Aortic Root Dilatation Is Attenuated with Diabetes but Is Not Associated with Renal Progression in Chronic Kidney Disease
Abstract
:1. Introduction
2. Methods and Patients
2.1. Study Design and Patients
2.2. Evaluation of Cardiac Structure and Function
2.3. Medical, Demographic and Laboratory Data
2.4. Rate of Renal Function Decline
2.5. Statistical Analysis
3. Results
3.1. Comparisons of the Clinical Characteristics between ARD/BSA Tertiles
3.2. Comparisons of Echocardiographic Parameters between the Patients with and without DM
3.3. Determinants of ARD/BSA
3.4. Associations between eGFR Slope and Echocardiographic Parameters
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van der Velde, M.; Matsushita, K.; Coresh, J.; Astor, B.C.; Woodward, M.; Levey, A.; de Jong, P.; Gansevoort, R.T.; Chronic Kidney Disease Prognosis Consortium. Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011, 79, 1341–1352. [Google Scholar] [CrossRef] [Green Version]
- Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352. [Google Scholar] [CrossRef]
- Pluta, A.; Strozecki, P.; Krintus, M.; Odrowaz-Sypniewska, G.; Manitius, J. Left ventricular remodeling and arterial remodeling in patients with chronic kidney disease stage 1–3. Ren. Fail. 2015, 37, 1105–1110. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Hsu, C.Y.; Li, Y.; Mishra, R.K.; Keane, M.; Rosas, S.E.; Dries, D.; Xie, D.; Chen, J.; He, J.; et al. Associations between kidney function and subclinical cardiac abnormalities in CKD. J. Am. Soc. Nephrol. 2012, 23, 1725–1734. [Google Scholar] [CrossRef] [Green Version]
- Wu, I.W.; Hung, M.J.; Chen, Y.C.; Hsu, H.J.; Cherng, W.J.; Chang, C.J.; Wu, M.S. Ventricular function and all-cause mortality in chronic kidney disease patients with angiographic coronary artery disease. J. Nephrol. 2010, 23, 181–188. [Google Scholar]
- Bansal, N.; Roy, J.; Chen, H.Y.; Deo, R.; Dobre, M.; Fischer, M.J.; Foster, E.; Go, A.S.; He, J.; Keane, M.G.; et al. Evolution of Echocardiographic Measures of Cardiac Disease From CKD to ESRD and Risk of All-Cause Mortality: Findings From the CRIC Study. Am. J. Kidney Dis. 2018, 72, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Vogel, M.W.; Slusser, J.P.; Hodge, D.O.; Chen, H.H. The natural history of preclinical diastolic dysfunction: A population-based study. Circ. Heart Fail. 2012, 5, 144–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, K.K.; Shah, S.Y.; Arrigain, S.; Jolly, S.; Schold, J.D.; Navaneethan, S.D.; Griffin, B.P.; Nally, J.V.; Desai, M.Y. Characteristics and Outcomes of Patients With Aortic Stenosis and Chronic Kidney Disease. J. Am. Heart Assoc. 2019, 8, e009980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, R.R.; Gallo, A.; Coady, M.A.; Tellides, G.; Botta, D.M.; Burke, B.; Coe, M.P.; Kopf, G.S.; Elefteriades, J.A. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann. Thorac. Surg. 2006, 81, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Gardin, J.M.; Arnold, A.M.; Polak, J.; Jackson, S.; Smith, V.; Gottdiener, J. Usefulness of aortic root dimension in persons > or = 65 years of age in predicting heart failure, stroke, cardiovascular mortality, all-cause mortality and acute myocardial infarction (from the Cardiovascular Health Study). Am. J. Cardiol. 2006, 97, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.L.; Chien, K.L.; Hsu, H.C.; Su, T.C.; Chen, M.F.; Lee, Y.T. Aortic root dimension as an independent predictor for all-cause death in adults <65 years of age (from the Chin-Shan Community Cardiovascular Cohort Study). Echocardiography 2010, 27, 487–495. [Google Scholar]
