Predicting Risk of Antenatal Depression and Anxiety Using Multi-Layer Perceptrons and Support Vector Machines
Abstract
:1. Introduction
2. Related Work
2.1. Perinatal Depression and Machine Learning
2.2. Antenatal Depression in Pakistan
3. Methodology
3.1. Dataset
3.2. Data Preprocessing
3.3. Model Development
3.4. Predictor Selection
3.5. Encoding and Scaling
3.6. Classification
3.6.1. Support Vector Machines
3.6.2. Artificial Neural Networks
3.7. Evaluation Metrics
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woody, C.A.; Ferrari, A.J.; Siskind, D.J.; Whiteford, H.A.; Harris, M.G. A systematic review and meta-regression of the prevalence and incidence of perinatal depression. J. Affect. Disord. 2017, 219, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Field, T. Prenatal anxiety effects: A review. Infant Behav. Dev. 2017, 49, 120–128. [Google Scholar] [CrossRef]
- Underwood, L.; Waldie, K.; D’Souza, S.; Peterson, E.R.; Morton, S. A review of longitudinal studies on antenatal and postnatal depression. Arch. Womens Ment. Health 2016, 19, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Marcus, S.M. Depression during pregnancy: Rates, risks and consequences. Can. J. Clin. Pharmacol. 2009, 16, 15–22. [Google Scholar]
- Dennis, C.L.; Falah-Hassani, K.; Shiri, R. Prevalence of antenatal and postnatal anxiety: Systematic review and meta-analysis. Br. J. Psychiatry 2017, 210, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Glynn, L.M.; Howland, M.A.; Sandman, C.A.; Davis, E.P.; Phelan, M.; Baram, T.Z.; Stern, H.S. Prenatal maternal mood patterns predict child temperament and adolescent mental health. J. Affect. Disord. 2018, 228, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibanez, G.; Bernard, J.Y.; Rondet, C.; Peyre, H.; Forhan, A.; Kaminski, M.; Saurel-Cubizolles, M.J. Effects of antenatal maternal depression and anxiety on children’s early cognitive development: A prospective Cohort study. PLoS ONE 2015, 10, e0135849. [Google Scholar] [CrossRef]
- O’Connor, T.G.; Heron, J.; Glover, V. Antenatal Anxiety Predicts Child Behavioral/Emotional Problems Independently of Postnatal Depression. J. Am. Acad. Child Adolesc. Psychiatry 2002, 41, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Jarde, A.; Morais, M.; Kingston, D.; Giallo, R.; MacQueen, G.M.; Giglia, L.; Beyene, J.; Wang, Y.; McDonald, S.D. Neonatal outcomes in women with untreated antenatal depression compared with women without depression: A systematic review and meta-analysis. JAMA Psychiatry 2016, 73, 826–837. [Google Scholar] [CrossRef]
- Rahman, A.; Iqbal, Z.; Bunn, J.; Lovel, H.; Harrington, R. Impact of maternal depression on infant nutritional status and illness: A cohort study. Arch. Gen. Psychiatry 2004, 61, 946–952. [Google Scholar] [CrossRef] [Green Version]
- Waqas, A.; Elhady, M.; Surya Dila, K.A.; Kaboub, F.; Van Trinh, L.; Nhien, C.H.; Al-Husseini, M.J.; Kamel, M.G.; Elshafay, A.; Nhi, H.Y.; et al. Association between maternal depression and risk of infant diarrhea: A systematic review and meta-analysis. Public Health 2018, 159, 78–88. [Google Scholar] [CrossRef]
- Surkan, P.J.; Kennedy, C.E.; Hurley, K.M.; Black, M.M. Maternal depression and early childhood growth in developing countries: Systematic review and meta-analysis. Bull. World Health Organ. 2011, 89, 608E–615E. [Google Scholar] [CrossRef] [PubMed]
- Jacques, N. Prenatal and postnatal maternal depression and infant hospitalization and mortality in the first year of life: A systematic review and meta-analysis. J. Affect. Disord. 2019, 243, 201–208. [Google Scholar] [CrossRef]
- Bonari, L.; Pinto, N.; Ahn, E.; Einarson, A.; Steiner, M.; Koren, G. Perinatal Risks of Untreated Depression during Pregnancy. Can. J. Psychiatry 2004, 49, 726–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, S.; Biaggi, A.; Chua, T.E.; Du Preez, A.; Hazelgrove, K.; Nikkheslat, N.; Previti, G.; Zunszain, P.A.; Conroy, S.; Pariante, C.M. Antenatal depression programs cortisol stress reactivity in offspring through increased maternal inflammation and cortisol in pregnancy: The Psychiatry Research and Motherhood—Depression (PRAM-D) Study. Psychoneuroendocrinology 2018, 98, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Biaggi, A.; Conroy, S.; Pawlby, S.; Pariante, C.M. Identifying the women at risk of antenatal anxiety and depression: A systematic review. J. Affect. Disord. 2016, 191, 62–77. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.; Cabral de Mello, M.; Patel, V.; Rahman, A.; Tran, T.; Holton, S.; Holmes, W. Prevalence and determinants of common perinatal mental disorders in women in low- and lower-middle-income countries: A systematic review. Bull. World Health Organ. 2012, 90, 139H–149H. [Google Scholar] [CrossRef]
