Association of the Adipokines Chemerin, Apelin, Vaspin and Omentin and Their Functional Genetic Variants with Rheumatoid Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Ethical Approval
2.3. Biochemical and Immunochemical Analysis
2.4. Genotyping
2.5. Adipokines Expression Analysis
2.6. Statistical Analysis
3. Results
3.1. Serum Disease Biomarkers and Adipokines Protein and Expression Levels in the Enrolled Subjects
3.2. Association of Disease Biomarkers and Adipokines Protein and Expression Levels with Clinical and Laboratory Characteristics of RA Patients
3.3. Molecular Analysis of Adipokines Genetic Variants in the Enrolled Subjects
3.4. Adipokines Genetic Variants Association with their Corresponding Adipokine Protein and Expression Levels and Clinical and Laboratory Characteristics in RA Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrión, M.; Frommer, K.W.; Pérez-García, S.; Müller-Ladner, U.; Gomariz, R.P.; Neumann, E. The adipokine network in rheumatic joint diseases. Int. J. Mol. Sci. 2019, 20, 4091. [Google Scholar] [CrossRef] [Green Version]
- Fatel, E.C.; Rosa, F.T.; Dichi, I. Adipokines in rheumatoid arthritis. Adv. Rheumatol. 2018, 58, 25. [Google Scholar] [CrossRef]
- Arend, W.P.; Firestein, G.S. Pre-rheumatoid arthritis: Predisposition and transition to clinical synovitis. Nat. Rev. Rheumatol. 2012, 8, 573–586. [Google Scholar] [CrossRef]
- Wahba, A.S.; Ibrahim, M.E.; Mesbah, N.M.; Saleh, S.M.; Abo-Elmatty, D.M.; Mehanna, E.T. Long non-coding RNA MEG3 and its genetic variant rs941576 are associated with rheumatoid arthritis pathogenesis in Egyptian patients. Arch. Physiol. Biochem. 2020. Advance online publication. [Google Scholar] [CrossRef]
- Neumann, E.; Junker, S.; Schett, G.; Frommer, K.; Müller-Ladner, U. Adipokines in bone disease. Nat. Rev. Rheumatol. 2016, 12, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Cheng, K.; Lam, K.; Vanhoutte, P.; Xu, A. Cross-talk between adipose tissue and vasculature: Role of adiponectin. Acta Physiol. 2011, 203, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Gómez, R.; Conde, J.; Scotece, M.; Gómez-Reino, J.J.; Lago, F.; Gualillo, O. What’s new in our understanding of the role of adipokines in rheumatic diseases? Nat. Rev. Rheumatol. 2011, 7, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Del Prete, A.; Salvi, V.; Sozzani, S. Adipokines as potential biomarkers in rheumatoid arthritis. Mediat. Inflamm. 2014, 2014, 425068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, C.H.; Muniandy, S. Adiponectin and resistin gene polymorphisms in association with their respective adipokine levels. Ann. Hum. Genet. 2011, 75, 370–382. [Google Scholar] [CrossRef]
- Kohan, L.; Safarpur, M.; Abdollahi, H. Omentin-1 rs2274907 and resistin rs1862513 polymorphisms influence genetic susceptibility to nonalcoholic fatty liver disease. Mol. Biol. Res. Commun. 2016, 5, 11–17. [Google Scholar]
- Enns, J.E.; Taylor, C.G.; Zahradka, P. Variations in adipokine genes AdipoQ, Lep, and LepR are associated with risk for obesity-related metabolic disease: The modulatory role of gene-nutrient interactions. J. Obes. 2011, 2011, 168659. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Tang, C.-H.; Lu, T.; Sun, Y.; Xu, G.; Huang, C.-C.; Yang, S.-F.; Su, C.-M. Resistin polymorphisms are associated with rheumatoid arthritis susceptibility in Chinese Han subjects. Medicine 2018, 97, e0177. [Google Scholar] [CrossRef]
- González-Alvarez, R.; de Lourdes Garza-Rodríguez, M.; Delgado-Enciso, I.; Treviño-Alvarado, V.M.; Canales-Del-Castillo, R.; Martínez-De-Villarreal, L.E.; Lugo-Trampe, Á.; Tejero, M.E.; Schlabritz-Loutsevitch, N.E.; Rocha-Pizaña, M.D.R. Molecular evolution and expression profile of the chemerine encoding gene RARRES2 in baboon and chimpanzee. Biol. Res. 2015, 48, 31. [Google Scholar] [CrossRef] [Green Version]
- Du, X.-Y.; Leung, L.L. Proteolytic regulatory mechanism of chemerin bioactivity. Acta Biochim. Biophys. Sin. 2009, 41, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Abella, V.; Scotece, M.; Conde, J.; Lopez, V.; Lazzaro, V.; Pino, J.; Gomez-Reino, J.J.; Gualillo, O. Adipokines, metabolic syndrome and rheumatic diseases. J. Immunol. Res. 2014, 2014, 343746. [Google Scholar] [CrossRef]
- Albanesi, C.; Scarponi, C.; Pallotta, S.; Daniele, R.; Bosisio, D.; Madonna, S.; Fortugno, P.; Gonzalvo-Feo, S.; Franssen, J.-D.; Parmentier, M. Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. J. Exp. Med. 2009, 206, 249–258. [Google Scholar] [CrossRef] [Green Version]