- Cuspidi, C.; Facchetti, R.; Bombelli, M.; Re, A.; Cairoa, M.; Sala, C.; Tadic, M.; Grassi, G.; Mancia, G. Aortic root diameter and risk of cardiovascular events in a general population: Data from the PAMELA study. J. Hypertens. 2014, 32, 1879–1887. [Google Scholar] [CrossRef]
- Masugata, H.; Senda, S.; Murao, K.; Okuyama, H.; Inukai, M.; Hosomi, N.; Iwado, Y.; Noma, T.; Kohno, M.; Himoto, T.; et al. Aortic root dilatation as a marker of subclinical left ventricular diastolic dysfunction in patients with cardiovascular risk factors. J. Int. Med. Res. 2011, 39, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Mule, G.; Nardi, E.; Morreale, M.; D’Amico, S.; Foraci, A.C.; Nardi, C.; Geraci, G.; Cerasola, G.; Cottone, S. Relationship between aortic root size and glomerular filtration rate in hypertensive patients. J. Hypertens. 2016, 34, 495–504; discussion 505. [Google Scholar] [CrossRef]
- Ye, M.; Zhang, J.; Li, J.; Liu, Y.; He, W.; Lin, H.; Fan, R.; Li, C.; Li, W.; Liu, D.; et al. Diabetes attenuated age-related aortic root dilatation in end-stage renal disease patients receiving peritoneal dialysis. J. Diabetes Investig. 2019, 10, 1550–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Initiative, K.D.O.Q. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39 (Suppl. S1), S1–S266. [Google Scholar]
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef]
- Vickery, S.; Stevens, P.E.; Dalton, R.N.; van Lente, F.; Lamb, E.J. Does the ID-MS traceable MDRD equation work and is it suitable for use with compensated Jaffe and enzymatic creatinine assays? Nephrol. Dial. Transplant. 2006, 21, 2439–2445. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Covella, M.; Milan, A.; Totaro, S.; Cuspidi, C.; Re, A.; Rabbia, F.; Veglio, F. Echocardiographic aortic root dilatation in hypertensive patients: A systematic review and meta-analysis. J. Hypertens. 2014, 32, 1928–1935; discussion 1935. [Google Scholar] [CrossRef]
- Cuspidi, C.; Meani, S.; Fusi, V.; Valerio, C.; Sala, C.; Zanchetti, A. Prevalence and correlates of aortic root dilatation in patients with essential hypertension: Relationship with cardiac and extracardiac target organ damage. J. Hypertens. 2006, 24, 573–580. [Google Scholar] [CrossRef]
- Takagi, H.; Umemoto, T.; Group, A. Negative Association of Diabetes With Thoracic Aortic Dissection and Aneurysm. Angiology 2017, 68, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.K.; Pedroza, C.; Khalil, Y.A.; Milewicz, D.M. Diabetes and reduced risk for thoracic aortic aneurysms and dissections: A nationwide case-control study. J. Am. Heart Assoc. 2012, 1, e000323. [Google Scholar] [CrossRef] [Green Version]