- Kim, S.; Soeken, T.A.; Cromer, S.J.; Martinez, S.R.; Hardy, L.R.; Strathearn, L. Oxytocin and postpartum depression: Delivering on what’s known and what’s not. Brain Res. 2014, 1580, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Pawluski, J.L.; Lonstein, J.S.; Fleming, A.S. The Neurobiology of Postpartum Anxiety and Depression. Trends Neurosci. 2017, 40, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Workman, J.L.; Barha, C.K.; Galea, L.A.M. Endocrine substrates of cognitive and affective changes during pregnancy and postpartum. Behav. Neurosci. 2012, 126, 54–72. [Google Scholar] [CrossRef]
- Rahman, A.; Creed, F. Outcome of prenatal depression and risk factors associated with persistence in the first postnatal year: Prospective study from Rawalpindi, Pakistan. J. Affect. Disord. 2007, 100, 115–121. [Google Scholar] [CrossRef]
- Karmaliani, R.; Asad, N.; Bann, C.M.; Moss, N.; McClure, E.M.; Pasha, O.; Wright, L.L.; Goldenberg, R.L. Prevalence of anxiety, depression and associated factors among pregnant women of Hyderabad, Pakistan. Int. J. Soc. Psychiatry 2009, 55, 414–424. [Google Scholar] [CrossRef]
- Shah, S.M.A.; Bowen, A.; Afridi, I.; Nowshad, G.; Muhajarine, N. Prevalence of antenatal depression: Comparison between Pakistani and Canadian women. J. Pak. Med. Assoc. 2011, 61, 242–246. [Google Scholar]
- Imran, N.; Haider, I.I. Screening of antenatal depression in Pakistan: Risk factors and effects on obstetric and neonatal outcomes. Asia Pac. Psychiatry 2010, 2, 26–32. [Google Scholar] [CrossRef]
- Mir, S.; Karmaliani, R.; Hatcher, J.; Asad, N.; Sikander, S. Prevalence and Risk Factors Contributing to Depression among Women in District Chitral. J. Pak. Psychiatr. Soc. 2012, 9, 28–36. [Google Scholar]
- Humayun, A.; Haider, I.I.; Imran, N.; Iqbal, H.; Humayun, N. Antenatal depression and its predictors in Lahore, Pakistan. East Mediterr. Health J. 2013, 19, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Waqas, A.; Raza, N.; Lodhi, H.W.; Muhammad, Z.; Jamal, M. Psychosocial Factors of Antenatal Anxiety and Depression in Pakistan: Is Social Support a Mediator? PLoS ONE 2015, 10, e0116510. [Google Scholar] [CrossRef] [Green Version]
- Aamir, I.S. Prevalence of Depression among Pregnant Women Attending Antenatal Clinics in Pakistan. Acta Psychopathol. 2017, 3, 3–7. [Google Scholar] [CrossRef]
- Lovejoy, C.A.; Buch, V.; Maruthappu, M. Technology and mental health: The role of artificial intelligence. Eur. Psychiatry 2019, 55, 1–3. [Google Scholar] [CrossRef]
- Iniesta, R.; Stahl, D.; McGuffin, P. Machine learning, statistical learning and the future of biological research in psychiatry. Psychol. Med. 2016, 46, 2455–2465. [Google Scholar] [CrossRef] [Green Version]
- Bzdok, D.; Meyer-Lindenberg, A. Machine Learning for Precision Psychiatry: Opportunities and Challenges. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 223–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durstewitz, D.; Koppe, G.; Meyer-Lindenberg, A. Deep neural networks in psychiatry. Mol. Psychiatry 2019, 24, 1583–1598. [Google Scholar] [CrossRef]
- Ben-Hur, A.; Weston, J. A user’s guide to support vector machines. Methods Mol. Biol. 2010, 609, 223–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Wang, X.; Ming, Z.; Gao, J. A review on neural networks with random weights. Neurocomputing 2018, 275, 278–287. [Google Scholar] [CrossRef]