- Millar, D.S.; Horan, M.; Chuzhanova, N.A.; Cooper, D.N. Characterisation of a functional intronic polymorphism in the human growth hormone (GHI) gene. Hum. Genom. 2010, 4, 289–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemi, M.; Rezaei, H.; Eskandari-Nasab, E.; Zakeri, Z.; Taheri, M. Association between chemerin rs17173608 and vaspin rs2236242 gene polymorphisms and the metabolic syndrome, a preliminary report. Gene 2012, 510, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, E.T.; Mesbah, N.M.; Ghattas, M.H.; Saleh, S.M.; Abo-Elmatty, D.M. Association of chemerin Rs17173608 and vaspin Rs2236242 gene polymorphisms with metabolic syndrome in Egyptian women. Endocr. Res. 2016, 41, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, E.T.; Abo-Elmatty, D.M.; Ghattas, M.H.; Mesbah, N.M.; Saleh, S.M. Apelin rs2235306 polymorphism is not related to metabolic syndrome in Egyptian women. Egypt. J. Med. Hum. Genet. 2015, 16, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Dray, C.; Debard, C.; Jager, J.; Disse, E.; Daviaud, D.; Martin, P.; Attané, C.; Wanecq, E.; Guigné, C.; Bost, F. Apelin and APJ regulation in adipose tissue and skeletal muscle of type 2 diabetic mice and humans. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E1161–E1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schinzari, F.; Veneziani, A.; Mores, N.; Barini, A.; Di Daniele, N.; Cardillo, C.; Tesauro, M. Beneficial effects of apelin on vascular function in patients with central obesity. Hypertension 2017, 69, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Momiyama, Y. Association between plasma apelin levels and coronary collateral development in patients with stable angina pectoris. Atherosclerosis 2014, 235, 349–350. [Google Scholar] [CrossRef] [PubMed]
- Gunter, S.; Robinson, C.; Norton, G.; Woodiwiss, A.; Hsu, H.-C.; Tsang, L.; Millen, A.; Dessein, P. Disease Severity Impacts the Relationships of Apelin Concentrations with Arterial Function in Patients with Rheumatoid Arthritis. Clin. Rheumatol. 2018, 37, 1481–1491. [Google Scholar] [CrossRef]
- Di Franco, M.; Spinelli, F.R.; Metere, A.; Gerardi, M.C.; Conti, V.; Boccalini, F.; Iannuccelli, C.; Ciciarello, F.; Agati, L.; Valesini, G. Serum levels of asymmetric dimethylarginine and apelin as potential markers of vascular endothelial dysfunction in early rheumatoid arthritis. Mediat. Inflamm. 2012, 2012, 347268. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhu, X.; Liang, G.-X.; Cui, R.-R.; Liu, Y.; Wu, S.-S.; Liang, Q.-H.; Liu, G.-Y.; Jiang, Y.; Liao, X.-B. Apelin–APJ induces ICAM-1, VCAM-1 and MCP-1 expression via NF-κB/JNK signal pathway in human umbilical vein endothelial cells. Amino Acids 2012, 43, 2125–2136. [Google Scholar] [CrossRef]
- Day, R.T.; Cavaglieri, R.C.; Feliers, D. Apelin retards the progression of diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 2013, 304, F788–F800. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, M.; Rezaei, H.; Eskandari-Nasab, E.; Kaykhaei, M.A.; Taheri, M. Association between the apelin rs2235306 gene polymorphism and metabolic syndrome. Turk. J. Med. Sci. 2014, 44, 775–780. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, C.; Wang, C.R.; Ma, X.J.; Bao, Y.Q.; Xu, J.; Lu, J.Y.; Qin, W.; Xiang, K.S.; Jia, W.P. Association of apelin genetic variants with type 2 diabetes and related clinical features in Chinese Hans. Chin. Med. J. 2009, 122, 1273–1276. [Google Scholar] [CrossRef]
- Suliga, E.; Kozieł, D.; Cieśla, E.; Rębak, D.; Wawszczak, M.; Adamus-Białek, W.; Naszydłowska, E.; Piechowska, A.; Głuszek, S. Associations between vaspin rs2236242 gene polymorphism, walking time and the risk of metabolic syndrome. Balkan J. Med. Genet. 2019, 22, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hida, K.; Wada, J.; Eguchi, J.; Zhang, H.; Baba, M.; Seida, A.; Hashimoto, I.; Okada, T.; Yasuhara, A.; Nakatsuka, A. Visceral adipose tissue-derived serine protease inhibitor: A unique insulin-sensitizing adipocytokine in obesity. Proc. Natl. Acad. Sci. USA 2005, 102, 10610–10615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Peng, W.; Li, H.; Lu, Y.; Zhuang, J.; Wang, K.; Su, Y.; Xu, Y. Plasma vaspin concentrations are decreased in acute coronary syndrome, but unchanged in patients without coronary lesions. Clin. Biochem. 2013, 46, 1520–1525. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Vaspin in obesity and diabetes: Pathophysiological and clinical significance. Endocrine 2012, 41, 176–182. [Google Scholar] [CrossRef]
