CHU9D Normative Data in Peruvian Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics Approval
2.3. Sample Calculation
2.4. Participants
Sample Size
2.5. Procedures and Measures
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amaral, M.P.; Pinto, F.J.; Medeiros, C.R. Las Habilidades Sociales y El Comportamiento Infractor En La Adolescencia. Subj. Y Procesos Cogn. 2015, 19, 17–38. [Google Scholar]
- Güemes-Hidalgo, M.; González-Fierro, M.J.; Hidalgo, M.I. Pubertad y Adolescencia. Adolescere 2017, 5, 7–22. [Google Scholar]
- Berra, S. Fiabilidad y validez del cuestionario KIDSCREEN-52 para medir calidad de vida relacionada con la salud para población argentina de 8 a 18 años. Arch. Argent. Pediatr. 2013, 111, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Svedberg, P.; Eriksson, M.; Boman, E. Associations between Scores of Psychosomatic Health Symptoms and Health-Related Quality of Life in Children and Adolescents. Health Qual. Life Outcomes 2013, 11, 176. [Google Scholar] [CrossRef] [Green Version]
- Brooks, R.; Kind, P.; Rabin, R. EQ-5D Concepts and Methods; Springer: New York, NY, USA, 2005; ISBN 978-1-4020-3711-5. [Google Scholar]
- Schacht, A.; Escobar, R.; Wagner, T.; Wehmeier, P.M. Psychometric Properties of the Quality of Life Scale Child Health and Illness Profile-Child Edition in a Combined Analysis of Five Atomoxetine Trials. Atten. Deficit Hyperact. Disord. 2011, 3, 335–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Detmar, S.B.; Bruil, J.; Ravens-Sieberer, U.; Gosch, A.; Bisegger, C.; the European KIDSCREEN Group. The Use of Focus Groups in the Development of the KIDSCREEN HRQL Questionnaire. Qual. Life Res. 2006, 15, 1345–1353. [Google Scholar] [CrossRef]
- Varni, J.W.; Seid, M.; Kurtin, P.S. PedsQLTM 4.0: Reliability and Validity of the Pediatric Quality of Life InventoryTM Version 4.0 Generic Core Scales in Healthy and Patient Populations. Med. Care 2001, 39, 800–812. [Google Scholar] [CrossRef]
- Petersen, K.D.; Ratcliffe, J.; Chen, G.; Serles, D.; Frøsig, C.S.; Olesen, A.V. The Construct Validity of the Child Health Utility 9D-DK Instrument. Health Qual. Life Outcomes 2019, 17, 187. [Google Scholar] [CrossRef]
- Stevens, K.; Ratcliffe, J. Measuring and Valuing Health Benefits for Economic Evaluation in Adolescence: An Assessment of the Practicality and Validity of the Child Health Utility 9D in the Australian Adolescent Population. Value Health 2012, 15, 1092–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waller, H.; Eiser, C.; Knowles, J.; Rogers, N.; Wharmby, S.; Heller, S.; Hall, C.; Greenhalgh, S.; Tinklin, T.; Metcalfe, C.; et al. Pilot study of a novel educational programme for 11-16 year olds with type 1 diabetes mellitus: The KICk-OFF course. Arch. Dis. Child. 2008, 93, 927–931. [Google Scholar] [CrossRef] [Green Version]
- Foster Page, L.A.; Thomson, W.M.; Marshman, Z.; Stevens, K.J. The Potential of the Child Health Utility 9D Index as an Outcome Measure for Child Dental Health. BMC Oral Health 2014, 14, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blake, H.; Quirk, H.; Leighton, P.; Randell, T.; Greening, J.; Guo, B.; Glazebrook, C. Feasibility of an Online Intervention (STAK-D) to Promote Physical Activity in Children with Type 1 Diabetes: Protocol for a Randomised Controlled Trial. Trials 2016, 17, 583. [Google Scholar] [CrossRef] [PubMed]
- Furber, G.; Segal, L. The Validity of the Child Health Utility Instrument (CHU9D) as a Routine Outcome Measure for Use in Child and Adolescent Mental Health Services. Health Qual. Life Outcomes 2015, 13, 22. [Google Scholar] [CrossRef] [Green Version]
- Frew, E.J.; Pallan, M.; Lancashire, E.; Hemming, K.; Adab, P.A. Is Utility-Based Quality of Life Associated with Overweight in Children? Evidence from the UK WAVES Randomised Controlled Study. BMC Pediatr. 2015, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perú Tiene 9 Millones y Medio de Niñas, Niños y Adolescentes. Available online: https://andina.pe/agencia/noticia-peru-tiene-9-millones-y-medio-ninas-ninos-y-adolescentes-775642.aspx (accessed on 10 September 2021).