- Raffort, J.; Lareyre, F.; Clement, M.; Hassen-Khodja, R.; Chinetti, G.; Mallat, Z. Diabetes and aortic aneurysm: Current state of the art. Cardiovasc. Res. 2018, 114, 1702–1713. [Google Scholar] [CrossRef] [PubMed]
- Mallat, Z.; Ait-Oufella, H.; Tedgui, A. The Pathogenic Transforming Growth Factor-beta Overdrive Hypothesis in Aortic Aneurysms and Dissections: A Mirage? Circ. Res. 2017, 120, 1718–1720. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Huynh, P.; Dai, A.; Wu, T.; Tu, Y.; Chow, B.; Kiriazis, H.; Du, X.J.; Bach, L.A.; Wilkinson-Berka, J.L.; et al. Diabetes Reduces Severity of Aortic Aneurysms Depending on the Presence of Cell Division Autoantigen 1 (CDA1). Diabetes 2018, 67, 755–768. [Google Scholar] [CrossRef] [Green Version]
- Dua, M.M.; Miyama, N.; Azuma, J.; Schultz, G.M.; Sho, M.; Morser, J.; Dalman, R.L. Hyperglycemia modulates plasminogen activator inhibitor-1 expression and aortic diameter in experimental aortic aneurysm disease. Surgery 2010, 148, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Shankman, L.S.; Gomez, D.; Cherepanova, O.A.; Salmon, M.; Alencar, G.F.; Haskins, R.M.; Swiatlowska, P.; Newman, A.A.; Greene, E.S.; Straub, A.C.; et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat. Med. 2015, 21, 628–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hien, T.T.; Garcia-Vaz, E.; Stenkula, K.G.; Sjogren, J.; Nilsson, J.; Gomez, M.F.; Albinsson, S. MicroRNA-dependent regulation of KLF4 by glucose in vascular smooth muscle. J. Cell Physiol. 2018, 233, 7195–7205. [Google Scholar] [CrossRef] [PubMed]
- Angelov, S.N.; Hu, J.H.; Wei, H.; Airhart, N.; Shi, M.; Dichek, D.A. TGF-beta (Transforming Growth Factor-beta) Signaling Protects the Thoracic and Abdominal Aorta From Angiotensin II-Induced Pathology by Distinct Mechanisms. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2102–2113. [Google Scholar] [CrossRef] [Green Version]
- Kanzaki, T.; Shiina, R.; Saito, Y.; Zardi, L.; Morisaki, N. Transforming growth factor-beta receptor and fibronectin expressions in aortic smooth muscle cells in diabetic rats. Diabetologia 1997, 40, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Briet, M.; Boutouyrie, P.; Laurent, S.; London, G.M. Arterial stiffness and pulse pressure in CKD and ESRD. Kidney Int. 2012, 82, 388–400. [Google Scholar] [CrossRef] [Green Version]
- Briet, M.; Bozec, E.; Laurent, S.; Fassot, C.; London, G.M.; Jacquot, C.; Froissart, M.; Houillier, P.; Boutouyrie, P. Arterial stiffness and enlargement in mild-to-moderate chronic kidney disease. Kidney Int. 2006, 69, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Briet, M.; Collin, C.; Karras, A.; Laurent, S.; Bozec, E.; Jacquot, C.; Stengel, B.; Houillier, P.; Froissart, M.; Boutouyrie, P.; et al. Arterial remodeling associates with CKD progression. J. Am. Soc. Nephrol. 2011, 22, 967–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, R.R.; Wimmer, N.J.; Chirinos, J.A.; Parsa, A.; Weir, M.; Perumal, K.; Lash, J.P.; Chen, J.; Steigerwalt, S.P.; Flack, J.; et al. Aortic PWV in chronic kidney disease: A CRIC ancillary study. Am. J. Hypertens. 