trifa, A.P.; Lighezan, D.L.; Jucan, C.; Tripon, F.; Arbore, D.R.; Bojan, A.; Gligor-Popa, Ș.; Pop, R.M.; Dima, D.; Bănescu, C. SH2B3 (LNK) rs3184504 polymorphism is correlated with JAK2 V617F-positive myeloproliferative neoplasms. Rev. Romana Med. Lab. 2020, 28, 267–277. [Google Scholar] [CrossRef]
Variable | MPN Subtypes | |||
---|---|---|---|---|
PV (n1 = 431) | ET (n2 = 688) | PMF (n3 = 233) | CML (n4 = 249) | |
Male gender, n (%) | 222 (51.5) | 255 (37.1) | 112 (48.1) | 125 (50.2) |
Age at diagnosis, years; median [Q1; Q3] | 64 [57; 71] | 60 [48; 70] | 66 [57; 73] | 54 [43; 64] |
JAK2 V617F+, n (%) | 431 (100) | 525 (76.3) | 151 (64.8) | 0 (0.0) |
CALR+, n (%) | 0 (0.0) | 163 (23.7) | 82 (35.2) | 0 (0.0) |
CALR type 1+, n (%) | 0 (0.0) | 107 (15.4) | 56 (24.0) | 0 (0.0) |
CALR type 2+, n (%) | 0 (0.0) | 56 (8.1) | 26 (10.3) | 0 (0.0) |
BCR-ABL1 fusion; n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 249 (100) |
TET2 Genotypes | MAF a [95% CI] | pHWE b | pallelic c | OR [95% CI] | |||
---|---|---|---|---|---|---|---|
CC | CT | TT | |||||
Controls (n = 197) | 180 (91.4) | 16 (8.1) | 1 (0.5) | 4.57 [2.73; 7.12] | 0.3340 | - | Reference |
PV (n = 431) | 372 (86.3) | 53 (12.3) | 6 (1.4) | 7.54 [5.87; 9.51] | 0.0251 | 0.046 * | 1.70 [1.01; 2.91] * |
ET (n = 688) | 609 (88.5) | 76 (11.0) | 3 (0.4) | 5.96 [4.77; 7.34] | 0.7272 | 0.294 | 1.32 [0.78; 2.23] |
PMF (n = 233) | 192 (82.4) | 41 (17.6) | 0 (0.0) | 8.80 [6.39; 11.75] | 0.2297 | 0.015 * | 2.02 [1.14; 3.57] * |
CML (n = 249) | 225 (90.4) | 24 (9.6) | 0 (0.0) | 4.82 [3.11; 7.09] | 1.0000 | 0.867 | 1.06 [0.57; 1.98] |
JAK2 V617F+ PV (n = 431) | 372 (86.3) | 53 (12.3) | 6 (1.4) | 7.54 [5.87; 9.51] | 0.0251 | 0.046 * | 1.70 [1.01; 2.91] * |
JAK2 V617F+ ET (n = 525) | 459 (87.4) | 63 (12.0) | 3 (0.6) | 6.57 [5.15; 8.24] | 0.4821 | 0.152 | 1.47 [0.87; 2.50] |
JAK2 V617F+ PMF (n = 152) | 125 (82.2) | 27 (17.8) | 0 (0.0) | 8.88 [5.93; 12.66] | 0.6076 | 0.024 * | 2.04 [1.10; 3.77] * |
CALR+ ET (n = 163) | 150 (92.0) | 13 (8.0) | 0 (0.0) | 3.99 [2.14; 6.72] | 1.0000 | 0.711 | 0.87 [0.42; 1.80] |
CALR type 1+ ET (n = 106) | 100 (94.3) | 6 (5.7) | 0 (0.0) | 2.83 [1.05; 6.06] | 1.0000 | 0.295 | 0.61 [0.24; 1.56] |
CALR type 2+ ET (n = 56) | 49 (87.5) | 7 (12.5) | 0 (0.0) | 6.25 [2.25; 12.45] | 1.0000 | 0.622 | 1.39 [0.57; 3.42] |
CALR+ PMF (n = 82) | 68 (82.9) | 14 (7.1) | 0 (0.0) | 8.54 [4.75; 13.91] | 1.0000 | 0.066 | 1.95 [0.95; 4.02] |
CALR type 1+ PMF (n = 56) | 48 (85.7) | 8 (14.3) | 0 (0.0) | 7.14 [3.13; 13.59] | 1.0000 | 0.276 | 1.61 [0.68; 3.80] |
