Biomarkers Associated with Failure of Liberation from Oxygen Therapy in Severe COVID-19: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Laboratory Testing
2.4. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Laboratory Data
3.3. Predictors of Weaning Failure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Pandemic. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 14 September 2021).
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese center for disease control and prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Siddiqi, H.K.; Mehra, M.R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J. Heart Lung Transplant. 2020, 39, 405–407. [Google Scholar] [CrossRef] [Green Version]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef] [Green Version]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid.-Based Med. 2021, 26, 107–108. [Google Scholar] [CrossRef]
- Medetalibeyoglu, A.; Emet, S.; Kose, M.; Akpinar, T.S.; Senkal, N.; Catma, Y.; Kaytaz, A.M.; Genc, S.; Omer, B.; Tukek, T. Serum endocan levels on admission are associated with worse clinical outcomes in COVID-19 patients: A pilot study. Angiology 2021, 72, 187–193. [Google Scholar] [CrossRef]
- Lim, A.; Radujkovic, A.; Weigand, M.A.; Merle, U. Soluble receptor for advanced glycation end products (sRAGE) as a biomarker of COVID-19 disease severity and indicator of the need for mechanical ventilation, ARDS and mortality. Ann. Intensive Care 2021, 11, 50. [Google Scholar] [CrossRef]
- Musheyev, B.; Borg, L.; Janowicz, R.; Matarlo, M.; Boyle, H.; Singh, G.; Ende, V.; Babatsikos, I.; Hou, W.; Duong, T.Q. Functional status of mechanically ventilated COVID-19 survivors at ICU and hospital discharge. J. Intensive Care 2021, 9, 31. [Google Scholar] [CrossRef]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [Green Version]
- ARDS Definition Task Force; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Warren, M.A.; Zhao, Z.; Koyama, T.; Bastarache, J.A.; Shaver, C.M.; Semler, M.W.; Rice, T.W.; Matthay, M.A.; Calfee, C.S.; Ware, L.B. Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax 2018, 73, 840–846. [Google Scholar] [CrossRef]
- Morelli, A.; Ertmer, C.; Westphal, M.; Rehberg, S.; Kampmeier, T.; Ligges, S.; Orecchioni, A.; D'Egidio, A.; D’Ippoliti, F.; Raffone, C.; et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: A randomized clinical trial. JAMA 2013, 310, 1683–1691. [Google Scholar] [CrossRef]
- Perkins, N.J.; Schisterman, E.F. The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve. Am. J. Epidemiol. 2006, 163, 670–675. [Google Scholar] [CrossRef] [Green Version]
- Schweickert, W.D.; Hall, J. ICU-acquired weakness. Chest 2007, 131, 1541–1549. [Google Scholar] [CrossRef]
- Courcelle, R.; Gaudry, S.; Serck, N.; Blonz, G.; Lascarrou, J.B.; Grimaldi, D.; on behalf the COVADIS Study Group. Neuromuscular blocking agents (NMBA) for COVID-19 acute respiratory distress syndrome: A multicenter observational study. Crit. Care 2020, 24, 446. [Google Scholar] [CrossRef]