- Šenolt, L.; Polanská, M.; Filková, M.; Cerezo, L.A.; Pavelka, K.; Gay, S.; Haluzík, M.; Vencovský, J. Vaspin and omentin: New adipokines differentially regulated at the site of inflammation in rheumatoid arthritis. Ann. Rheum. Dis. 2010, 69, 1410–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maijer, K.I.; Neumann, E.; Müller-Ladner, U.; Drop, D.A.; Ramwadhdoebe, T.H.; Choi, I.Y.; Gerlag, D.M.; de Hair, M.J.; Tak, P.P. Serum vaspin levels are associated with the development of clinically manifest arthritis in autoantibody-positive individuals. PLoS ONE 2015, 10, e0144932. [Google Scholar] [CrossRef] [Green Version]
- Kempf, K.; Rose, B.; Illig, T.; Rathmann, W.; Strassburger, K.; Thorand, B.; Meisinger, C.; Wichmann, H.-E.; Herder, C.; Vollmert, C. Vaspin (SERPINA12) genotypes and risk of type 2 diabetes: Results from the MONICA/KORA studies. Exp. Clin. Endocrinol. Diabetes 2010, 118, 184–189. [Google Scholar] [CrossRef]
- Schäffler, A.; Neumeier, M.; Herfarth, H.; Fürst, A.; Schölmerich, J.; Büchler, C. Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim. Biophys. Acta Gene Struct. Expr. 2005, 1732, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.-Z.; Lee, M.-J.; Hu, H.; Pray, J.; Wu, H.-B.; Hansen, B.C.; Shuldiner, A.R.; Fried, S.K.; McLenithan, J.C.; Gong, D.-W. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: Possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E1253–E1261. [Google Scholar] [CrossRef]
- Watanabe, T.; Watanabe-Kominato, K.; Takahashi, Y.; Kojima, M.; Watanabe, R. Adipose tissue-derived omentin-1 function and regulation. Compr. Physiol. 2017, 7, 765–781. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, Y.; Zhang, S.; Wang, Z.; Zhang, J.; Chang, C.; Liu, L.; Ji, Q.; Liu, X. Circulating omentin-1 levels are decreased in dilated cardiomyopathy patients with overt heart failure. Dis. Markers 2016, 2016, 6762825. [Google Scholar] [CrossRef] [Green Version]
- Vimaleswaran, K.S.; Bodhini, D.; Jiang, J.; Ramya, K.; Mohan, D.; Shanthi Rani, C.S.; Lakshmipriya, N.; Sudha, V.; Pradeepa, R.; Anjana, R.M. Circulating adiponectin mediates the association between omentin gene polymorphism and cardiometabolic health in Asian Indians. PLoS ONE 2021, 16, e0238555. [Google Scholar] [CrossRef]
- Charan, J.; Biswas, T. How to calculate sample size for different study designs in medical research? Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., III; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef] [PubMed]
- van der Heijde, D.M.; van’t Hof, M.A.; van Riel, P.L.; Theunisse, L.A.; Lubberts, E.W.; van Leeuwen, M.A.; van Rijswijk, M.H.; van de Putte, L.B. Judging disease activity in clinical practice in rheumatoid arthritis: First step in the development of a disease activity score. Ann. Rheum. Dis. 1990, 49, 916–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choy, E. Understanding the dynamics: Pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology 2012, 51, v3–v11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmonds, R.E.; Foxwell, B.M. Signalling, inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology 2008, 47, 584–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahba, A.S.; Ibrahim, M.E.; Mesbah, N.M.; Saleh, S.M.; Abo-Elmatty, D.M.; Mehanna, E.T. Serum LINC00305 expression and its genetic variant rs2850711 are associated with clinical and laboratory features of rheumatoid arthritis. Br. J. Biomed. Sci. 2020, 77, 142–147. [Google Scholar] [CrossRef]
- Makarov, S.S. NF-κB in rheumatoid arthritis: A pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res. Ther. 2001, 3, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef]
- Ni, S.; Li, C.; Xu, N.; Liu, X.; Wang, W.; Chen, W.; Wang, Y.; van Wijnen, A.J. Follistatin-like protein 1 induction of matrix metalloproteinase 1, 3 and 13 gene expression in rheumatoid arthritis synoviocytes requires MAPK, JAK/STAT3 and NF-κB pathways. J. Cell. Physiol. 2018, 234, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Chimenti, M.; Triggianese, P.; Conigliaro, P.; Candi, E.; Melino, G.; Perricone, R. The interplay between inflammation and metabolism in rheumatoid arthritis. Cell Death Dis. 2015, 6, e1887. [Google Scholar] [CrossRef] [Green Version]