- Brennan, C.; Worrall-Davies, A.; McMillan, D.; Gilbody, S.; House, A. The Hospital Anxiety and Depression Scale: A diagnostic meta-analysis of case-finding ability. J. Psychosom. Res. 2010, 69, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Camdeviren, H.A.; Yazici, A.C.; Akkus, Z.; Bugdayci, R.; Sungur, M.A. Comparison of logistic regression model and classification tree: An application to postpartum depression data. Expert Syst. Appl. 2007, 32, 987–994. [Google Scholar] [CrossRef]
- Tortajada, S.; García-Gómez, J.M.; Vicente, J.; Sanjuán, J.; De Frutos, R.; Martín-Santos, R.; García-Esteve, L.; Gornemann, I.; Gutiérrez-Zotes, A.; Canellas, F.; et al. Prediction of postpartum depression using multilayer perceptrons and pruning. Methods Inf. Med. 2009, 48, 291–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jim9nez-Serrano, S.; Tortajada, S.; García-Gómez, J.M. A Mobile Health Application to Predict Postpartum Depression Based on Machine Learning. Telemed. e Health 2015, 21, 567–574. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, B.; Zhang, W.; Gong, W.; Sun, G. Sentiment analysis based on deep learning and its application in screening for perinatal depression. In Proceedings of the IEEE Third International Conference on Data Science in Cyberspace (IEEE DSC 2018), Guangzhou, China, 18–21 June 2018; pp. 451–456. [Google Scholar] [CrossRef]
- Moreira, M.W.L.; Rodrigues, J.J.P.C.; Kumar, N.; Saleem, K.; Illin, I.V. Postpartum depression prediction through pregnancy data analysis for emotion-aware smart systems. Inf. Fus. 2019, 47, 23–31. [Google Scholar] [CrossRef]
- Safi, F.N.; Khanum, F.; Tariq, H.; Nisa, M. Antenatal depression: Prevalence and risk factors for depression among pregnant women in Peshawar. J. Med. Sci. 2013, 21, 206–211. [Google Scholar]
- Saeed, A.; Raana, T.; Saeed, A.M.; Humayun, A. Effect of antenatal depression on maternal dietary intake and neonatal outcome: A prospective cohort. Nutr. J. 2016, 15, 64. [Google Scholar] [CrossRef] [Green Version]
- Ahmer, S.; Faruqui, R.A.; Aijaz, A. Psychiatric rating scales in Urdu: A systematic review. BMC Psychiatry 2007, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Rizwan, M.; Syed, N. Urdu Translation and Psychometric Properties of Social Provision Scale. Int. J. Educ. Psychol. Assess. 2010, 4, 33–47. [Google Scholar]
- Lin, W.-C.; Tsai, C.-F. Missing value imputation: A review and analysis of the literature (2006–2017). Artif. Intell. Rev. 2020, 53, 1487–1509. [Google Scholar] [CrossRef]
- Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-based feature selection: Introduction and review. J. Biomed. Inform. 2018, 85, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Bolón-Canedo, V.; Sánchez-Maroño, N.; Alonso-Betanzos, A. A review of feature selection methods on synthetic data. Knowl. Inf. Syst. 2013, 34, 483–519. [Google Scholar] [CrossRef]
- Kononenko, I. Estimating attributes: Analysis and extensions of RELIEF BT. In Machine Learning: ECML-94; Bergadano, F., De Raedt, L., Eds.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 171–182. [Google Scholar]
- Kira, K.; Rendell, L.A. A Practical Approach to Feature Selection. In Machine Learning Proceedings 1992; Elsevier: Morgan Kaufmann, MA, USA, 1992; pp. 249–256. [Google Scholar] [CrossRef]
- Urbanowicz, R.J.; Olson, R.S.; Schmitt, P.; Meeker, M.; Moore, J.H. Benchmarking relief-based feature selection methods for bioinformatics data mining. J. Biomed. Inform. 2018, 85, 168–188. [Google Scholar] [CrossRef]
- Moore, J.H.; White, B.C. Tuning ReliefF for Genome-Wide Genetic Analysis. In Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 166–175. [Google Scholar] [CrossRef]
- Potdar, K.; Pardawala, T.S.; Pai, C. A Comparative Study of Categorical Variable Encoding Techniques for Neural Network Classifiers. Int. J. Comput. Appl. 2017, 175, 7–9. [Google Scholar] [CrossRef]
- Jayalakshmi, T.; Santhakumaran, A. Statistical Normalization and Back Propagationfor Classification. Int. J. Comput. Theory Eng. 2011, 3, 89–93. [Google Scholar] [CrossRef]
- Bishop, C. Neural Networks for Pattern Recognition; Oxford University Press, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Vapnik, V. Pattern recognition using generalized portrait method. Autom. Remote Control 1963, 24, 774–780. Available online: http://ci.nii.ac.jp/naid/10020952249/en/ (accessed on 30 October 2019).