- Un Nuevo Estudio Dirigido Por La OMS Indica Que La Mayoría de Los Adolescentes Del Mundo No Realizan Suficiente Actividad Física, y Que Eso Pone En Peligro Su Salud Actual y Futura. Available online: https://www.who.int/es/news/item/22-11-2019-new-who-led-study-says-majority-of-adolescents-worldwide-are-not-sufficiently-physically-active-putting-their-current-and-future-health-at-risk (accessed on 10 September 2021).
- Ratcliffe, J.; Couzner, L.; Flynn, T.; Sawyer, M.; Stevens, K.; Brazier, J.; Burgess, L. Valuing Child Health Utility 9D Health States with a Young Adolescent Sample: A Feasibility Study to Compare Best-Worst Scaling Discrete-Choice Experiment, Standard Gamble and Time Trade-off Methods. Appl. Health Econ. Health Policy 2011, 9, 15–27. [Google Scholar] [CrossRef]
- Stevens, K. Developing a descriptive system for a new preference-based measure of health-related quality of life for children. Qual. Life Res. 2009, 18, 1105–1113. [Google Scholar] [CrossRef] [Green Version]
- Metz, C.E. Basic Principles of ROC Analysis. Semin. Nucl. Med. 1978, 8, 283–298. [Google Scholar] [CrossRef]
- Oviedo, H.C.; Campo-Arias, A. Metodología de investigación y lectura crítica de estudios. Rev. Colomb. Psiquiatr. 2005, 9, 572–580. [Google Scholar]
- Ratcliffe, J.; Huynh, E.; Chen, G.; Stevens, K.; Swait, J.; Brazier, J.; Sawyer, M.; Roberts, R.; Flynn, T. Valuing the Child Health Utility 9D: Using Profile Case Best Worst Scaling Methods to Develop a New Adolescent Specific Scoring Algorithm. Soc. Sci. Med. 2016, 157, 48–59. [Google Scholar] [CrossRef]
- Qi, S.; Qin, Z.; Wang, N.; Tse, L.A.; Qiao, H.; Xu, F. Association of Academic Performance, General Health with Health-Related Quality of Life in Primary and High School Students in China. Health Qual. Life Outcomes 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Le, L.K.-D.; Richards-Jones, S.; Chatterton, M.L.; Engel, L.; Lawrence, D.; Stevenson, C.; Pepin, G.; Ratcliffe, J.; Sawyer, M.; Mihalopoulos, C. Australian Adolescent Population Norms for the Child Health Utility Index 9D—Results from the Young Minds Matter Survey. Qual. Life Res. 2021, 30, 1–12. [Google Scholar] [CrossRef]
- Xu, F.; Chen, G.; Stevens, K.; Zhou, H.; Qi, S.; Wang, Z.; Hong, X.; Chen, X.; Yang, H.; Wang, C. Measuring and Valuing Health-Related Quality of Life among Children and Adolescents in Mainland China—A Pilot Study. PLoS ONE 2014, 9, e89222. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Who Is Responsible for Adolescent Health? Lancet 2004, 363, 2009. [CrossRef]
- UNICEF Innocenti Research Center. Child Poverty in Perspective: An Overview of Child Well-Being in Rich Countries. A Comprehensive Assessment of the Lives and Well-Being of Children and Adolescents in the Economically Advanced Nations; UNICEF Innocenti Research Center: Florence, Italy, 2007. [Google Scholar]
