Alterations of Left Ventricular Function Persisting during Post-Acute COVID-19 in Subjects without Previously Diagnosed Cardiovascular Pathology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Methods
- -
- the assessment of LV ejection fraction (LVEF); by the modified Simpson rule, values of LVEF < 50% being considered abnormal;
- -
- the measurement of the lateral mitral annular plane systolic excursion (MAPSE); values < 10 mm being considered pathologically;
- -
- the assessment, in Tissue Doppler imaging (TDI), of the average systolic mitral annular velocity (LV-S’); values under 0.07 m/s being considered abnormal;
- -
- the quantification of the LV global longitudinal strain (LV-GLS) was realized from apical 2-, 3-, and 4-chamber view, the region of interest being automatically generated and, after tracing the LV endocardial border, manual corrections were subsequently performed to fit the thickness of the LV myocardial wall [20,21,22]. Values under −18% suggested an impaired LV systolic function (LV-SF).
- -
- the assessment of left ventricular mass index (LVMI); values of over 115 g/m2 for males and 95 g/m2 for females defined left ventricular hypertrophy (LVH);
- -
- left atrial volume index (LAVI); values over 34 mL were considered pathological;
- -
- in pulsed Doppler, in apical 4-chamber view, we registered the mitral inflow at the level of the mitral valve annulus and analyzed the peak early diastolic velocity (E), the late diastolic velocity (A), and the E/A ratio.
- -
- TDI was used to record the early diastolic velocity (e’) and the late diastolic velocity at the level of the septal and lateral mitral annulus. Subsequently, an average and E/e’ ratio were calculated. Type I of DD was defined by an E/A ratio ≤0.8 and E < 50cm/Sec, while type III DD was confirmed by an E/A ratio of over 2. In case of an E/A ratio ≤ 0.8, but with an E of over 50 cm/Sec, or if the E/A was between 0.8 and 2, a type II DD was considered, and was certified if at least two of the following three criteria were present: an average E/e’ > 14, LAVI > 34 mL/m2, and/or TRV > 2.8 m/Sec. In cases where only one of the three previously mentioned criteria were fulfilled, a type I DD was diagnosed [23].
- -
- tricuspid annular plane systolic excursion (TAPSE) was measured at the level of the lateral tricuspid valve annulus in M-Mode;
- -
- tricuspid regurgitation velocity (TRV) was recorded by continuous-wave Doppler, from the apical window, at the level of the tricuspid valve;
- -
- echocardiographically determined systolic PAP (sPAP) was assessed based on the peak TRV, taking into account the right atrial pressure, determined by measuring the inferior vena cava diameter and its respiratory variations. In this study, we considered that sPAP values of ≥35 mmHg at rest indicate PH [14,16] with severity ranging from mild (35–44 mmHg) to moderate (45–60 mmHg) to severe (>60 mmHg) [24,25];
- -
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.-Y.; Ma, Y.-T.; Zhang, J.-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef] [Green Version]
- Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China—The Lancet. Available online: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30183-5/fulltext (accessed on 1 December 2020).
- World Health Organisation. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19–11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 28 August 2020).
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R.; Nahid, M.; Ringel, J.B.; et al. Clinical Characteristics of Covid-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef]
- Deng, Q.; Hu, B.; Zhang, Y.; Wang, H.; Zhou, X.; Hu, W.; Cheng, Y.; Yan, J.; Ping, H.; Zhou, Q. Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. Int. J. Cardiol. 2020, 311, 116–121. [Google Scholar] [CrossRef]
- Xiong, T.-Y.; Redwood, S.; Prendergast, B.; Chen, M. Coronaviruses and the cardiovascular system: Acute and long-term implications. Eur. Hear. J. 2020, 41, 1798–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longhitano, Y.; Racca, F.; Zanza, C.; Piccioni, A.; Audo, A.; Muncinelli, M.; Santi, R.; Kozel, D.; Geraci, C.; Taverna, M.; et al. Venous thromboembolism in critically ill patients affected by ARDS related to COVID-19 in Northern-West Italy. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9154–9160. [Google Scholar] [CrossRef] [PubMed]
- Longhitano, Y.; Racca, F.; Zanza, C.; Muncinelli, M.; Guagliano, A.; Peretti, E.; Minerba, A.C.; Mari, M.; Boverio, R.; Salio, M.; et al. Venous Thrombo-Embolism in Hospitalized SARS-CoV-2 Patients Treated with Three Different Anticoagulation Protocols: Prospective Observational Study. Biology (Basel) 2020, 9, 310. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Fonarow, G.C. Coronavirus Disease 2019 (COVID-19) and the Heart—Is Heart Failure the Next Chapter? JAMA Cardiol. 2020, 5, 1216. [Google Scholar] [CrossRef]
- Hu, H.; Ma, F.; Wei, X.; Fang, Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur. Hear. J. 2021, 42, 206. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Piccioni, A.; Brigida, M.; Loria, V.; Zanza, C.; Longhitano, Y.; Zaccaria, R.; Racco, S.; Gasbarrini, A.; Ojetti, V.; Franceschi, F.; et al. Role of troponin in COVID-19 pandemic: A review of literature. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 10293–10300. [Google Scholar]
- Siripanthong, B.; Nazarian, S.; Muser, D.; Deo, R.; Santangeli, P.; Khanji, M.Y.; Cooper, L.T.; Chahal, C.A.A. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Hear. Rhythm. 2020, 17, 1463–1471. [Google Scholar] [CrossRef] [PubMed]
- Bursi, F.; Santangelo, G.; Sansalone, D.; Valli, F.; Vella, A.M.; Toriello, F.; Barbieri, A.; Carugo, S. Prognostic utility of quantitative offline 2D-echocardiography in hospitalized patients with COVID-19 disease. Echocardiography 2020, 37, 2029–2039. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, C.; Collins, L.F.; Malani, P. Long-term Health Consequences of COVID-19. JAMA 2020, 324, 1723. [Google Scholar] [CrossRef] [PubMed]
- Francone, M.; Iafrate, F.; Masci, G.M.; Coco, S.; Cilia, F.; Manganaro, L.; Panebianco, V.; Andreoli, C.; Colaiacomo, M.C.; Zingaropoli, M.A.; et al. Chest CT score in COVID-19 patients: Correlation with disease severity and short-term prognosis. Eur. Radiol. 2020, 30, 1–10. [Google Scholar] [CrossRef]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.S.; et al. Recommendations for Chamber Quantification: A Report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, Developed in Conjunction with the European Association of Echocardiography, a Branch of the European Society of Cardiology. J. Am. Soc. