Data from Digital Health Devices Informs Ideal Cardiovascular Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Acquisition
2.2. Data Access and Security
2.3. Statistical Analysis
3. Results
3.1. My Research Legacy Study Cohort
3.2. Incorporating Digital Health Data into Life’s Simple 7 Health Score
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lloyd-Jones, D.M.; Hong, Y.; Labarthe, D.; Mozaffarian, D.; Appel, L.J.; van Horn, L.; Greenlund, K.; Daniels, S.; Nichol, G.; Tomaselli, G.F.; et al. American heart association strategic planning task force and statistics committee defining and setting national goals for cardiovascular health promotion and disease reduction: The American heart association’s strategic impact goal through 2020 and beyond. Circulation 2010, 121, 586–613. [Google Scholar] [CrossRef] [Green Version]
- Angell, S.Y.; McConnell, M.V.; Anderson, C.A.; Bibbins-Domingo, K.; Boyle, D.S.; Capewell, S.; Ezzati, M.; de Ferranti, S.; Gaskin, D.J.; Goetzel, R.Z.; et al. The American Heart Association 2030 Impact Goal: A Presidential Advisory from the American Heart Association. Circulation 2020, 141, e120–e138. [Google Scholar] [CrossRef]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2020 Update: A Report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.C.; Slovut, D.P.; Newton, R.; Johnson, W.D.; Larrivee, S.; Patterson, J.; Johnston, J.A.; Correa, A. Ideal cardiovascular health and peripheral artery disease in African Americans: Results from the Jackson Heart Study. Prev. Med. Rep. 2017, 7, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Nayor, M.; Enserro, D.M.; Vasan, R.S.; Xanthakis, V. Cardiovascular Health Status and Incidence of Heart Failure in the Framingham Offspring Study. Circ. Heart Fail. 2016, 9, e002416. [Google Scholar] [CrossRef] [Green Version]
- Pase, M.P.; Beiser, A.; Enserro, D.; Xanthakis, V.; Aparicio, H.; Satizabal, C.L.; Himali, J.J.; Kase, C.S.; Vasan, R.S.; de Carli, C.; et al. Association of Ideal Cardiovascular Health with Vascular Brain Injury and Incident Dementia. Stroke 2016, 47, 1201–1206. [Google Scholar] [CrossRef] [Green Version]
- Spahillari, A.; Talegawkar, S.; Correa, A.; Carr, J.J.; Terry, J.G.; Lima, J.; Freedman, J.E.; Das, S.; Kociol, R.; de Ferranti, S.; et al. Ideal Cardiovascular Health, Cardiovascular Remodeling, and Heart Failure in Blacks: The Jackson Heart Study. Circ. Heart Fail. 2017, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xanthakis, V.; Enserro, D.M.; Murabito, J.M.; Polak, J.F.; Wollert, K.C.; Januzzi, J.L.; Wang, T.J.; Tofler, G.; Vasan, R.S. Ideal Cardiovascular Health. Circulation 2014, 130, 1676–1683. [Google Scholar] [CrossRef] [Green Version]
- Aneni, E.C.; Crippa, A.; Osondu, C.U.; Valero-Elizondo, J.; Younus, A.; Nasir, K.; Veledar, E. Estimates of Mortality Benefit from Ideal Cardiovascular Health Metrics: A Dose Response Meta-Analysis. J. Am. Hear. Assoc. 2017, 6, e006904. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Vélez, R.; Saavedra, J.M.; Lobelo, F.; Celis-Morales, C.A.; del Pozo-Cruz, B.; García-Hermoso, A. Ideal Cardiovascular Health and Incident Cardiovascular Disease Among Adults: A Systematic Review and Meta-analysis. Mayo Clin. Proc. 2018, 93, 1589–1599. [Google Scholar] [CrossRef] [Green Version]
- Enserro, D.M.; Vasan, R.S.; Xanthakis, V. Twenty-Year Trends in the American Heart Association Cardiovascular Health Score and Impact on Subclinical and Clinical Cardiovascular Disease: The Framingham Offspring Study. J. Am. Hear. Assoc. 2018, 7, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Overweight & Obesity. Available online: cdc.gov (accessed on 30 October 2020).
- Centers for Disease Control and Prevention. Physical Activity. Available online: cdc.gov (accessed on 30 October 2020).