- Karzai, W.; Oberhoffer, M.; Meier-Hellmann, A.; Reinhart, K. Procalcitonin—A new indicator of the systemic response to severe infections. Infection 1997, 25, 329–334. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chim. Acta 2020, 505, 190–191. [Google Scholar] [CrossRef]
- Chalmers, S.; Khawaja, A.; Wieruszewski, P.M.; Gajic, O.; Odeyemi, Y. Diagnosis and treatment of acute pulmonary inflammation in critically ill patients: The role of inflammatory biomarkers. World J. Crit. Care Med. 2019, 8, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yan, X.; Fan, Q.; Liu, H.; Liu, X.; Liu, Z.; Zhang, Z. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J. Thromb. Haemost. 2020, 18, 1324–1329. [Google Scholar] [CrossRef]
- Huang, I.; Pranata, R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. J. Intensive Care 2020, 8, 36. [Google Scholar] [CrossRef]
- Henry, B.M.; Aggarwal, G.; Wong, J.; Benoit, S.; Vikse, J.; Plebani, M.; Lippi, G. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Am. J. Emerg. Med. 2020, 38, 1722–1726. [Google Scholar] [CrossRef]
- Tan, C.; Huang, Y.; Shi, F.; Tan, K.; Ma, Q.; Chen, Y.; Jiang, X.; Li, X. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J. Med. Virol. 2020, 92, 856–862. [Google Scholar] [CrossRef] [Green Version]
- Lee, R.J.; Wysocki, O.; Bhogal, T.; Shotton, R.; Tivey, A.; Angelakas, A.; Aung, T.; Banfill, K.; Baxter, M.; Boyce, H.; et al. Longitudinal characterisation of haematological and biochemical parameters in cancer patients prior to and during COVID-19 reveals features associated with outcome. ESMO Open 2021, 6, 100005. [Google Scholar] [CrossRef]
- Balbi, M.; Caroli, A.; Corsi, A.; Milanese, G.; Surace, A.; Di Marco, F.; Novelli, L.; Silva, M.; Lorini, F.L.; Duca, A.; et al. Chest X-ray for predicting mortality and the need for ventilatory support in COVID-19 patients presenting to the emergency department. Eur. Radiol. 2021, 31, 1999–2012. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.H.; Zucker, J.; Castor, D.; Annavajhala, M.K.; Sepulveda, J.L.; Green, D.A.; Whittier, S.; Scherer, M.; Medrano, N.; Sobieszczyk, M.E.; et al. Pretest symptom duration and cycle threshold values for severe acute respiratory syndrome coronavirus 2 reverse-transcription polymerase chain reaction predict coronavirus disease 2019 mortality. Open Forum Infect. Dis. 2021, 8, ofab003. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Fu, Z.; Huang, W.; Huang, K. Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: A meta-analysis. Am. J. Emerg. Med. 2020, 38, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.; Li, J.; Li, S.; Yang, C. Leucocyte subsets effectively predict the clinical outcome of patients With COVID-19 pneumonia: A retrospective case-control study. Front. Public Health 2020, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Kose, M.; Emet, S.; Akpinar, T.S.; Kocaaga, M.; Cakmak, R.; Akarsu, M.; Yuruyen, G.; Arman, Y.; Tukek, T. Serum endocan level and the severity of coronary artery disease: A pilot study. Angiology 2015, 66, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Arman, Y.; Akpinar, T.S.; Kose, M.; Emet, S.; Yuruyen, G.; Akarsu, M.; Ozcan, M.; Yegit, O.; Cakmak, R.; Altun, O.; et al. Effect of glycemic regulation on endocan levels in patients With diabetes: A preliminary study. Angiology 2016, 67, 239–244. [Google Scholar] [CrossRef]
