20 Hz Transcranial Alternating Current Stimulation Inhibits Observation-Execution-Related Motor Cortex Excitability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Transcranial Magnetic Stimulation
2.3. tACS
2.4. Action Observation and Execution
2.5. Experimental Design and Procedures
2.6. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qi, F.; Nitsche, M.A.; Zschorlich, V.R. Interaction Between Transcranial Random Noise Stimulation and Observation-Execution Matching Activity Promotes Motor Cortex Excitability. Front. Neurosci. 2019, 13, 69. [Google Scholar] [CrossRef]
- Molenberghs, P.; Cunnington, R.; Mattingley, J. Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies. Neurosci. Biobehav. Rev. 2012, 36, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.; Thomas, R.; De Sanctis, T.; De Sanctis, T.; Gazzola, V.; Gazzola, V.; Keysers, C.; Keysers, C. Where and how our brain represents the temporal structure of observed action. NeuroImage 2018, 183, 677–697. [Google Scholar] [CrossRef]
- Babiloni, C.; Del Percio, C.; Vecchio, F.; Sebastiano, F.; Di Gennaro, G.; Quarato, P.P.; Morace, R.; Pavone, L.; Soricelli, A.; Noce, G.; et al. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans. Clin. Neurophysiol. 2016, 127, 641–654. [Google Scholar] [CrossRef]
- Berntsen, M.B.; Cooper, N.R.; Hughes, G.; Romei, V. Prefrontal transcranial alternating current stimulation improves motor sequence reproduction. Behav. Brain Res. 2019, 361, 39–49. [Google Scholar] [CrossRef]
- Lange, J.; Keil, J.; Schnitzler, A.; van Dijk, H.; Weisz, N. The role of alpha oscillations for illusory perception. Behav. Brain Res. 2014, 271, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Pollok, B.; Latz, D.; Krause, V.; Butz, M.; Schnitzler, A. Changes of motor-cortical oscillations associated with motor learning. Neuroscience 2014, 275, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Klink, K.; Paßmann, S.; Kasten, F.H.; Peter, J. The Modulation of Cognitive Performance with Transcranial Alternating Current Stimulation: A Systematic Review of Frequency-Specific Effects. Brain Sci. 2020, 10, 932. [Google Scholar] [CrossRef] [PubMed]
- Johannes, V.; Daniel, S.; Herrmann, C.S. Non-invasive brain stimulation: A paradigm shift in understanding brain oscillations. Front. Hum. Neurosci. 2018, 12, 211. [Google Scholar]
- Joundi, R.A.; Jenkinson, N.; Brittain, J.-S.; Aziz, T.Z.; Brown, P. Driving Oscillatory Activity in the Human Cortex Enhances Motor Performance. Curr. Biol. 2012, 22, 403–407. [Google Scholar] [CrossRef] [Green Version]
- Ridder, D.D.; Stckl, T.; To, W.T.; Langguth, B.; Vanneste, S. Noninvasive transcranial magnetic and electrical stimulation: Working mechanisms—Sciencedirect. In Rhythmic Stimulation Procedures in Neuromodulation, 1st ed.; Evans, J.R., Turner, R.P., Eds.; Mara Conner: London, UK, 2017; Volume 1, pp. 193–223. [Google Scholar]
- Wischnewski, M.; Schutter, D.J.L.G.; Nitsche, M.A. Effects of beta-tacs on corticospinal excitability: A meta-analysis. Brain Stimul. 2019, 12, 1381–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, C.S.; Rach, S.; Neuling, T.; Strüber, D. Transcranial alternating current stimulation: A review of the underlying mechanisms and modulation of cognitive processes. Front. Human Neurosci. 2013, 7, 279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antal, A.; Paulus, W. Investigating Neuroplastic Changes in the Human Brain Induced by Transcranial Direct (tDCS) and Alternating Current (tACS) Stimulation Methods. Clin. EEG Neurosci. 2012, 43, 175. [Google Scholar] [CrossRef]
- Krause, M.R.; Vieira, P.G.; Csorba, B.A.; Pilly, P.K.; Pack, C.C. Transcranial alternating current stimulation entrains single-neuron activity in the primate brain. Proc. Natl. Acad. Sci. USA 2019, 116, 5747–5755. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.; Alekseichuk, I.; Krieg, J.; Doyle, A.; Yu, Y.; Vitek, J.; Johnson, M.; Opitz, A. Dose-dependent effects of transcranial alternating current stimulation on spike timing in awake nonhuman primates. Sci. Adv. 2020, 6, eaaz2747. [Google Scholar] [CrossRef]