- Guedes, D.P.; Astudillo, H.A.V.; Morales, J.M.M. Calidad de vida relacionada con la salud de adolescentes latinoamericanos. Rev. Andal. Med. Deporte 2017, 7, 47–53. [Google Scholar] [CrossRef] [Green Version]
- The KIDSCREEN Group; Michel, G.; Bisegger, C.; Fuhr, D.C.; Abel, T. Age and Gender Differences in Health-Related Quality of Life of Children and Adolescents in Europe: A Multilevel Analysis. Qual. Life Res. 2009, 18, 1147–1157. [Google Scholar] [CrossRef] [Green Version]
- Petersen, K.D.; Chen, G.; Mpundu-Kaambwa, C.; Stevens, K.; Brazier, J.; Ratcliffe, J. Measuring Health-Related Quality of Life in Adolescent Populations: An Empirical Comparison of the CHU9D and the PedsQL TM 4.0 Short Form 15. Patient 2018, 11, 29–37. [Google Scholar] [CrossRef]
- Ratcliffe, J.; Stevens, K.; Flynn, T.; Brazier, J.; Sawyer, M. An Assessment of the Construct Validity of the CHU9D in the Australian Adolescent General Population. Qual. Life Res. 2012, 21, 717–725. [Google Scholar] [CrossRef]
- Rowen, D.; Mulhern, B.; Stevens, K.; Vermaire, J.H. Estimating a Dutch Value Set for the Pediatric Preference-Based CHU9D Using a Discrete Choice Experiment with Duration. Value Health 2018, 21, 1234–1242. [Google Scholar] [CrossRef] [Green Version]
CHU9D Utility Index | Ceiling Effect | ||||||||
---|---|---|---|---|---|---|---|---|---|
n | (%) | Mean | SD | Median | RI | p | n | (%) | |
Total | 1229 | 100 | 0.890 | 0.165 | 0.938 | 0.152 | 383 | 31.2 | |
Gender | |||||||||
Female | 622 | 50.6 | 0.867 | 0.115 | 0.920 | 0.256 | 0.15 * | 185 | 29.7 |
Male | 607 | 49.4 | 0.887 | 0.125 | 0.910 | 0.214 | 198 | 32.6 | |
Age | |||||||||
12 | 200 | 16.3 | 0.917 | 0.118 | 1 | 0.125 | 0.00 ŧ | 107 | 53.5 |
13 | 201 | 16.4 | 0.907 | 0.118 | 0.952 | 0.141 | 85 | 42.3 | |
14 | 199 | 16.2 | 0.883 | 0.116 | 0.883 | 0.216 | 63 | 31.7 | |
15 | 200 | 16.3 | 0.837 | 0.128 | 0.823 | 0.246 | 40 | 20 | |
16 | 212 | 17.2 | 0.852 | 0.112 | 0.861 | 0.194 | 37 | 17.5 | |
17 | 217 | 17.7 | 0.868 | 0.113 | 0.868 | 0.197 | 51 | 23.5 | |
IMC category | |||||||||
Low weight | 6 | 5 | 0.838 | 0.119 | 0.870 | 0.213 | 0.25 ŧ | 1 | 16.7 |
Normal weigh | 587 | 47.8 | 0.871 | 0.117 | 0.903 | 0.235 | 156 | 26.6 | |
Overweigh | 502 | 40.8 | 0.888 | 0.120 | 0.948 | 0.214 | 180 | 35.9 | |
Obesity | 134 | 10.9 | 0.864 | 0.133 | 0.920 | 0.283 | 46 | 34.3 |
Dimension/Level | n | % |
---|---|---|
Worry | ||
I do not feel worried today | 871 | 70.9 |
I feel a little bit worried today | 321 | 26.1 |
I feel a bit worried today | 26 | 2.1 |
I feel quite worried today | 6 | 5 |
I feel very worried today | 5 | 4 |
Sad | ||
I do not feel sad today | 823 | 67.0 |
I feel a little bit sad today | 364 | 29.6 |
I feel a bit sad today | 37 | 3.0 |
I feel quite sad today | 2 | 2 |
I feel very sad today | 3 | 2 |
Annoyed | ||
I do not feel annoyed today | 803 | 65.3 |
I feel a little bit annoyed today | 387 | 31.5 |
I feel a bit annoyed today | 35 | 2.8 |
I feel quite annoyed today | 4 | 3 |
I feel very annoyed today | 0 | 0 |