- Goshua, G.; Pine, A.B.; Meizlish, M.L.; Chang, C.H.; Zhang, H.; Bahel, P.; Baluha, A.; Bar, N.; Bona, R.D.; Burns, A.J.; et al. Endotheliopathy in COVID-19-associated coagulopathy: Evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020, 7, e575–e582. [Google Scholar] [CrossRef]
- Touyz, R.M.; Li, H.; Delles, C. ACE2 the Janus-faced protein–from cardiovascular protection to severe acute respiratory syndrome-coronavirus and COVID-19. Clin. Sci. 2020, 134, 747–750. [Google Scholar] [CrossRef] [Green Version]
- Hanff, T.C.; Harhay, M.O.; Brown, T.S.; Cohen, J.B.; Mohareb, A.M. Is there an association between COVID-19 mortality and the renin-angiotensin system? A call for epidemiologic investigations. Clin. Infect. Dis. 2020, 71, 870–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisner, M.D.; Parsons, P.; Matthay, M.A.; Ware, L.; Greene, K. Acute respiratory distress syndrome network. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 2003, 58, 983–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabaudon, M.; Berthelin, P.; Pranal, T.; Roszyk, L.; Godet, T.; Faure, J.S.; Chabanne, R.; Eisenmann, N.; Lautrette, A.; Belville, C.; et al. Receptor for advanced glycation end-products and ARDS prediction: A multicentre observational study. Sci. Rep. 2018, 8, 2603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spadaro, S.; Fogagnolo, A.; Campo, G.; Zucchetti, O.; Verri, M.; Ottaviani, I.; Tunstall, T.; Grasso, S.; Scaramuzzo, V.; Murgolo, F.; et al. Markers of endothelial and epithelial pulmonary injury in mechanically ventilated COVID-19 ICU patients. Crit. Care 2021, 25, 74. [Google Scholar] [CrossRef]
Weaning Failure (n = 18) | Weaning Success (n = 38) | p | |
---|---|---|---|
Age, years | 76 (68–79) | 68 (57–71) | 0.01 |
Male sex | 13 (72) | 22 (58) | 0.30 |
Body mass index, kg/m2 | 23.4 (21.0–30.8) | 25.9 (24.6–28.0) | 0.24 |
Comorbidities | |||
Diabetes | 3 (17) | 10 (26) | 0.51 |
Hypertension | 8 (44) | 20 (53) | 0.57 |
Chronic neurologic disease | 2 (11) | 3 (8) | 0.65 |
Chronic lung disease | 6 (33) | 6 (16) | 0.17 |
ARDS | 9 (50) | 8 (21) | 0.03 |
Bacterial coinfection | 5 (28) | 5 (13) | 0.26 |
qSOFA score | 2 (1–2) | 0 (0–1) | 0.003 |
Initial oxygen therapy | 0.001 | ||
Mechanical ventilation | 13 (72) | 9 (24) | |
High-flow nasal cannula | 5 (28) | 17 (45) | |
Supplemental oxygen | 0 | 12 (32) | |
Remdesivir | 8 (44) | 23 (61) | 0.26 |
Steroid | 18 (100) | 38 (100) | |
Vital signs and laboratory data | |||
Body temperature, °C | 37.0 (36.4–38.1) | 37.6 (36.9–38.0) | 0.17 |
Mean blood pressure, mmHg | 78 (68–97) | 85 (73–97) | 0.35 |
Heart rate, beats/min | 93 (73–103) | 86 (76–93) | 0.26 |
Respiratory rate, breaths/min | 25 (24–32) | 20 (20–26) | 0.006 |
SpO2/FiO2 | 157 (124–190) | 208 (159–297) | 0.004 |
Creatinine, mg/dL | 0.8 (0.6–1.3) | 0.7 (0.6–0.8) | 0.09 |
White cell count, 1000/mm3 | 8.7 (6.2–13.2) | 7.7 (5.5–10.1) | 0.19 |
Lymphocytes, % | 8.9 (4.3–13.3) | 13.0 (7.1–19.0) | 0.10 |
Neutrophil lymphocyte ratio | 10.0 (6.2–23.5) | 6.8 (4.1–14.0) | 0.16 |