- Mensah, G.A.; Wei, G.S.; Sorlie, P.D.; Fine, L.J.; Rosenberg, Y.; Kaufmann, P.G.; Mussolino, M.E.; Hsu, L.L.; Addou, E.; Engelgau, M.M.; et al. Decline in Cardiovascular Mortality. Circ. Res. 2017, 120, 366–380. [Google Scholar] [CrossRef]
- Woodfield, R.; Sudlow, C.L.M. UK Biobank Stroke Outcomes Group; UK Biobank Follow-up and Outcomes Working Group Accuracy of Patient Self-Report of Stroke: A Systematic Review from the UK Biobank Stroke Outcomes Group. PLoS ONE 2015, 10, e0137538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquis-Gravel, G.; Roe, M.T.; Turakhia, M.P.; Boden, W.; Temple, R.; Sharma, A.; Hirshberg, B.; Slater, P.; Craft, N.; Stockbridge, N.; et al. Technology-Enabled Clinical Trials: Transforming Medical Evidence Generation. Circulation 2019, 140, 1426–1436. [Google Scholar] [CrossRef]
- Izmailova, E.S.; Wagner, J.A.; Perakslis, E.D. Wearable Devices in Clinical Trials: Hype and Hypothesis. Clin. Pharmacol. Ther. 2018, 104, 42–52. [Google Scholar] [CrossRef]
- McConnell, M.V.; Shcherbina, A.; Pavlovic, A.; Homburger, J.R.; Goldfeder, R.L.; Waggot, D.; Cho, M.K.; Rosenberger, M.E.; Haskell, W.L.; Myers, J.; et al. Feasibility of Obtaining Measures of Lifestyle from a Smartphone App. JAMA Cardiol. 2017, 2, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pescatello, L.S. ACSMs Guidelines for Exercise Testing and Prescription; Wolters Kluwer/Lippincott Williams & Wilkins Health: Philadelphia, PE, USA, 2014. [Google Scholar]
- Brewer, W.; Swanson, B.T.; Ortiz, A. Validity of Fitbit’s active minutes as compared with a research-grade accelerometer and self-reported measures. BMJ Open Sport Exerc. Med. 2017, 3, e000254. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-M.; Kim, Y.; Welk, G.J. Validity of Consumer-Based Physical Activity Monitors. Med. Sci. Sports Exerc. 2014, 46, 1840–1848. [Google Scholar] [CrossRef] [Green Version]
- Spierer, D.K.; Rosen, Z.; Litman, L.L.; Fujii, K. Validation of photoplethysmography as a method to detect heart rate during rest and exercise. J. Med Eng. Technol. 2015, 39, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.E.; An, H.-S.; Dinkel, D.M.; Noble, J.M.; Lee, J.-M. How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport Exerc. Med. 2016, 2, e000106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saint-Maurice, P.F.; Troiano, R.P.; Bassett, D.R.; Graubard, B.I.; Carlson, S.A.; Shiroma, E.J.; Fulton, J.E.; Matthews, C.E. Association of Daily Step Count and Step Intensity with Mortality Among US Adults. JAMA 2020, 323, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Jerome, G.J.; Dalcin, A.; Coughlin, J.W.; Fitzpatrick, S.; Wang, N.-Y.; Durkin, N.; Yeh, H.-C.; Charleston, J.; Pozefsky, T.; Daumit, G.L.; et al. Longitudinal Accuracy of Web-Based Self-Reported Weights: Results from the Hopkins POWER Trial. J. Med. Internet Res. 2014, 16, e173. [Google Scholar] [CrossRef]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; Mcdowell, M. Physical Activity in the United States Measured by Accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Opichka, K.; Smith, C. Accuracy of self-reported heights and weights in a predominately low-income, diverse population living in the USA. Am. J. Hum. Biol. 2018, 30, e23184. [Google Scholar] [CrossRef]
- Hodge, J.M.; Shah, R.; McCullough, M.L.; Gapstur, S.M.; Patel, A.V. Validation of self-reported height and weight in a large, nationwide cohort of U.S. adults. PLoS ONE 2020, 15, e0231229. [Google Scholar] [CrossRef] [Green Version]
- Dooley, E.E.; Golaszewski, N.M.; Bartholomew, J.B. Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices. JMIR mHealth uHealth 2017, 5, e34. [Google Scholar] [CrossRef] [PubMed]
- Reddy, R.K.; Pooni, R.; Zaharieva, D.P.; Senf, B.; El-Youssef, J.; Dassau, E.; Iii, F.J.D.; Clements, M.A.; Rickels, M.R.; Patton, S.R.; et al. Accuracy of Wrist-Worn Activity Monitors During Common Daily Physical Activities and Types of Structured Exercise: Evaluation Study. JMIR mHealth uHealth 2018, 6, e10338. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, A.; Mikalsen, M.H.; Woldaregay, A.Z.; Muzny, M.; Hartvigsen, G.; Hopstock, L.A.; Grimsgaard, S. Using Fitness Trackers and Smartwatches to Measure Physical Activity in Research: Analysis of Consumer Wrist-Worn Wearables. J. Med. Internet Res. 2018, 20, e110. [Google Scholar] [CrossRef]
- Dorn, D.; Gorzelitz, J.; Gangnon, R.; Bell, D.; Koltyn, K.; Cadmus-Bertram, L. Automatic Identification of Physical Activity Type and Duration by Wearable Activity Trackers: A Validation Study. JMIR mHealth uHealth 2019, 7, e13547. [Google Scholar] [CrossRef]
- Mikkelsen, M.-L.K.; Berg-Beckhoff, G.; Frederiksen, P.; Horgan, G.; O’Driscoll, R.; Palmeira, A.L.; Scott, S.E.; Stubbs, J.; Heitmann, B.L.; Larsen, S.C. Estimating physical activity and sedentary behaviour in a free-living environment: A comparative study between Fitbit Charge 2 and Actigraph GT3X. PLoS ONE 2020, 15, e0234426. [Google Scholar] [CrossRef]
- Dinh-Le, C.; Chuang, R.; Chokshi, S.; Mann, D. Wearable Health Technology and Electronic Health Record Integration: Scoping Review and Future Directions. JMIR mHealth uHealth 2019, 7, e12861. [Google Scholar] [CrossRef] [PubMed]
- Kraus, W.E.; Janz, K.F.; Powell, K.E.; Campbell, W.W.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L. Daily Step Counts for Measuring Physical Activity Exposure and Its Relation to Health. Med. Sci. Sports Exerc. 2019, 51, 1206–1212. [Google Scholar] [CrossRef]
- Kraus, W.E.; Powell, K.E.; Haskell, W.L.; Janz, K.F.; Campbell, W.W.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L. Physical Activity, All-Cause and Cardiovascular Mortality, and Cardiovascular Disease. Med. Sci. Sports Exerc. 2019, 51, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Marin, T.S.; Kourbelis, C.; Foote, J.; Newman, P.; Brown, A.; Daniel, M.; Coffee, N.T.; Nicholls, S.J.; Ganesan, A.; Versace, V.L.; et al. Examining adherence to activity monitoring devices to improve physical activity in adults with cardiovascular disease: A systematic review. Eur. J. Prev. Cardiol. 2019, 26, 382–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, A.; Swainston, K.; Wilson, G. Health professionals’ attitudes to patients’ use of wearable technology. Digit. Health 2019, 5, 2055207619845544. [Google Scholar] [CrossRef] [PubMed]
Entire Cohort (n = 1561) | No Digital Health Device Data Available (n = 1171) | Digital Health Device Data Available (n = 390) | p Value | |
---|---|---|---|---|
Age (year) | 13.0 | 13.1 | 12.7 | 0.08 |
Gender (% Female) | 80.1 | 80.6 | 78.7 | 0.42 |
Race and Ethnicity (no.) | ||||
Asian Black Hispanic White Other | 42 60 68 1337 54 | 31 49 49 998 44 | 11 11 19 339 10 | 0.55 |
Region (no.) | ||||
Northeast South Midwest West | 227 622 378 334 | 168 481 269 253 | 59 141 109 81 | 0.17 |