- Quinonez-Flores, C.M.; Gonzalez-Chavez, S.A.; Pacheco-Tena, C. Hypoxia and its implications in rheumatoid arthritis. J. Biomed. Sci. 2016, 23, 62. [Google Scholar] [CrossRef] [Green Version]
- Rey, S.; Semenza, G.L. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc. Res. 2010, 86, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Afuwape, A.O.; Kiriakidis, S.; Paleolog, E.M. The role of the angiogenic molecule VEGF in the pathogenesis of rheumatoid arthritis. Histol. Histopathol. 2002, 17, 961–972. [Google Scholar] [CrossRef]
- Sendoel, A.; Hengartner, M.O. Apoptotic cell death under hypoxia. Physiology 2014, 29, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Bartok, B.; Firestein, G.S. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunol. Rev. 2010, 233, 233–255. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, Q.; Li, R. Matrine induces the apoptosis of fibroblast-like synoviocytes derived from rats with collagen-induced arthritis by suppressing the activation of the JAK/STAT signaling pathway. Int. J. Mol. Med. 2017, 39, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, K.; Miyabe, Y.; Takayasu, A.; Fukuda, S.; Miyabe, C.; Ebisawa, M.; Yokoyama, W.; Watanabe, K.; Imai, T.; Muramoto, K. Chemerin activates fibroblast-like synoviocytes in patients with rheumatoid arthritis. Arthritis Res. Ther. 2011, 13, R158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitriadis, G.K.; Kaur, J.; Adya, R.; Miras, A.D.; Mattu, H.S.; Hattersley, J.G.; Kaltsas, G.; Tan, B.K.; Randeva, H.S. Chemerin induces endothelial cell inflammation: Activation of nuclear factor-kappa beta and monocyte-endothelial adhesion. Oncotarget 2018, 9, 16678–16690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chua, S.-K.; Shyu, K.-G.; Lin, Y.-F.; Lo, H.-M.; Wang, B.-W.; Chang, H.; Lien, L.-M. Tumor necrosis factor-alpha and the ERK pathway drive chemerin expression in response to hypoxia in cultured human coronary artery endothelial cells. PLoS ONE 2016, 11, e0165613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, J.; Li, R.; Xu, L.; Ma, R.; Liu, J.; Cheng, J.; Zhang, Z.; Sun, H. Increased serum chemerin levels in diabetic retinopathy of type 2 diabetic patients. Curr. Eye Res. 2016, 41, 114–120. [Google Scholar] [CrossRef]
- Doménech, E.; Maestre, C.; Esteban-Martínez, L.; Partida, D.; Pascual, R.; Fernández-Miranda, G.; Seco, E.; Campos-Olivas, R.; Pérez, M.; Megias, D. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat. Cell Biol. 2015, 17, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Makowczenko, K.G.; Jastrzebski, J.P.; Szeszko, K.; Smolinska, N.; Paukszto, L.; Dobrzyn, K.; Kiezun, M.; Rytelewska, E.; Kaminska, B.; Kaminski, T. Transcription Analysis of the Chemerin Impact on Gene Expression Profile in the Luteal Cells of Gilts. Genes 2020, 11, 651. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, A.; Clem, B.; Imbert-Fernandez, Y.; Ozcan, S.; Peker, S.; O’neal, J.; Klarer, A.; Clem, A.; Telang, S.; Chesney, J. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis. 2014, 5, e1337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, N.; Ding, Y.; Doycheva, D.M.; Zhang, Y.; Li, Q.; Flores, J.; Haghighiabyaneh, M.; Tang, J.; Zhang, J.H. Chemerin reverses neurological impairments and ameliorates neuronal apoptosis through ChemR23/CAMKK2/AMPK pathway in neonatal hypoxic–ischemic encephalopathy. Cell Death Dis. 2019, 10, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Er, L.K.; Wu, S.; Hsu, L.A.; Teng, M.S.; Sun, Y.C.; Ko, Y.L. Pleiotropic Associations of RARRES2 Gene Variants and Circulating Chemerin Levels: Potential Roles of Chemerin Involved in the Metabolic and Inflammation-Related Diseases. Mediat. Inflamm. 2018, 2018, 4670521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brock, M.; Trenkmann, M.; Gay, R.E.; Michel, B.A.; Gay, S.; Fischler, M.; Ulrich, S.; Speich, R.; Huber, L.C. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3–microRNA cluster 17/92 pathway. Circ. Res. 2009, 104, 1184–1191. [Google Scholar] [CrossRef] [Green Version]
- Alastalo, T.-P.; Li, M.; de Jesus Perez, V.; Pham, D.; Sawada, H.; Wang, J.K.; Koskenvuo, M.; Wang, L.; Freeman, B.A.; Chang, H.Y. Disruption of PPARγ/β-catenin–mediated regulation of apelin impairs BMP-induced mouse and human pulmonary arterial EC survival. J. Clin. Investig. 2011, 121, 3735–3746. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Englander, E.W.; Gomez, G.A.; Greeley, G.H., Jr. Apelin regulates nuclear factor-κB’s involvement in the inflammatory response of pancreatitis. Pancreas 2017, 46, 64–70. [Google Scholar] [CrossRef]