2010, 23, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Bellasi, A.; Di Lullo, L. Cardiorenal Syndrome: An Overview. Adv. Chronic Kidney Dis. 2018, 25, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Su, H.M.; Hung, C.C.; Chang, J.M.; Liu, W.C.; Tsai, J.C.; Lin, M.Y.; Hwang, S.J.; Chen, H.C. Echocardiographic parameters are independently associated with rate of renal function decline and progression to dialysis in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 2750–2758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.H.; Chiu, H.; Wu, P.Y.; Huang, J.C.; Lin, M.Y.; Chen, S.C.; Chang, J.M. The association of echocardiographic parameters on renal outcomes in chronic kidney disease. Ren. Fail. 2021, 43, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Berezin, A.E.; Berezin, A.A. Impaired function of fibroblast growth factor 23/Klotho protein axis in prediabetes and diabetes mellitus: Promising predictor of cardiovascular risk. Diabetes Metab. Syndr. 2019, 13, 2549–2556. [Google Scholar] [CrossRef] [PubMed]
- Titan, S.M.; Zatz, R.; Graciolli, F.G.; dos Reis, L.M.; Barros, R.T.; Jorgetti, V.; Moyses, R.M. FGF-23 as a predictor of renal outcome in diabetic nephropathy. Clin. J. Am. Soc. Nephrol. 2011, 6, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marthi, A.; Donovan, K.; Haynes, R.; Wheeler, D.C.; Baigent, C.; Rooney, C.M.; Landray, M.J.; Moe, S.M.; Yang, J.; Holland, L.; et al. Fibroblast Growth Factor-23 and Risks of Cardiovascular and Noncardiovascular Diseases: A Meta-Analysis. J. Am. Soc. Nephrol. 2018, 29, 2015–2027. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, O.M.; Januzzi, J.L.; Isakova, T.; Laliberte, K.; Smith, K.; Collerone, G.; Sarwar, A.; Hoffmann, U.; Coglianese, E.; Christenson, R.; et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation 2009, 119, 2545–2552. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.A.; Larsson, A.; Melhus, H.; Lind, L.; Larsson, T.E. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 2009, 207, 546–551. [Google Scholar] [CrossRef]
- Grabner, A.; Amaral, A.P.; Schramm, K.; Singh, S.; Sloan, A.; Yanucil, C.; Li, J.; Shehadeh, L.A.; Hare, J.M.; David, V.; et al. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy. Cell Metab. 2015, 22, 1020–1032. [Google Scholar] [CrossRef] [Green Version]
- Leifheit-Nestler, M.; Richter, B.; Basaran, M.; Nespor, J.; Vogt, I.; Alesutan, I.; Voelkl, J.; Lang, F.; Heineke, J.; Krick, S.; et al. Impact of Altered Mineral Metabolism on Pathological Cardiac Remodeling in Elevated Fibroblast Growth Factor 23. Front. Endocrinol. 2018, 9, 333. [Google Scholar] [CrossRef]
- Poulsen, M.K.; Dahl, J.S.; Henriksen, J.E.; Hey, T.M.; Hoilund-Carlsen, P.F.; Beck-Nielsen, H.; Moller, J.E. Left atrial volume index: Relation to long-term clinical outcome in type 2 diabetes. J. Am. Coll. Cardiol. 2013, 62, 2416–2421. [Google Scholar] [CrossRef] [Green Version]
- Tadic, M.; Cuspidi, C. Left atrial function in diabetes: Does it help? Acta Diabetol. 2021, 58, 131–137. [Google Scholar] [CrossRef]