CALR type 2+ PMF (n = 24) | 18 (75.0) | 6 (25.0) | 0 (0.0) | 12.50 [4.73; 25.24] | 1.0000 | 0.035 * | 2.98 [1.12; 7.93] * |
BCR-ABL+ CML (n = 249) | 225 (90.4) | 24 (9.6) | 0 (0.0) | 4.82 [3.11; 7.09] | 1.0000 | 0.861 | 1.06 [0.57; 1.98] |
PV | ET | PMF | CML | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude OR [95% CI] | p+ | Adjusted OR a [95% CI] | p+ | Crude OR [95% CI] | p+ | Adjusted OR [95% CI] | p+ | Crude OR [95% CI] | p+ | Adjusted OR [95% CI] | p+ | Crude OR [95% CI] | p+ | Adjusted OR [95% CI] | p+ | |
Codominant Model | ||||||||||||||||
CC | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
CT | 1.60 [0.89; 2.88] | 0.113 | 1.29 [0.69; 2.42] | 0.421 | 1.40 [0.80; 2.47] | 0.238 | 1.19 [0.66; 2.14] | 0.570 | 2.40 [1.30; 4.43] * | 0.005 * | 1.95 [1.02; 3.73] * | 0.044 * | 1.20 [0.62; 2.33] | 0.589 | 1.07 [0.05; 2.09] | 0.849 |
TT | 2.90 [0.35; 4.28] | 0.326 | 2.33 [0.22; 24.55] | 0.477 | 0.89 [0.09; 8.57] | 0.917 | 0.72 [0.06; 8.08] | 0.794 | 0.0001 [NA] | 0.913 | 0.0001 [NA] | 0.964 | 0.0001 [NA] | 0.911 | 0.0001 [NA] | 0.952 |
Dominant Model | ||||||||||||||||
CC | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
CT + TT | 1.68 [0.95; 2.96] | 0.074 | 1.36 [0.74; 2.49] | 0.327 | 1.37 [0.79; 2.38] | 0.258 | 1.16 [0.65; 2.06] | 0.615 | 2.26 [1.24; 4.12] * | 0.008 * | 1.84 [0.97; 3.47] | 0.062 | 1.13 [0.59; 2.17] | 0.714 | 1.01 [0.52; 1.95] | 0.989 |
Recessive Model | ||||||||||||||||
CC + CT | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
TT | 1.84 [0.20; 16.63] | 0.587 | 2.64 [0.26; 26.55] | 0.411 | 0.86 [0.09; 8.35] | 0.898 | 1.05 [0.10; 10.88] | 0.968 | 0.001 [NA] | 0.819 | 0.001 [NA] | 0.926 | 0.001 [NA] | 0.817 | 0.001 [NA] | 0.902 |
Overdominant Model | ||||||||||||||||
CC + TT | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
CT | 1.59 [0.88; 2.85] | 0.124 | 1.28 [0.68; 2.40] | 0.438 | 1.40 [0.80; 2.47] | 0.238 | 1.19 [0.66; 2.15] | 0.565 | 2.41 [1.31; 4.45] * | 0.005 * | 1.96 [1.03; 3.76] * | 0.041 * | 1.21 [0.62; 2.34] | 0.579 | 1.07 [0.55; 2.11] | 0.834 |
JAK2 V617F + PV | JAK2 V617F + ET | JAK2 V617F + PMF | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude OR [95% CI] | p+ | Adjusted OR a [95% CI] | p+ | Crude OR [95% CI] | p+ | Adjusted OR [95% CI] | p+ | Crude OR [95% CI] | p+ | Adjusted OR [95% CI] | p+ | |
Codominant Model | ||||||||||||
CC | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
CT | 1.60 [0.89; 2.88] | 0.115 | 1.32 [0.70; 2.52] | 0.390 | 1.55 [0.87; 2.75] | 0.138 | 1.33 [0.72; 2.4] | 0.360 | 2.43 [1.26; 4.69] * | 0.008 * | 1.99 [0.98; 4.07] | 0.056 |