- Kasai, A.; Ishimaru, Y.; Kinjo, T.; Satooka, T.; Matsumoto, N.; Yoshioka, Y.; Yamamuro, A.; Gomi, F.; Shintani, N.; Baba, A. Apelin is a crucial factor for hypoxia-induced retinal angiogenesis. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2182–2187. [Google Scholar] [CrossRef]
- Andersen, C.U.; Hilberg, O.; Mellemkjær, S.; Nielsen-Kudsk, J.E.; Simonsen, U. Apelin and pulmonary hypertension. Pulm. Circ. 2011, 1, 334–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Liu, M.; Chen, L. Novel pathogenesis: Regulation of apoptosis by Apelin/APJ system. Acta Biochim. Biophys. Sin. 2017, 49, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antushevich, H.; Krawczynska, A.; Kapica, M.; Herman, A.P.; Zabielski, R. Effect of apelin on mitosis, apoptosis and DNA repair enzyme OGG 1/2 expression in intestinal cell lines IEC-6 and Caco-2. Folia Histochem. Cytobiol. 2014, 52, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youn, C.-K.; Song, P.I.; Kim, M.-H.; Kim, J.S.; Hyun, J.-W.; Choi, S.-J.; Yoon, S.P.; Chung, M.H.; Chang, I.-Y.; You, H.J. Human 8-Oxoguanine DNA Glycosylase Suppresses the Oxidative Stress–Induced Apoptosis through a p53-Mediated Signaling Pathway in Human Fibroblasts. Mol. Cancer Res. 2007, 5, 1083–1098. [Google Scholar] [CrossRef] [Green Version]
- Elshamy, A.M.; Gaafar, N.K.; ElAshwah, N.E.; Wagih, A.A.; Shahba, A.A. Evaluation of the effect of vitamin C on caspase 9 and oxidative stress in rheumatoid arthritis patients. Afr. J. Biochem. Res. 2018, 12, 94–101. [Google Scholar] [CrossRef]
- Wang, H.H.; Wang, Q.F. Low vaspin levels are related to endothelial dysfunction in patients with ankylosing spondylitis. Braz. J. Med. Biol. Res. 2016, 49, e5231. [Google Scholar] [CrossRef] [Green Version]
- Dimova, R.; Tankova, T. The role of vaspin in the development of metabolic and glucose tolerance disorders and atherosclerosis. BioMed Res. Int. 2015, 2015, 823481. [Google Scholar] [CrossRef]
- Sarhat, E.R.; Rmaid, Z.J.; Jabir, T.H. Changes of Salivary Interleukine-17, Apelin, Omentin and Vaspin Levels in Normal Subjects and Diabetic Patients with Chronic periodontitis. Ann. Trop. Med. Public Health 2020, 23, 135–141. [Google Scholar] [CrossRef]
- Yoo, S.A.; You, S.; Yoon, H.J.; Kim, D.H.; Kim, H.S.; Lee, K.; Ahn, J.H.; Hwang, D.; Lee, A.S.; Kim, K.J.; et al. A novel pathogenic role of the ER chaperone GRP78/BiP in rheumatoid arthritis. J. Exp. Med. 2012, 209, 871–886. [Google Scholar] [CrossRef]
- Weiner, J.; Zieger, K.; Pippel, J.; Heiker, J.T. Molecular mechanisms of vaspin action–from adipose tissue to skin and bone, from blood vessels to the brain. Adv. Exp. Med. Biol. 2019, 1111, 159–188. [Google Scholar] [CrossRef] [Green Version]
- Nakatsuka, A.; Wada, J.; Iseda, I.; Teshigawara, S.; Higashio, K.; Murakami, K.; Kanzaki, M.; Inoue, K.; Terami, T.; Katayama, A. Vaspin is an adipokine ameliorating ER stress in obesity as a ligand for cell-surface GRP78/MTJ-1 complex. Diabetes 2012, 61, 2823–2832. [Google Scholar] [CrossRef] [Green Version]
- Kerget, B.; Kerget, F.; Kahraman, Ç.Y.; Aksakal, A.; Araz, Ö. The relationship between NLRP3 rs10159239 and Vaspin rs2236242 gene variants and obstructive sleep apnea. Ups. J. Med. Sci. 2021, 126. [Google Scholar] [CrossRef]
- Zhong, X.; Li, X.; Liu, F.; Tan, H.; Shang, D. Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway. Biochem. Biophys. Res. Commun. 2012, 425, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, B.; Zhao, D.; Wang, B.; Liu, Y.; Zhang, Y.; Li, B.; Tian, F. Omentin-1 prevents cartilage matrix destruction by regulating matrix metalloproteinases. Biomed. Pharmacother. 2017, 92, 265–269. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, F.; Han, F.; Lv, L.; Tang, C.-E.; Xie, Z.; Luo, F. Omentin-1 is associated with atrial fibrillation in patients with cardiac valve disease. BMC Cardiovasc. Disord. 2020, 20, 214. [Google Scholar] [CrossRef]
- Tan, B.K.; Adya, R.; Farhatullah, S.; Chen, J.; Lehnert, H.; Randeva, H.S. Metformin treatment may increase omentin-1 levels in women with polycystic ovary syndrome. Diabetes 2010, 59, 3023–3031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-Y.; Zhou, L.-M. Omentin-1, a new adipokine, promotes apoptosis through regulating Sirt1-dependent p53 deacetylation in hepatocellular carcinoma cells. Eur. J. Pharmacol. 2013, 698, 137–144. [Google Scholar] [CrossRef]