Tired | ||
I do not feel tired today | 520 | 42.3 |
I feel a little bit tired today | 584 | 47.5 |
I feel a bit tired today | 102 | 8.3 |
I feel quite tired today | 15 | 1.2 |
I feel very tired today | 8 | 7 |
Pain | ||
I do not feel annoyed today | 858 | 69.8 |
I feel a little bit annoyed today | 317 | 25.8 |
I feel a bit annoyed today | 51 | 4.1 |
I feel quite annoyed today | 3 | 2 |
I feel very annoyed today | 0 | 0 |
Sleep | ||
Last night, I had no problems sleeping | 813 | 66.2 |
Last night, I had a some problems sleeping | 359 | 29.2 |
Last night, I had a few problems sleeping | 47 | 3.8 |
Last night, I had many problems sleeping | 7 | 6 |
Last night, I could not sleep at all | 3 | 2 |
Daily | ||
I have no problems with my daily routine today | 763 | 62.1 |
I have a few problems with my daily routine today | 448 | 36.5 |
I have some problems with my daily routine today | 0 | 0 |
I have many problems with my daily routine today | 13 | 1.1 |
I cannot do my daily routine today | 5 | 4 |
Schoolwork/homework | ||
I have no problems with my schoolwork/homework today | 802 | 65.3 |
I have a few problems with my schoolwork/homework today | 373 | 30.3 |
I have some problems with my schoolwork/homework today | 42 | 3.4 |
I have many problems with my schoolwork/homework today | 7 | 6 |
I cannot do my schoolwork/homework today | 5 | 4 |
Able to join activities | ||
I can join in with any activities today | 774 | 63.0 |
I can join in with most activities today | 380 | 30.9 |
I can join in with some activities today | 55 | 4.5 |
I can join in with a few activities today | 13 | 1.1 |
I can join in with no activities today | 7 | 6 |
CHU9D Utility Index | Ceiling effect | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | ||||||||
n (%) | n (%) | Mean | SD | Median | RI | Mean | SD | Median | RI | p * | n (%) | n (%) | |
Age | |||||||||||||
12 | 99 (16.3) | 101 (16.2) | 0.912 | 0.124 | 1 | 0.204 | 0.922 | 0.113 | 1 | 0.852 | 0.895 | 55 (55.6) | 52 (51.5) |
13 | 101 (16.6) | 100 (16.1) | 0.915 | 0.110 | 0.952 | 0.124 | 0.898 | 0.125 | 0.952 | 0.194 | 0.493 | 45 (44.6) | 40 (40) |
14 | 100 (16.3) | 100 (16.1) | 0.890 | 0.111 | 0.920 | 0.214 | 0.875 | 0.122 | 0.915 | 0.228 | 0.645 | 29 (29.3) | 34 (34) |
15 | 100 (16.5) | 100 (16.1) | 0.859 | 0.121 | 0.894 | 0.240 | 0.814 | 0.131 | 0.785 | 0.247 | 0.260 | 23 (23.0) | 17 (17) |
16 | 100 (16.5) | 112 (18.0) | 0.867 | 0.110 | 0.897 | 0.192 | 0.839 | 0.112 | 0.845 | 0.199 | 0.560 | 20 (20.0) | 17 (15.2) |
17 | 108 (17.8) | 109 (17.5) | 0.879 | 0.107 | 0.915 | 0.172 | 0.857 | 0.117 | 0.876 | 0.237 | 0.235 | 26 (24.1) | 25 (22.9) |
IMC category | |||||||||||||
Low weight | 4 (7) | 2 (3) | 0.859 | 0.133 | 0.879 | 0.247 | 0.794 | 0.111 | 0.794 | 0.716 | 0.800 | 1 (25) | 1 (50) |
Normal weigh | 289 (47.6) | 298 (47.9) | 0.880 | 0.111 | 0.915 | 0.215 | 0.861 | 0.121 | 0.882 | 0.256 | 0.970 | 81 (28) | 75 (25.2) |