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classi ers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; Available online: https://books.google.com.pk/books?id=tVIjmNS3Ob8C (accessed on 10 March 2021).
- Hush, D.R.; Horne, B.G. Progress in supervised neural networks. IEEE Signal Process. Mag. 1993, 10, 8–39. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. arXiv 2015, arXiv:1412.6980. [Google Scholar]
- Duchi, J. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Tieleman, T.; Hinton, G. Lecture 6.5—RMSProp, Cousera: Neural Networks for Machine Learning. 2012. Available online: https://scholar.google.com/scholar?as_q=Lecture+6.5%E2%80%94RmsProp%3A+Divide+the+gradient+by+a+running+average+of+its+recent+magnitude&as_occt=title&hl=en&as_sdt=0%2C31 (accessed on 4 February 2021).
- Thomas, A.J.; Petridis, M.; Walters, S.D.; Gheytassi, S.M.; Morgan, R.E. Two Hidden Layers Are Usually Better than One. In Engineering Applications of Neural Networks; Boracchi, G., Iliadis, L., Jayne, C., Likas, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 279–290. [Google Scholar]
- Masters, T. Practical Neural Network Recipes in C++; Academic Press Professional, Inc.: San Diego, CA, USA, 1993. [Google Scholar]
- Chollet, F. Keras. 2015. Available online: https://keras.io (accessed on 10 March 2021).
- Varoquaux, G.; Buitinck, L.; Louppe, G.; Grisel, O.; Pedregosa, F.; Mueller, A. Scikit-learn: Machine Learning Without Learning the Machinery. GetMobile Mob. Comput. Commun. 2015, 19, 29–33. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conway, M.; O’Connor, D. Social media, big data, and mental health: Current advances and ethical implications. Curr. Opin. Psychol. 2016, 9, 77–82. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, U.; Samal, L. How effective are clinical decision support systems? BMJ 2020, m3499. [Google Scholar] [CrossRef] [PubMed]
Disorder | Depressed | Anxious |
---|---|---|
Positive | 56.4% | 71% |
Negative | 43.6% | 29% |
Variable | # of Missing Values |
---|---|
Live births | 27 |
Still births | 68 |
Maternal age | 100 |
Adverse outcomes | 1 |
Stat 4 | 1 |
Stat 5 | 1 |
Social Provision Scale Questionnaire | Current Age | Ethnicity | Education | Occupation | Background |
---|---|---|---|---|---|
Household income | Duration marriage | Household decision maker | Fight/arguments with in-laws | Number of people living in the house | Smoking |
Substance abuse | Maternal age new | Planned pregnancy | Menstrual cycle history | Ever used planning methods | Live births |
Still births | Adverse outcomes during previous pregnancy | Abortion history | Past psychiatric illnesses | Psychiatric illnesses in family | Child death |
Miscarriage | Parents’ death | Total male children | Relationship problems | Long illnesses | Any other past trauma |
Harassment | Ever experienced domestic violence | Total spontaneous vaginal deliveries | Total episiotomies | Total c-section | Total female children |
Depression | Anxiety |
---|---|
Social support | Social support |
Household decision maker | Household decision |
Background | Planned pregnancy |
Ever used planning methods | |
Age |
Kernel | C 1 |
---|---|
Linear | 0.01 |
Poly | 0.1 |
RBF | 1 |
Sigmoid | 10 |
Actual Label | |||
---|---|---|---|
Positive [1] | Negative [0] | ||
Predicted label | Positive [1] | True positives | False positives |
Negative [0] | False negatives | True negatives |