- Abhayaratna, W.P.; Seward, J.B.; Appleton, C.P.; Douglas, P.S.; Oh, J.K.; Tajik, A.J.; Tsang, T.S. Left atrial size: Physiologic determinants and clinical applications. J. Am. Coll. Cardiol. 2006, 47, 2357–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todaro, M.C.; Choudhuri, I.; Belohlavek, M.; Jahangir, A.; Carerj, S.; Oreto, L.; Khandheria, B.K. New echocardiographic techniques for evaluation of left atrial mechanics. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 973–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, T.S.; Barnes, M.E.; Gersh, B.J.; Bailey, K.R.; Seward, J.B. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am. J. Cardiol. 2002, 90, 1284–1289. [Google Scholar] [CrossRef]
- Kizer, J.R.; Bella, J.N.; Palmieri, V.; Liu, J.E.; Best, L.G.; Lee, E.T.; Roman, M.J.; Devereux, R.B. Left atrial diameter as an independent predictor of first clinical cardiovascular events in middle-aged and elderly adults: The Strong Heart Study (SHS). Am. Heart J. 2006, 151, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, M.; Io, H.; Tanimoto, M.; Hagiwara, S.; Horikoshi, S.; Tomino, Y. Predictive Factors Associated with the Period of Time before Initiation of Hemodialysis in CKD Stages 4 and 5. Nephron Clin. Pract. 2011, 117, c341–c347. [Google Scholar] [CrossRef] [PubMed]
- Bock, J.S.; Gottlieb, S.S. Cardiorenal syndrome: New perspectives. Circulation 2010, 121, 2592–2600. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Tertile 1 (n = 139) | Tertile 2 (n = 140) | Tertile 3 (n = 140) | p |
---|---|---|---|---|
Age (year) | 62.2 ± 13.6 | 66.0 ± 11.5 * | 69.6 ± 10.6 *,† | <0.001 |
Male sex (%) | 52.5 | 64.3 | 66.4 | 0.037 |
Smoking (%) | 30.2 | 27.1 | 34.3 | 0.431 |
DM (%) | 62.6 | 55.7 | 51.4 | 0.166 |
Hypertension (%) | 84.2 | 85.0 | 80.0 | 0.492 |
Coronary artery disease (%) | 10.1 | 13.6 | 10.0 | 0.559 |
Cerebrovascular disease (%) | 16.5 | 12.9 | 16.4 | 0.624 |
Systolic blood pressure (mmHg) | 140.6 ± 21.0 | 140.8 ± 19.5 | 142.8 ± 23.0 | 0.653 |
Diastolic blood pressure (mmHg) | 79.0 ± 12.2 | 80.1 ± 13.8 | 79.4 ± 12.5 | 0.761 |
Laboratory parameters | ||||
Fasting glucose (mg/dL) | 130.8 ± 60.0 | 121.6 ± 58.8 | 126.7 ± 54.3 | 0.411 |
Triglyceride (mg/dL) | 152 (99–239) | 151 (99.75–200.25) | 128 (80–178) * | 0.002 |
Total cholesterol (mg/dL) | 200.2 ± 44.5 | 196.5 ± 46.1 | 187.0 ± 46.9 * | 0.046 |
Hemoglobin (g/dL) | 11.8 ± 2.3 | 11.6 ± 2.3 | 11.7 ± 2.3 | 0.691 |
Baseline eGFR (mL/min/1.73 m2) | 27.0 ± 14.0 | 23.2 ± 13.3 | 25.1 ± 14.5 | 0.076 |
Calcium-phosphorous product (mg2/dL2) | 38.5 ± 8.2 | 37.0 ± 7.9 | 38.4 ± 9.4 | 0.252 |
Proteinuria (%) | 64.7 | 67.1 | 65.5 | 0.911 |
Medications | ||||
ACEI and/or ARB (%) | 77.8 | 75.0 | 71.9 | 0.540 |
Statins (%) | 28.1 | 23.5 | 27.3 | 0.653 |
Echocardiographic parameters | ||||
ARD/BSA (cm/m2) | 1.68 ± 0.11 | 1.94 ± 0.06 * | 2.23 ± 0.17 *,† | <0.001 |
LAD (cm) | 3.90 ± 0.61 | 3.72 ± 0.61 | 3.59 ± 0.64 * | <0.001 |
LVRWT (%) | 44.61 ± 11.99 | 43.71 ± 12.33 | 44.24 ± 14.70 | 0.878 |
LVMI (g/m2) | 132.32 ± 42.19 | 137.91 ± 43.63 | 146.35 ± 51.54 * | 0.038 |
LVEDV (mL) | 111.32 ± 31.42 | 113.43 ± 33.59 | 119.06 ± 47.64 | 0.219 |
LVESV (mL) | 33.72 ± 16.99 | 36.16 ± 17.72 | 40.85 ± 33.90 * | 0.044 |
LVEF (%) | 70.44 ± 9.13 | 69.03 ± 8.83 | 68.00 ± 11.70 | 0.124 |
E/A | 0.89 ± 0.31 | 0.81 ± 0.26 | 0.85 ± 0.46 | 0.208 |
Renal outcome | ||||
eGFR slope (mL/min/1.73 m2/yr) | −2.24 ± 0.35 | −2.11 ± 0.45 | −1.50 ± 0.37 | 0.368 |