TT | 2.94 [0.35; 24.87] | 0.322 | 2.38 [0.23; 2.46] | 0.468 | 1.19 [0.12; 11.64] | 0.880 | 0.96 [0.09; 10.74] | 0.975 | 0.002 [NA] | 0.819 | 0.001 [NA] | 0.897 |
Dominant Model | ||||||||||||
CC | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
CT + TT | 1.68 [0.95; 3.03] | 0.074 | 1.39 [0.75; 2.59] | 0.301 | 1.52 [0.87; 2.67] | 0.141 | 1.31 [0.72; 2.38] | 0.376 | 2.29 [1.20; 4.37] * | 0.012 * | 1.88 [0.94; 3.79] | 0.076 |
Recessive Model | ||||||||||||
CC + CT | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
TT | 1.84 [0.20; 16.55] | 0.588 | 2.79 [0.26; 9.04] | 0.392 | 0.37 [0.02; 6.02] | 0.488 | 0.51 [0.03; 9.04] | 0.649 | 0.001 [NA] | 0.923 | 0.004 [NA] | 0.808 |
Overdominant Model | ||||||||||||
CC + TT | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
CT | 1.59 [0.88; 2.85] | 0.123 | 1.31 [0.69; 2.49] | 0.406 | 1.54 [0.87; 2.74] | 0.140 | 1.33 [0.72; 2.46] | 0.359 | 2.44 [1.26; 4.72] * | 0.008 * | 2.01 [0.99; 4.10] | 0.053 |
CALR+ ET | CALR Type 1+ ET | CALR Type 2+ ET | CALR+ PMF | CALR Type 1+ PMF | CALR Type 2+ PMF | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude OR [95% CI] | Adjusted OR a [95% CI] | Crude OR [95% CI] | Adjusted OR [95% CI] | Crude OR [95% CI] | Adjusted OR [95% CI] | Crude OR [95% CI] | Adjusted OR [95% CI] | Crude OR [95% CI] | Adjusted OR [95% CI] | Crude OR [95% CI] | Adjusted OR [95% CI] | |
Codominant Model | ||||||||||||
CC | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
CT | 0.98 [0.45; 2.09] | 0.58 [0.46; 3.29] | 0.68 [0.26; 1.78] | 0.44 [0.14;1.43] | 1.61 [0.63;4.12] | 0.95 [0.27; 3.37] | 2.32 [1.07; 5.00] | 1.23 [0.46; 3.29] | 1.88 [0.76; 4.64] | 1.17 [0.37;3.65] | 3.75 [1.30; 10.78] * | 1.71 [0.36; 8.07] |
TT | 0.003 [NA] | 0.004 [NA} | 0.0001 [NA] | 0.0001 [NA] | 0.002 [NA] | 0.0001 [NA] | 0.01 [NA] | 0.01 [NA] | 0.0001 [NA] | 0.0001 [NA] | 0.03 [NA] | 0.0001 [NA] |
Dominant Model | ||||||||||||
CC | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
CT + TT | 0.92 [0.43; 1.95] | 0.54 [0.21; 1.37] | 0.64 [0.24; 1.66] | 0.41 [0.13; 1.33] | 1.51 [0.59;3.85] | 0.89 [0.25; 3.14] | 2.18 [1.02; 4.66] * | 1.16 [0.44; 3.07] | 1.76 [0.72; 4.33] | 1.10 [0.36; 3.42] | 3.53 [1.24; 10.08] * | 1.61 [0.34; 7.51] |
Recessive Model | ||||||||||||
CC + CT | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
TT | 2.44 [0.22; 27.20] | 2.15 [0.14; 34.27] | 1.97 [0.12; 30.22] | 3.18 [0.20; 51.69] | 3.57 [0.22; 58.05] | 0.52 [0.01;171.66] | 0.005 [NA] | 0.0001 [NA] | 0.005 [NA] | 0.003 [NA] | 0.008 [NA] | 0.0001 [NA] |
Overdominant Model | ||||||||||||
CC + TT | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