Platelet count, 1000/mm3 | 162 (134–219) | 216 (179–248) | 0.02 |
Total bilirubin, mg/dL | 0.6 (0.4–0.7) | 0.6 (0.5–0.8) | 0.66 |
Lactate dehydrogenase, IU/L | 436 (370–638) | 404 (345–489) | 0.16 |
C-reactive protein, mg/L | 119 (56–214) | 104 (62–148) | 0.34 |
Ferritin, ng/mL 1 | 830 (427–1788) | 862 (553–1260) | 0.86 |
Procalcitonin, ng/mL 2 | 0.3 (0.1–0.6) | 0.1 (0.1–0.2) | 0.01 |
D-dimer, ug/mL 3 | 1.1 (0.8–6.8) | 0.7 (0.5–1.0) | 0.02 |
Glucose, mg/dL | 170 (126–259) | 153 (118–213) | 0.55 |
Radiologic score | 6 (3–7) | 4 (3–6) | 0.15 |
Cycle threshold value | 21.8 (18.6–26.6) | 26.1 (22.1–29.1) | 0.06 |
Length of hospital stay, days | 26 (12–40) | 15 (12–22) | 0.04 |
Hospital mortality | 7 (39) | 0 | <0.001 |
Hospital-acquired infection | 11 (61) | 4 (11) | <0.001 |
Weaning Failure (n = 18) | Weaning Success (n = 38) | p | |
---|---|---|---|
Ang-1, pg/mL | 2199 (859–10,178) | 6399 (2252–26,937) | 0.08 |
Ang-2, pg/mL | 1838 (1293–2813) | 1050 (844–1587) | 0.02 |
Ang-2/Ang-1 | 0.81 (0.27–2.34) | 0.16 (0.04–0.42) | 0.01 |
sTie2, pg/mL | 11,343 (6894–15,052) | 13,483 (10,425–17,899) | 0.14 |
Ang-1/sTie2 | 0.28 (0.09–1.13) | 0.56 (0.16–1.57) | 0.14 |
Endocan, pg/mL | 1026 (421–1509) | 877 (401–1577) | 0.96 |
ICAM-1, pg/mL | 289,403 (191,651–506,711) | 347,428 (208,226–459,056) | 0.99 |
IL-6, pg/mL | 37.5 (11.2–58.9) | 17.4 (4.6–41.7) | 0.08 |
sRAGE, pg/mL | 6433 (2866–13,087) | 4904 (2253–6575) | 0.14 |
SP-D, pg/mL | 15,618 (2842–28,038) | 6385 (1709–12,215) | 0.09 |
Syndecan-1, pg/mL | 9000 (5581–12,353) | 5969 (4734–7670) | 0.06 |
TNF-α, pg/mL | 7.8 (6.5–11.6) | 5.7 (4.1–7.9) | 0.006 |
vWF, pg/mL | 3158 (1305–5910) | 2613 (1204–4939) | 0.99 |
AUC (95% CI) | p | |
---|---|---|
qSOFA score | 0.73 (0.59–0.87) | 0.005 |
SpO2/FiO2 | 0.74 (0.60–0.88) | 0.004 |
Procalcitonin | 0.73 (0.57–0.88) | 0.01 |
D-dimer | 0.70 (0.54–0.85) | 0.02 |
Ang-2 | 0.70 (0.54–0.86) | 0.02 |
Ang-2/Ang-1 | 0.71 (0.56–0.86) | 0.01 |
Endocan (day 4–baseline) | 0.75 (0.60–0.90) | 0.003 |
Endocan (day 7–baseline) | 0.81 (0.67–0.94) | <0.001 |
TNF-α | 0.73 (0.60–0.87) | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kweon, O.J.; Cha, M.J.; Baek, M.S.; Choi, S.-H.; Kim, W.-Y. Biomarkers Associated with Failure of Liberation from Oxygen Therapy in Severe COVID-19: A Pilot Study. J. Pers. Med. 2021, 11, 974. https://doi.org/10.3390/jpm11100974
Kweon OJ, Cha MJ, Baek MS, Choi S-H, Kim W-Y. Biomarkers Associated with Failure of Liberation from Oxygen Therapy in Severe COVID-19: A Pilot Study. Journal of Personalized Medicine. 2021; 11(10):974. https://doi.org/10.3390/jpm11100974
Chicago/Turabian StyleKweon, Oh Joo, Min Jae Cha, Moon Seong Baek, Seong-Ho Choi, and Won-Young Kim. 2021. "Biomarkers Associated with Failure of Liberation from Oxygen Therapy in Severe COVID-19: A Pilot Study" Journal of Personalized Medicine 11, no. 10: 974. https://doi.org/10.3390/jpm11100974
APA StyleKweon, O. J., Cha, M. J., Baek, M. S., Choi, S. -H., & Kim, W. -Y. (2021). Biomarkers Associated with Failure of Liberation from Oxygen Therapy in Severe COVID-19: A Pilot Study. Journal of Personalized Medicine, 11(10), 974. https://doi.org/10.3390/jpm11100974