Cardiovascular Disease (%) | 36.3 | 36.5 | 35.6 | 0.77 |
Diabetes mellitus (%) | 10.3 | 11.7 | 6.2 | <0.01 |
Hypertension (%) | 49.8 | 51.0 | 46.4 | 0.12 |
Hypercholesterolemia (%) | 53.4 | 54.5 | 50.3 | 0.15 |
Medications (%) | ||||
Diabetes mellitus Hypertension Hypercholesterolemia | 8.8 32.5 20.6 | 9.9 34.8 21.2 | 5.4 25.6 18.7 | <0.01 <0.01 0.30 |
Smoking status (%) | ||||
Current Quit < 12 months Quit ≥ 12 months Never | 6.9 3.8 23.6 65.7 | 8.7 4.2 23.3 63.8 | 1.5 2.6 24.6 71.3 | <0.01 |
Weight (kg) | 24.4 | 25.4 | 20.7 | <0.01 |
Height (cm) | 9.6 | 9.8 | 9.1 | 0.06 |
BMI (kg/m2) | 8.2 | 8.6 | 6.7 | <0.01 |
Systolic blood pressure (mmHg) * | 12.7 | 13.1 | 11.7 | <0.07 |
Diastolic blood pressure (mmHg) * | 8.7 | 8.9 | 7.8 | 0.16 |
Total cholesterol (mg/dL) * | 29.2 | 28.6 | 31.1 | 0.17 |
Entire Cohort (n = 1561) | No Digital Health Device Data Available (n = 1171) | Digital Health Device Data Available (n = 390) | p Value | |
---|---|---|---|---|
DIET | ||||
Vegetables/day (cups) | 1.3 | 1.3 | 1.3 | 0.91 |
Fruit/day (cups) | 1.1 | 1.1 | 1.0 | 0.67 |
Fish (servings/week) | 1.0 | 1.0 | 1.1 | 0.86 |
Whole grains (servings/day) | 1.2 | 1.2 | 1.3 | 0.21 |
Sugar-sweetened beverages (servings/week) | 3.4 | 3.5 | 2.9 | <0.01 |
Avoid prepackaged foods (%) | 52.2 | 52.4 | 51.5 | 0.76 |
Avoid eating out (%) | 37.6 | 38.3 | 35.4 | 0.30 |
Avoid salt at home (%) | 56.6 | 56.3 | 57.7 | 0.63 |
EXERCISE | ||||
Moderate exercise (min/week) | 215.0 | 216.1 | 211.6 | 0.38 |
Vigorous exercise (min/week) | 116.8 | 115.3 | 120.3 | <0.01 |
Entire Cohort (n = 1561) | No Digital Health Device Data Available (n = 1171) | Digital Health Device Data Available (n = 390) | p Value | |
---|---|---|---|---|
Smoking score (%) | ||||
Poor Intermediate Ideal | 6.9 3.8 89.4 | 8.7 4.2 87.1 | 1.5 2.6 95.9 | <0.01 |
Physical activity score (%) | ||||
Poor Intermediate Ideal | 1.9 37.7 60.4 | 2.2 39.0 58.8 | 1.0 33.6 65.4 | <0.02 |
Healthy diet score (%) | ||||
Poor Intermediate Ideal | 44.2 47.1 8.7 | 45.0 46.5 8.5 | 41.8 50.2 9.2 | 0.28 |
Healthy weight score (%) | ||||
Poor Intermediate Ideal | 42.3 24.2 33.5 | 44.6 23.0 32.4 | 35.4 28.0 36.6 | <0.01 |
Blood glucose score (%) | ||||
Poor Intermediate Ideal | 3.8 35.8 60.4 | 4.3 37.0 58.7 | 2.6 31.8 65.6 | <0.02 |
Cholesterol score (%) | ||||
Poor Intermediate Ideal | 2.6 49.8 47.6 | 2.7 50.8 46.5 | 2.1 46.9 51.0 | 0.10 |
Blood pressure score (%) | ||||
Poor Intermediate Ideal | 6.2 52.5 41.3 | 7.1 52.4 40.5 | 3.3 52.8 43.9 | 0.07 |
Life’s Simple 7 | ||||
Health Score | 1.5 | 1.6 | 1.4 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leopold, J.A.; Davis, R.B.; Antman, E.M. Data from Digital Health Devices Informs Ideal Cardiovascular Health. J. Pers. Med. 2021, 11, 189. https://doi.org/10.3390/jpm11030189
Leopold JA, Davis RB, Antman EM. Data from Digital Health Devices Informs Ideal Cardiovascular Health. Journal of Personalized Medicine. 2021; 11(3):189. https://doi.org/10.3390/jpm11030189
Chicago/Turabian StyleLeopold, Jane A., Roger B. Davis, and Elliott M. Antman. 2021. "Data from Digital Health Devices Informs Ideal Cardiovascular Health" Journal of Personalized Medicine 11, no. 3: 189. https://doi.org/10.3390/jpm11030189
APA StyleLeopold, J. A., Davis, R. B., & Antman, E. M. (2021). Data from Digital Health Devices Informs Ideal Cardiovascular Health. Journal of Personalized Medicine, 11(3), 189. https://doi.org/10.3390/jpm11030189