- Helfrich, R.F.; Schneider, T.R.; Rach, S.; Trautmann-Lengsfeld, S.A.; Engel, A.K.; Herrmann, C. Entrainment of Brain Oscillations by Transcranial Alternating Current Stimulation. Curr. Biol. 2014, 24, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Witkowski, M.; Garcia-Cossio, E.; Chander, B.S.; Braun, C.; Birbaumer, N.; Robinson, S.E.; Soekadar, S.R. Mapping entrained brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage 2016, 140, 89–98. [Google Scholar] [CrossRef]
- Cappon, D.; D’Ostilio, K.; Garraux, G.; Rothwell, J.; Bisiacchi, P. Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control. Brain Stimul. 2016, 9, 518–524. [Google Scholar] [CrossRef]
- Zaghi, S.; Rezende, L.D.F.; Oliveira, L.; El-Nazer, R.; Menning, S.; Tadini, L.; Fregni, F. Inhibition of motor cortex excitability with 15 Hz transcranial alternating current stimulation (tACS). Neurosci. Lett. 2010, 479, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, H.E.; Davis, E.M.; Clark, E.; Boudrias, M.-H.; Ward, N. Beta oscillations reflect changes in motor cortex inhibition in healthy ageing. NeuroImage 2014, 91, 360–365. [Google Scholar] [CrossRef] [Green Version]
- Muthukumaraswamy, S.; Myers, J.; Wilson, S.; Nutt, D.; Lingford-Hughes, A.; Singh, K.; Hamandi, K. The effects of elevated endogenous GABA levels on movement-related network oscillations. NeuroImage 2013, 66, 36–41. [Google Scholar] [CrossRef]
- Wischnewski, M.; Engelhardt, M.; A Salehinejad, M.; Schutter, D.J.L.G.; Kuo, M.-F.; A Nitsche, M. NMDA Receptor-Mediated Motor Cortex Plasticity After 20 Hz Transcranial Alternating Current Stimulation. Cereb. Cortex 2019, 29, 2924–2931. [Google Scholar] [CrossRef] [PubMed]
- Gallasch, E.; Rafolt, D.; Postruznik, M.; Fresnoza, S.; Christova, M. Decrease of motor cortex excitability following exposure to a 20 Hz magnetic field as generated by a rotating permanent magnet. Clin. Neurophysiol. 2018, 129, 1397–1402. [Google Scholar] [CrossRef] [PubMed]
- Cancelli, A.; Cottone, C.; Zito, G.; Di Giorgio, M.; Pasqualetti, P.; Tecchio, F. Cortical inhibition and excitation by bilateral transcranial alternating current stimulation. Restor. Neurol. Neurosci. 2015, 33, 105–114. [Google Scholar] [CrossRef]
- Antal, A.; Boros, K.; Poreisz, C.; Chaieb, L.; Terney, D.; Paulus, W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008, 1, 97–105. [Google Scholar] [CrossRef]
- Tamura, Y.; Hoshiyama, M.; Nakata, H.; Hiroe, N.; Inui, K.; Kaneoke, Y.; Inoue, K.; Kakigi, R. Functional relationship between human rolandic oscillations and motor cortical excitability: An MEG study. Eur. J. Neurosci. 2005, 21, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Angelini, M.; Fabbri-Destro, M.; Lopomo, N.F.; Gobbo, M.; Rizzolatti, G.; Avanzini, P. Perspective-dependent reactivity of sensorimotor mu rhythm in alpha and beta ranges during action observation: An EEG study. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ritter, P.; Moosmann, M.; Villringer, A. Rolandic alpha and beta eeg rhythms’ strengths are inversely related to fmri-bold signal in primary somatosensory and motor cortex. Human Brain Mapp. 2009, 30, 1168–1187. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Kamke, M.R.; Hall, M.; Lye, H.F.; Sale, M.; Fenlon, L.; Carroll, T.; Riek, S.; Mattingley, J. Visual Attentional Load Influences Plasticity in the Human Motor Cortex. J. Neurosci. 2012, 32, 7001–7008. [Google Scholar] [CrossRef] [PubMed]
- Bisio, A.; Avanzino, L.; Gueugneau, N.; Pozzo, T.; Ruggeri, P.; Bove, M. Observing and perceiving: A combined approach to induce plasticity in human motor cortex. Clin. Neurophysiol. 2015, 126, 1212–1220. [Google Scholar] [CrossRef]
- Sale, M.V.; Mattingley, J. Selective enhancement of motor cortical plasticity by observed mirror-matched actions. NeuroImage 2013, 74, 30–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisio, A.; Avanzino, L.; Elagravinese, G.; Biggio, M.; Ruggeri, P.; Ebove, M. Spontaneous movement tempo can be influenced by combining action observation and somatosensory stimulation. Front. Behav. Neurosci. 2015, 9, 228. [Google Scholar] [CrossRef] [PubMed]