Echocardiographic Parameters | without DM (n = 182) | with DM (n = 237) | p |
---|---|---|---|
ARD/BSA (cm/m2) | 1.99 ± 0.27 | 1.92 ± 0.23 | 0.009 |
LAD (cm) | 3.59 ± 0.63 | 3.85 ± 0.61 | <0.001 |
LVRWT (%) | 42.32 ± 11.79 | 45.62 ± 16.47 | 0.017 |
LVMI (g/m2) | 136.06 ± 46.3 | 141.05 ± 46.17 | 0.274 |
LVEDV (mL) | 114.74 ± 34.39 | 114.51 ± 41.12 | 0.952 |
LVESV (mL) | 35.45 ± 20.36 | 38.05 ± 26.93 | 0.261 |
LVEF (%) | 70.25 ± 8.94 | 68.30 ± 10.69 | 0.043 |
E/A | 0.92 ± 0.43 | 0.80 ± 0.27 | 0.001 |
Parameters | ARD/BSA | |
---|---|---|
Unstandardized Coefficient β (95% CI) | p | |
Age (per 1 year) | 0.005 (0.003, 0.007) | <0.001 |
Sex (male vs. female) | 0.062 (0.010, 0.113) | 0.019 |
DM | −0.060 (−0.109, −0.010) | 0.018 |
Triglyceride (log per 1 mg/dL) | −0.159 (−0.261, −0.057) | 0.002 |
Baseline eGFR (per 1 mL/min/1.73 m2) | −0.002 (−0.004, −0.001) | 0.007 |
Echocardiographic Parameters | without DM (n = 182) | with DM (n = 237) | |||||
---|---|---|---|---|---|---|---|
Multivariable | Multivariable | ||||||
Unstandardized Coefficient β | 95% CI | p | Unstandardized Coefficient β | 95% CI | p | Interaction p | |
ARD/BSA (per 1 cm/m2) | 1.281 | −0.782, 3.344 | 0.222 | 0.471 | −2.419, 3.362 | 0.748 | 0.929 |
LAD (per 1 cm) | −0.040 | −0.864, 0.784 | 0.924 | −1.965 | −3.006, −0.925 | <0.001 | 0.010 |
LVRWT (per 1%) | 0.011 | −0.037, 0.058 | 0.664 | −0.007 | −0.045, 0.031 | 0.730 | 0.265 |
LVMI (per 1 g/m2) | −0.006 | −0.018, 0.006 | 0.343 | −0.016 | −0.032, -0.001 | 0.040 | 0.396 |
LVEDV (per 1 mL) | 0.001 | −0.016, 0.018 | 0.870 | −0.016 | −0.032, 0.001 | 0.062 | 0.508 |
LVESV (per 1 mL) | 0.003 | −0.024, 0.031 | 0.814 | −0.022 | −0.047, 0.003 | 0.082 | 0.351 |
LVEF (per 1%) | −0.008 | −0.067, 0.051 | 0.801 | 0.026 | −0.039, 0.091 | 0.424 | 0.285 |
E/A (per 1) | −0.052 | −1.324, 1.219 | 0.935 | −0.333 | −2.991, 2.325 | 0.805 | 0.198 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.-Y.; Huang, J.-C.; Liu, Y.-H.; Su, H.-M.; Chen, S.-C.; Chiu, Y.-W.; Chang, J.-M. Aortic Root Dilatation Is Attenuated with Diabetes but Is Not Associated with Renal Progression in Chronic Kidney Disease. J. Pers. Med. 2021, 11, 972. https://doi.org/10.3390/jpm11100972
Wu P-Y, Huang J-C, Liu Y-H, Su H-M, Chen S-C, Chiu Y-W, Chang J-M. Aortic Root Dilatation Is Attenuated with Diabetes but Is Not Associated with Renal Progression in Chronic Kidney Disease. Journal of Personalized Medicine. 2021; 11(10):972. https://doi.org/10.3390/jpm11100972
Chicago/Turabian StyleWu, Pei-Yu, Jiun-Chi Huang, Yi-Hsueh Liu, Ho-Ming Su, Szu-Chia Chen, Yi-Wen Chiu, and Jer-Ming Chang. 2021. "Aortic Root Dilatation Is Attenuated with Diabetes but Is Not Associated with Renal Progression in Chronic Kidney Disease" Journal of Personalized Medicine 11, no. 10: 972. https://doi.org/10.3390/jpm11100972
APA StyleWu, P. -Y., Huang, J. -C., Liu, Y. -H., Su, H. -M., Chen, S. -C., Chiu, Y. -W., & Chang, J. -M. (2021). Aortic Root Dilatation Is Attenuated with Diabetes but Is Not Associated with Renal Progression in Chronic Kidney Disease. Journal of Personalized Medicine, 11(10), 972. https://doi.org/10.3390/jpm11100972