Support Vector Machine | Antenatal Depression | Antenatal Anxiety |
---|---|---|
C 2 | 1.3 | 1 |
Kernel | poly | rbf |
Degree | 2 | Not Applicable |
Hyperparameters | Antenatal Depression | Antenatal Anxiety |
---|---|---|
Layer | Dense Layer | Dense Layer |
Topology | 31-11-7-1 | 31-21-1 |
Activation function for all layers except output | RELU | RELU |
Activation function for output layer | Sigmoid | Sigmoid |
Epochs | 90 | 70 |
Batch size | 32 | 32 |
L2 weight decay | 0.01 | 0.01 |
Optimizer | ADAM | ADAM |
Learning rate | 0.001 | 0.001 |
Loss function | Binary cross entropy | Binary cross entropy |
Kernel initializer | Xavier | Xavier |
Antenatal Depression | Evaluation Metrics | Accuracy | Sensitivity | Specificity | Precision | F1 Score | AUC-ROC | FPR | FNR |
---|---|---|---|---|---|---|---|---|---|
MLP-NN | CV Score | 79.272 | 76.245 | 83.235 | 85.963 | 80.448 | 79.740 | 16.765 | 23.755 |
mean(std) | (6.031) | (9.211) | (8.977) | (6.716) | (6.045) | (5.921) | (8.977) | (9.211) | |
% | |||||||||
Test set | 88.600 | 87.976 | 89.394 | 91.411 | 89.628 | 88.685 | 10.606 | 12.024 | |
mean(std) | (1.281) | (2.110) | (2.835) | (2.023) | (1.165) | (1.338) | (2.835) | (2.110) | |
% | |||||||||
Support Vector Machine | CV Score | 82.500 | 74.271 | 93.098 | 93.422 | 82.268 | 83.685 | 6.902 | 25.729 |
mean(std) | (5.701) | (10.730) | (5.333) | (5.098) | (6.986) | (5.332) | (5.333) | (10.730) | |
% | |||||||||
Test set | 80.0 | 78.6 | 81.8 | 84.6 | 81.4 | 80.2 | 18.1 | 21.4 | |
% |
Antenatal Anxiety | Accuracy | Sensitivity | Specificity | Precision | F1 Score | AUC-ROC | FPR | FNR | |
---|---|---|---|---|---|---|---|---|---|
MLP-NN | CV Score mean(std) % | 80.235 (5.157) | 90.099 (5.865) | 56.136 (13.897) | 83.616 (4.503) | 86.586 (3.580) | 73.117 (6.950) | 43.864 (13.897) | 9.901 (5.865) |
Test set mean(std) % | 88.667 (1.738) | 93.380 (1.750) | 77.126 (4.315) | 90.930 (1.566) | 92.125 (1.213) | 85.253 (2.305) | 22.874 (4.315) | 6.620 (1.750) | |
Support Vector Machine | CV Score mean(std) % | 79.250 (6.805) | 88.709 (6.534) | 58.431 (13.344) | 83.532 (8.427) | 85.637 (5.066) | 73.570 (7.429) | 41.569 (13.344) | 11.291 (6.534) |
Test set % | 85.0 | 95.8 | 58.6 | 85.0 | 90.0 | 77.1 | 41.3 | 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, F.; Gilani, S.O.; Latif, S.; Waris, A.; Jamil, M.; Waqas, A. Predicting Risk of Antenatal Depression and Anxiety Using Multi-Layer Perceptrons and Support Vector Machines. J. Pers. Med. 2021, 11, 199. https://doi.org/10.3390/jpm11030199
Javed F, Gilani SO, Latif S, Waris A, Jamil M, Waqas A. Predicting Risk of Antenatal Depression and Anxiety Using Multi-Layer Perceptrons and Support Vector Machines. Journal of Personalized Medicine. 2021; 11(3):199. https://doi.org/10.3390/jpm11030199
Chicago/Turabian StyleJaved, Fajar, Syed Omer Gilani, Seemab Latif, Asim Waris, Mohsin Jamil, and Ahmed Waqas. 2021. "Predicting Risk of Antenatal Depression and Anxiety Using Multi-Layer Perceptrons and Support Vector Machines" Journal of Personalized Medicine 11, no. 3: 199. https://doi.org/10.3390/jpm11030199
APA StyleJaved, F., Gilani, S. O., Latif, S., Waris, A., Jamil, M., & Waqas, A. (2021). Predicting Risk of Antenatal Depression and Anxiety Using Multi-Layer Perceptrons and Support Vector Machines. Journal of Personalized Medicine, 11(3), 199. https://doi.org/10.3390/jpm11030199