- Mac Donald, I.J.; Liu, S.-C.; Huang, C.-C.; Kuo, S.-J.; Tsai, C.-H.; Tang, C.-H. Associations between adipokines in arthritic disease and implications for obesity. Int. J. Mol. Sci. 2019, 20, 1505. [Google Scholar] [CrossRef] [Green Version]
- Bugatti, S.; Manzo, A.; Montecucco, C.; Caporali, R. The clinical value of autoantibodies in rheumatoid arthritis. Front. Med. 2018, 5, 339. [Google Scholar] [CrossRef] [PubMed]
Variables | RA Patients (n = 150) | Normal Range |
---|---|---|
Mean ± SD | ||
Age (years) | 44.29 ± 9.4 | |
BMI (kg/m2) | 26 ± 2.7 | |
Age of onset of disease (years) | 39.3 ± 10.6 | ------- |
DAS-28 | 5 ± 1.1 | ------- |
Median (IQR) | ||
Duration of disease (years) | 3 (2–7) | |
ESR (mm/h) | 47.5 (38.9–63) | (<or =20 mm/h) |
CRP (mg/L) | 19 (11.2–31) | (<3.0 mg/L) |
RF (IU/mL) | 44.6 (29.7–72.3) | (0–20 IU/mL) |
RF positive cases | 110 | |
RF negative cases | 40 | |
Anti-CCP ab (U/mL) | 45.3 (17.1–63.5) | (0–20 U/mL) |
Anti-CCP ab positive cases | 131 | |
Anti-CCP ab negative cases | 19 | |
Number (%) | ||
Treatment | ||
Methotrexate monotherapy | 67(44.7) | |
Leflonamide monotherapy | 59(39.3) | |
Combination (methotrexate +Leflonamide) | 24(16) |
Gene Polymorphism | Primers | Sequence (5′ to 3′) | Bands Lengths (bp) | Annealing Temp. |
---|---|---|---|---|
Chemerin rs17173608 | FO | GTC AGA CCC ATG CAG TTT TCA AAC | 549 | 54.5 °C |
RO | GAG TTC CTC TCT CAA GCA TCA GGG | |||
FI (G allele) | ATT GCT ATA GTC CAG TGC CCT TCG | 262 | ||
RI (T allele) | CCA GTT CCC TCT GTC GGC TTA A | 332 | ||
Apelin rs2235306 | FO | AAG TGG TGC AGG GTA TCC TTG GGT | 458 | 58 °C |
RO | AAG GAG CCA AGG AAG GAA CAG AGC | |||
FI (T allele) | CCC CCT GCA CAC CAT CTG CTT | 208 | ||
RI (C allele) | GGG ACA GGG ATC TAG ATG CAG GAAG | 295 | ||
Vaspin rs2236242 | FO | GGA GGC AGA CCA GGC ACT AGA AA | 378 | 55 °C |
RO | ACC ATC TCT CTG GCT TCA GGC TTC | |||
FI (T allele) | AAG ACG CCG CTT CTG TGC ACT | 174 | ||
RI (A allele) | CAC AGG GAC CCA GGA TAA CTT GCT | 248 | ||
Omentin 1 rs2274907 | F | TGC CGT CCC CCT CTG GGT AGT | 471 | 58 °C |
R | GTC AGC AGG GCA GCA AAG CAGA |
Variables | Control (n = 150) | Patients (n = 150) | p-Value |
---|---|---|---|
Mean ± SD | |||
NF-κB (ng/mL) | 0.73 ± 0.12 | 3.9 ± 0.79 * | <0.0001 |
HIF-1α (ng/mL) | 0.65 ± 0.12 | 4.79 ± 1.08 * | <0.0001 |
MMP-3 (ng/mL) | 0.46 ± 0.09 | 3.50 ± 0.76 * | <0.0001 |
VEGF (pg/mL) | 32.97 ± 4.88 | 130.1 ± 17.29 * | <0.0001 |
Bax (pg/mL) | 44.55 ± 8.41 | 22.67 ± 5.23 * | <0.0001 |
Chemerin (pg/mL) | 59.58 ± 11.24 | 207.80 ± 25.37 * | <0.0001 |
Apelin (pg/mL) | 199 ± 11.42 | 82.78 ± 10.32 * | <0.0001 |
Vaspin (pg/mL) | 57.11 ± 7.29 | 163.1 ± 11.53 * | <0.0001 |
Omentin (pg/mL) | 258.8 ± 19.97 | 194.9 ± 11.63 * | <0.0001 |
Median (IQR) | |||
Chemerin fold change | 1 | 2.3 (0.7–7.4) * | <0.0001 |
Apelin fold change | 1 | 0.4 (0.3–0.5) * | <0.0001 |
Vaspin fold change | 1 | 6.8 (5.4–8.2) * | <0.0001 |
Omentin fold change | 1 | 0.2 (0.1–0.5) * | <0.0001 |
Variables | F | p-Value | Partial Eta Squared (η2) |
---|---|---|---|
Serum protein levels | |||
NF-κB (ng/mL) | 2372.77 | 0.001 | 0.888 |
HIF-1α (ng/mL) | 2164.41 | 0.001 | 0.879 |
MMP-3 (ng/mL) | 2370.04 | 0.001 | 0.888 |
VEGF (pg/mL) | 4380.32 | 0.001 | 0.936 |
Bax (pg/mL) | 731.87 | 0.001 | 0.711 |
Chemerin (pg/mL) | 4281.03 | 0.001 | 0.935 |
Apelin (pg/mL) | 8555.89 | 0.001 | 0.966 |
Vaspin (pg/mL) | 9061.17 | 0.001 | 0.968 |
Omentin (pg/mL) | 1147.22 | 0.001 | 0.794 |
Gene expression levels | |||
Chemerin fold change | 34.11 | 0.001 | 0.103 |
Apelin fold change | 210.38 | 0.001 | 0.414 |
Vaspin fold change | 70.38 | 0.001 | 0.191 |
Omentin fold change | 648.40 | 0.001 | 0.685 |
Disease Biomarkers | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Clinical Characteristics and Biomarkers | NF-κB | HIF-1α | MMP-3 | VEGF | BAX | Chemerin | Apelin | Vaspin | Omentin | Chemerin Fold Change | Apelin Fold Change | Vaspin Fold Change | Omentin Fold Change |
BMI | rs = 0.48 * | rs = 0.47 * | rs = 0.46 * | rs = 0.43 * | rs = −0.45 * | rs = 0.32 * | rs = −0.46 * | rs = 0.35 * | rs = −0.2 * | rs = 0.31 * | rs = −0.26 * | rs = 0.32 * | rs = −0.28 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.02 | p < 0.001 | p = 0.001 | p < 0.001 | p < 0.001 | |
ESR | rs = 0.82 * | rs = 0.88 * | rs = 0.90 * | rs = 0.88 * | rs = −0.83 * | rs = 0.51 * | rs = −0.79 * | rs = 0.58 * | rs = −0.33 * | rs = 0.45 * | rs = −0.25 * | rs = 0.72 * | rs = −0.30 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.002 | p < 0.001 | p < 0.001 | |