CT | 0.98 [0.46; 2.10] | 0.58 [0.23; 1.47] | 0.68 [0.26; 1.79] | 0.44 [0.14; 1.43] | 1.62 [0.63; 4.15] | 0.96 [0.27; 3.39] | 2.33 [1.08; 5.03] * | 1.24 [0.46; 3.30] | 1.88 [0.76; 4.67] | 1.17 [0.38; 3.67] | 3.77 [1.31;10.84] * | 1.72 [0.37; 8.11] |
MPN Subtypes | Genetic Inheritance Models | JAK2 rs10974944 | TERT rs2736100 | HBS1L-MYB rs9376092 | MECOM rs2201862 | THRB-RARB rs4858647 |
---|---|---|---|---|---|---|
ET a | Codominant | 0.249 | 0.422 | 0.049 * | 0.648 | 0.270 |
Dominant | 0.707 | 0.943 | 0.051 | 0.163 | 0.630 | |
Recessive | 0.037 * | 0.442 | - | 0.308 | 0.198 | |
Overdominant | 0.667 | 0.743 | 0.014 * | 0.504 | - | |
Codominant | 0.725 | 0.969 | 0.093 | 0.951 | 0.301 | |
PV b | Dominant | 0.259 | 0.370 | 0.696 | 0.437 | 0.166 |
Recessive | 0.496 | 0.830 | - | 0.671 | - | |
Overdominant | 0.918 | 0.772 | 0.012 * | 0.621 | 0.118 | |
PMF c | Codominant | 0.711 | 0.341 | 0.374 | 0.687 | 0.857 |
Dominant | 0.676 | 0.681 | 0.244 | 0.712 | 0.862 | |
Recessive | - | - | - | - | - | |
Overdominant | 0.763 | 0.124 | 0.294 | 0.646 | 0.817 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lighezan, D.L.; Bojan, A.S.; Iancu, M.; Pop, R.M.; Gligor-Popa, Ș.; Tripon, F.; Cosma, A.S.; Tomuleasa, C.; Dima, D.; Zdrenghea, M.; et al. TET2 rs1548483 SNP Associating with Susceptibility to Molecularly Annotated Polycythemia Vera and Primary Myelofibrosis. J. Pers. Med. 2020, 10, 259. https://doi.org/10.3390/jpm10040259
Lighezan DL, Bojan AS, Iancu M, Pop RM, Gligor-Popa Ș, Tripon F, Cosma AS, Tomuleasa C, Dima D, Zdrenghea M, et al. TET2 rs1548483 SNP Associating with Susceptibility to Molecularly Annotated Polycythemia Vera and Primary Myelofibrosis. Journal of Personalized Medicine. 2020; 10(4):259. https://doi.org/10.3390/jpm10040259
Chicago/Turabian StyleLighezan, Diana L., Anca S. Bojan, Mihaela Iancu, Raluca M. Pop, Ștefana Gligor-Popa, Florin Tripon, Adriana S. Cosma, Ciprian Tomuleasa, Delia Dima, Mihnea Zdrenghea, and et al. 2020. "TET2 rs1548483 SNP Associating with Susceptibility to Molecularly Annotated Polycythemia Vera and Primary Myelofibrosis" Journal of Personalized Medicine 10, no. 4: 259. https://doi.org/10.3390/jpm10040259
APA StyleLighezan, D. L., Bojan, A. S., Iancu, M., Pop, R. M., Gligor-Popa, Ș., Tripon, F., Cosma, A. S., Tomuleasa, C., Dima, D., Zdrenghea, M., Fetica, B., Ioniță, I., Gaál, I. O., Vișan, S., Mirea, A. -M., Popp, R. A., Florea, M., Araniciu, C., Petrescu, L., ... Trifa, A. P. (2020). TET2 rs1548483 SNP Associating with Susceptibility to Molecularly Annotated Polycythemia Vera and Primary Myelofibrosis. Journal of Personalized Medicine, 10(4), 259. https://doi.org/10.3390/jpm10040259