- Feurra, M.; Bianco, G.; Santarnecchi, E.; Del Testa, M.; Rossi, A.; Rossi, S. Frequency-Dependent Tuning of the Human Motor System Induced by Transcranial Oscillatory Potentials. J. Neurosci. 2011, 31, 12165–12170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schutter, D.J.; Hortensius, R. Brain oscillations and frequency-dependent modulation of cortical excitability. Brain Stimul. 2011, 4, 97–103. [Google Scholar] [CrossRef]
- Rossini, P.M.; Rossi, S. Transcranial magnetic stimulation: Diagnostic, therapeutic, and research potential. Neurology 2007, 68, 484–488. [Google Scholar] [CrossRef]
- Fresnoza, S.; Christova, M.; Bieler, L.; Körner, C.; Zimmer, U.; Gallasch, E.; Ischebeck, A. Age-Dependent Effect of Transcranial Alternating Current Stimulation on Motor Skill Consolidation. Front. Aging Neurosci. 2020, 12, 25. [Google Scholar] [CrossRef] [Green Version]
- Feurra, M.; Pasqualetti, P.; Bianco, G.; Santarnecchi, E.; Rossi, A.; Rossi, S. State-Dependent Effects of Transcranial Oscillatory Currents on the Motor System: What You Think Matters. J. Neurosci. 2013, 33, 17483–17489. [Google Scholar] [CrossRef] [Green Version]
- Neuling, T.; Rach, S.; Herrmann, C.S. Orchestrating neuronal networks: Sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front. Human Neurosci. 2013, 7, 161. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Svane, C.; Forman, C.R.; Beck, M.M.; Geertsen, S.S.; Lundbye-Jensen, J.; Nielsen, J.B. Transcranial Alternating Current Stimulation of the Primary Motor Cortex after Skill Acquisition Improves Motor Memory Retention in Humans: A Double-Blinded Sham-Controlled Study. Cereb. Cortex Commun. 2020, 1, 047. [Google Scholar] [CrossRef]
- Guerra, A.; Bologna, M.; Paparella, G.; Suppa, A.; Colella, D.; Di Lazzaro, V.; Brown, P.; Berardelli, A. Effects of Transcranial Alternating Current Stimulation on Repetitive Finger Movements in Healthy Humans. Neural Plast. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pogosyan, A.; Gaynor, L.D.; Eusebio, A.; Brown, P. Boosting Cortical Activity at Beta-Band Frequencies Slows Movement in Humans. Curr. Biol. 2009, 19, 1637–1641. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, E.; Liouta, E.; Andreadis, N.; Leonardos, A.; Ktonas, P.; Stavrinou, L.; Miranda, P.; Mekonnen, A.; Sakas, D. Transcranial alternating current stimulation reduces symptoms in intractable idiopathic cervical dystonia: A case study. Neurosci. Lett. 2013, 533, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Pozdniakov, I.; Vorobiova, A.N.; Galli, G.; Rossi, S.; Feurra, M. Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Feurra, M.; Blagovechtchenski, E.; Nikulin, V.V.; Nazarova, M.; Lebedeva, A.; Pozdeeva, D.; Yurevich, M.; Rossi, S. State-dependent effects of transcranial oscillatory currents on the motor system during action observation. Sci. Rep. 2019, 9, 1–11. [Google Scholar]
- Thirugnanasambandam, N.; Sparing, R.; Dafotakis, M.; Meister, I.G.; Paulus, W.; Nitsche, M.A.; Fink, G.R. Isometric contraction interferes with transcranial direct current stimulation (tDCS) induced plasticity—Evidence of state-dependent neuromodulation in human motor cortex. Restor. Neurol. Neurosci. 2011, 29, 311–320. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Nitsche, M.A.; Zschorlich, V.R.; Liu, H.; Kong, Z.; Qi, F. 20 Hz Transcranial Alternating Current Stimulation Inhibits Observation-Execution-Related Motor Cortex Excitability. J. Pers. Med. 2021, 11, 979. https://doi.org/10.3390/jpm11100979
Wang L, Nitsche MA, Zschorlich VR, Liu H, Kong Z, Qi F. 20 Hz Transcranial Alternating Current Stimulation Inhibits Observation-Execution-Related Motor Cortex Excitability. Journal of Personalized Medicine. 2021; 11(10):979. https://doi.org/10.3390/jpm11100979
Chicago/Turabian StyleWang, Lijuan, Michael A. Nitsche, Volker R. Zschorlich, Hui Liu, Zhaowei Kong, and Fengxue Qi. 2021. "20 Hz Transcranial Alternating Current Stimulation Inhibits Observation-Execution-Related Motor Cortex Excitability" Journal of Personalized Medicine 11, no. 10: 979. https://doi.org/10.3390/jpm11100979
APA StyleWang, L., Nitsche, M. A., Zschorlich, V. R., Liu, H., Kong, Z., & Qi, F. (2021). 20 Hz Transcranial Alternating Current Stimulation Inhibits Observation-Execution-Related Motor Cortex Excitability. Journal of Personalized Medicine, 11(10), 979. https://doi.org/10.3390/jpm11100979