CRP | rs = 0.81 * | rs = 0.89 * | rs = 0.91 * | rs = 0.88 * | rs = −0.78 * | rs = 0.53 * | rs = −0.78 * | rs = 0.52 * | rs = −0.31 * | rs = 0.40 * | rs = −0.2 * | rs = 0.74 * | rs = −0.28 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.016 | p < 0.001 | p = 0.001 | |
RF | rs = 0.62 * | rs = 0.62 * | rs = 0.62 * | rs = 0.62 * | rs = −0.63 * | rs = 0.32 * | rs = −0.58 * | rs = 0.41 * | rs = −0.29 * | rs = 0.24 | rs = −0.17 | rs = 0.54 * | rs = −0.34 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.001 | p < 0.001 | p < 0.001 | p = 0.002 | p = 0.01 | p = 0.07 | p < 0.001 | p = 0.001 | |
Anti-CCP ab | rs = 0.67 * | rs = 0.71 * | rs = 0.72 * | rs = 0.66 * | rs = −0.69 * | rs = 0.38 * | rs = −0.60 * | rs = 0.47 * | rs = −0.22 * | rs = 0.39 * | rs = −0.17 | rs = 0.56 * | rs = −0.28 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.01 | p < 0.001 | p = 0.051 | p < 0.001 | p = 0.001 | |
DAS-28 | r = 0.83 * | r = 0.76 * | r = 0.75 * | r = 0.80 * | r = −0.76 * | r = 0.46 * | r = −0.76 * | r = 0.64 * | r = −0.38 * | rs = 0.38 * | rs = −0.27 * | rs = 0.64 * | rs = −0.31 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.001 | p < 0.001 | p < 0.001 | |
NF-κB | ------ | ------ | ------ | ------ | ------ | r = 0.41 * | r = −0.72 * | r = 0.49 * | r = −0.37 * | rs = 0.39 * | rs = −0.36 | rs = 0.62 * | rs = −0.28 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.001 | ||||||
HIF-1α | ------ | ------ | ------ | ------ | ------ | r = 0.56 * | r = −0.70 * | r = 0.40 * | r = −0.30 * | rs = 0.39 * | rs = −0.26 * | rs = 0.70 * | rs = −0.32 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.002 | p < 0.001 | p < 0.001 | ||||||
MMP-3 | ------ | ------ | ------ | ------ | ------ | r = 0.55 * | r = −0.71 * | r = 0.43 * | r = −0.32 * | rs = 0.41 * | rs = −0.23 * | rs = 0.72 * | rs = −0.29 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.004 | p < 0.001 | p < 0.001 | ||||||
VEGF | ------ | ------ | ------ | ------ | ------ | r = 0.51 * | r = −0.69 * | r = 0.49 * | r = −0.32 * | rs = 0.36 * | rs = −0.25 * | rs = 0.70 * | rs = −0.30 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.002 | p < 0.001 | p < 0.001 | ||||||
BAX | ------ | ------ | ------ | ------ | ------ | r = −0.46 * | r = 0.66 * | r = −0.64 * | r = −0.31 * | rs = −0.44 * | rs = 0.27 * | rs = −0.61 * | rs = 0.32 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p = 0.001 | p < 0.001 | p < 0.001 | ||||||
Respective adipokine protein level | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | ------ | rs = 0.29 * | rs = 0.37 * | rs = 0.38 * | rs = 0.31 * |
p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Control (n = 150) | RA Patients (n = 150) | p-Value | OR (95%CI) | |
---|---|---|---|---|
Chemerin rs17173608 | ||||
Genotypes | ||||
TT | 121 | 87 | ||
TG | 25 | 53 | 0.001 * | 2.95 (1.70–5.11) |
GG | 4 | 10 | 0.040 * | 3.48 (1.06–11.45) |
Alleles | ||||
T | 267 | 227 | ||
G | 33 | 73 | 0.001 * | 2.60 (1.66–4.07) |
Apelin rs2235306 | ||||
Genotypes | ||||
TT | 46 | 37 | ||
TC | 79 | 85 | 0.282 | 1.34 (0.79–2.27) |
CC | 25 | 28 | 0.348 | 1.39 (0.70–2.78) |
Alleles | ||||
T | 171 | 159 | ||
C | 129 | 141 | 0.325 | 1.18 (0.85–1.62) |
Vaspin rs2236242 | ||||
Genotypes | ||||
TT | 75 | 105 | ||
TA | 61 | 38 | 0.002 * | 2.25 (1.36–3.71) |
AA | 14 | 7 | 0.035 * | 2.80 (1.08–7.27) |
Alleles | ||||
T | 211 | 248 | ||
A | 89 | 52 | 0.001 * | 2.01 (1.36–2.97) |
Omentin rs2274907 | ||||
Genotypes | ||||
AA | 80 | 57 | ||
AT | 53 | 71 | 0.012 * | 1.88 (1.15–3.08) |
TT | 17 | 22 | 0.103 | 1.82 (0.89–3.73) |
Alleles | ||||
A | 213 | 185 | ||
T | 87 | 115 | 0.016 * | 1.52 (1.08–2.14) |
Variables | DAS-28 | NF-κB (ng/mL) | HIF-1α (ng/mL) | MMP-3 (pg/mL) | VEGF (pg/mL) | Bax (pg/mL) | Chemerin (pg/mL) | Apelin (pg/mL) | Vaspin (pg/mL) | Omentin (pg/mL) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Chemerin genotypes | ||||||||||
TT (n = 87) | 4.5 ± 0.97 | 3.6 ± 0.71 | 4.4 ± 0.87 | 3.2 ± 0.55 | 122.8 ± 15.4 | 24.9 ± 4.3 | 200.6 ± 19.3 | ------ | ------ | ------ | |
TG (n = 53) | 5.5 ± 0.85 a | 4.3 ± 0.71 a | 5.4 ± 1.1 a | 4.0 ± 0.83 a | 139.7 ± 15.1 a | 20.3 ± 4.9 a | 217.1 ± 29.8 a | ------ | ------ | ------ | |
GG (n = 10) | 6.4 ± 0.76 ab | 4.6 ± 0.53 a | 5.2 ± 0.69 a | 3.8 ± 0.54 a | 142.3 ± 12.1 a | 15.9 ± 1.8 ab | 221.6 ± 27.1 a | ------ | ------ | ------ | |
Apelin genotypes | |||||||||||