Overweigh | 235 (38.7) | 267 (42.9) | 0.898 | 0.115 | 0.952 | 0.188 | 0.879 | 0.125 | 0.920 | 0.224 | 0.128 | 88 (37.4) | 92 (34.5) |
Obesity | 79 (13.0) | 55 (8.8) | 0.878 | 0.129 | 0.952 | 0.272 | 0.843 | 0.138 | 0.812 | 0.286 | 0.187 | 28 (45.4) | 18 (32.7) |
CHU9D | Frequency | Valid Percentage | Accumulative Percentage |
---|---|---|---|
Health Status | |||
111111111 | 383 | 31.2 | 31.2 |
111112111 | 98 | 8.0 | 39.2 |
222222222 | 76 | 6.2 | 45.4 |
221222222 | 33 | 2.7 | 48.1 |
112112111 | 32 | 2.6 | 50.7 |
111112211 | 28 | 2.3 | 53 |
222222221 | 12 | 1.0 | 54 |
111111112 | 10 | 0.8 | 54.8 |
112112211 | 9 | 0.7 | 55.5 |
111112121 | 8 | 0.7 | 56.2 |
222212111 | 8 | 0.7 | 56.9 |
222223222 | 8 | 0.7 | 57.6 |
111113111 | 7 | 0.6 | 58.2 |
111122111 | 7 | 0.6 | 58.8 |
211112111 | 7 | 0.6 | 59.4 |
111122211 | 6 | 0.5 | 59.9 |
112122111 | 6 | 0.5 | 60.4 |
211111111 | 6 | 0.5 | 60.9 |
222213111 | 6 | 0.5 | 61.4 |
Most Common States | 750 | 61.4 | 61.4 |
Other Status * | 479 | 38.6 | 100 |
Total | 1229 | 100 | 100 |
Year | Study Reference | Country | Age Category | n | Utility |
---|---|---|---|---|---|
2021 | Present study | Perú | 12–17 | 1229 | 0.890 |
2021 | Le, Richards-Jones et al., 2021 | Australia | 11–17 | 2967 | 0.780 |
2015 | Furber, Segal et al., 2015 | Australia | 5–17 | 590 | 0.739 |
2011 | Ratcliffe, Couzner et al., 2011 | Australia | 11–13 | 45 | 0.850 |
2019 | Petersen, Ratcliffe et al., 2019 | Denmark | 11–26 | 272 | 0.840 |
2016 | Ratcliffe, Huynh et al., 2016 | Australia | 11–17 | 1892 | - |
2014 | Xu, Chen et al., 2014 | China | 9–17 | 815 | 0.810 |
2020 | Qi, Qin et al., 2020 | China | 10–13 | 4388 | 0.780 |
2018 | Yang, Chen et al., 2018 | China | 13–17 | 823 | 0.810 |
2018 | Petersen, Chen et al., 2018 | Australia | 15–17 | 775 | 0.720 |
2012 | Ratcliffe, Stevens et al., 2012 | Australia | 11–17 | 216 | 0.844 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacios-Cartagena, R.P.; Pastor-Cisneros, R.; Adsuar, J.C.; Pérez-Gómez, J.; García-Gordillo, M.Á.; Mendoza-Muñoz, M. CHU9D Normative Data in Peruvian Adolescents. J. Pers. Med. 2021, 11, 1272. https://doi.org/10.3390/jpm11121272
Palacios-Cartagena RP, Pastor-Cisneros R, Adsuar JC, Pérez-Gómez J, García-Gordillo MÁ, Mendoza-Muñoz M. CHU9D Normative Data in Peruvian Adolescents. Journal of Personalized Medicine. 2021; 11(12):1272. https://doi.org/10.3390/jpm11121272
Chicago/Turabian StylePalacios-Cartagena, Roxana Paola, Raquel Pastor-Cisneros, Jose Carmelo Adsuar, Jorge Pérez-Gómez, Miguel Ángel García-Gordillo, and María Mendoza-Muñoz. 2021. "CHU9D Normative Data in Peruvian Adolescents" Journal of Personalized Medicine 11, no. 12: 1272. https://doi.org/10.3390/jpm11121272
APA StylePalacios-Cartagena, R. P., Pastor-Cisneros, R., Adsuar, J. C., Pérez-Gómez, J., García-Gordillo, M. Á., & Mendoza-Muñoz, M. (2021). CHU9D Normative Data in Peruvian Adolescents. Journal of Personalized Medicine, 11(12), 1272. https://doi.org/10.3390/jpm11121272