TT (n = 37) | 4.9 ± 1.2 | 3.8 ± 0.88 | 4.7 ± 1 | 3.4 ± 0.81 | 127.7 ± 19.8 | 23 ± 5.5 | ------ | 84.1 ± 9.2 | ------ | ------ | |
TC (n = 85) | 5.1 ± 0.99 | 4 ± 0.70 | 4.9 ± 1.1 | 3.5 ± 0.71 | 131.9 ± 15.2 | 22.4 ± 5.2 | ------ | 82.1 ± 10.6 | ------ | ------ | |
CC (n = 28) | 4.8 ± 1.3 | 3.9 ± 0.92 | 4.7 ± 1.2 | 3.5 ± 0.84 | 127.8 ± 19.5 | 23 ± 5.2 | ------ | 83 ± 11 | ------ | ------ | |
Vaspin genotypes | |||||||||||
TT (n = 105) | 5.1 ± 1.1 | 4 ± 0.80 | 4.9 ± 1.1 | 3.6 ± 0.79 | 131.8 ± 17 | 22.1 ± 5.3 | ------ | ------ | 164.8 ± 11.9 | ------ | |
TA (n = 38) | 5 ± 1 | 3.9 ± 0.73 | 4.7 ± 1 | 3.4 ± 0.67 | 128.4 ± 17.6 | 23.1 ± 4.9 | ------ | ------ | 161.3 ± 9.1 | ------ | |
AA (n = 7) | 3.5 ± 0.63 ab | 3 ± 0.55 ab | 4 ± 0.51 | 2.8 ± 0.30 a | 113.5 ± 11.38 a | 28.5 ± 0.76 ab | ------ | ------ | 148.4 ± 4.7 ab | ------ | |
Omentin genotypes | |||||||||||
AA (n = 57) | 4.1 ± 0.88 | 3.3 ± 0.63 | 4.1 ± 0.69 | 3 ± 0.36 | 118.2 ± 13.7 | 25.7 ± 4 | ------ | ------ | ------ | 199.7 ± 9.6 | |
AT (n = 71) | 5.4 ± 0.79 a | 4.2 ± 0.66 a | 5.1 ± 1 a | 3.8 ± 0.75 a | 135.5 ± 15.2 a | 21.4 ± 4.9 a | ------ | ------ | ------ | 193.6 ± 11.2 a | |
TT (n = 22) | 6 ± 0.85 ab | 4.5 ± 0.59 a | 5.6 ± 1 a | 4.1 ± 0.72 a | 143.4 ± 13.8 a | 19 ± 5 a | ------ | ------ | ------ | 186.4 ± 12.2 ab | |
(IQR) | Variables | ESR (mm/h) | CRP (mg/L) | RF (IU/mL) | Anti-CCP ab (U/mL) | Chemerin fold change | Apelin fold change | Vaspin fold change | Omentin fold change | ||
Chemerin genotypes | |||||||||||
TT (n = 87) | 41 (30–49.5) | 13.6 (7.9–23) | 38.9 (19.5–50.8) | 34.5 (13.5–52.6) | 1.1 (0.64–6.2) | ------ | ------ | ------ | |||
TG (n = 53) | 61 (47.8–80) a | 30.1 (17.3–43.1) a | 61.7 (42–93) a | 48.2 (23.3–73.2) a | 3.1 (0.64–7.5) | ------ | ------ | ------ | |||
GG (n = 10) | 101.8 (51.5–118) a | 52.5 (19–65.5) a | 190 (36.4–242) a | 140.4 (36–204.5) a | 6.5 (4.1–18.8) a | ------ | ------ | ------ | |||
Apelin genotypes | |||||||||||
TT (n = 37) | 45 (34–62.5) | 17.2 (7.7–29.9) | 42.5 (34–71) | 34 (13.8–62.6) | ------ | 0.32 (0.20–0.42) | ------ | ------ | |||
Median (IQR) | TC (n = 85) | 48.5 (40–62.5) | 21.7 (12.7–30.6) | 45.2 (28.8–72.3) | 45.6 (18.4–63.4) | ------ | 0.32 (0.27–0.38) | ------ | ------ | ||
CC (n = 28) | 47.8 (30.1–67.9) | 20.1 (8–39.2) | 40 (18–100) | 46.3 (14.6–90.2) | ------ | 0.35 (0.24–0.38) | ------ | ------ | |||
Vaspin genotypes | |||||||||||
TT (n = 105) | 48.5 (39–68.5) | 22.7 (11.4–35.4) | 44.4 (28.8–69.5) | 45.7 (20.2–65.4) | ------ | ------ | 6.9 (5.3–8.5) | ------ | |||
TA (n = 38) | 46.5 (39.9–60) | 18.2 (11.3–27.5) | 45 (33–89.8) | 42 (16.9–61.7) | ------ | ------ | 6.8 (5.8–7.7) | ------ | |||
AA (n = 7) | 16 (15–41.7) ab | 10 (4.9–19) | 53.5 (28–79) | 13.7 (13–24.3) a | ------ | ------ | 4.7 (2–6.3) a | ------ | |||
Omentin genotypes | |||||||||||
AA (n = 57) | 39 (15.5–43.5) | 10.6 (5.2–17.2) | 34.8 (18–52.4) | 17.1 (13.5–45.7) | ------ | ------ | ------ | 0.36 (0.13–0.55) | |||
AT (n = 71) | 56 (43.9–68.5) a | 23.6 (15.1–36.2) a | 43.4 (33.9–72.8) | 45.7 (24.3–65.2) a | ------ | ------ | ------ | 0.17 (0.10–0.45) | |||
TT (n = 22) | 78 (48.5–108.6) a | 37 (21.6–51) a | 62 (46–190) a | 65.4 (47.1–140.4) a | ------ | ------ | ------ | 0.10 (0.06–0.22) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahba, A.S.; Ibrahim, M.E.; Abo-elmatty, D.M.; Mehanna, E.T. Association of the Adipokines Chemerin, Apelin, Vaspin and Omentin and Their Functional Genetic Variants with Rheumatoid Arthritis. J. Pers. Med. 2021, 11, 976. https://doi.org/10.3390/jpm11100976
Wahba AS, Ibrahim ME, Abo-elmatty DM, Mehanna ET. Association of the Adipokines Chemerin, Apelin, Vaspin and Omentin and Their Functional Genetic Variants with Rheumatoid Arthritis. Journal of Personalized Medicine. 2021; 11(10):976. https://doi.org/10.3390/jpm11100976
Chicago/Turabian StyleWahba, Alaa S., Maha E. Ibrahim, Dina M. Abo-elmatty, and Eman T. Mehanna. 2021. "Association of the Adipokines Chemerin, Apelin, Vaspin and Omentin and Their Functional Genetic Variants with Rheumatoid Arthritis" Journal of Personalized Medicine 11, no. 10: 976. https://doi.org/10.3390/jpm11100976
APA StyleWahba, A. S., Ibrahim, M. E., Abo-elmatty, D. M., & Mehanna, E. T. (2021). Association of the Adipokines Chemerin, Apelin, Vaspin and Omentin and Their Functional Genetic Variants with Rheumatoid Arthritis. Journal of Personalized Medicine, 11(10), 976. https://doi.org/10.3390/jpm11100976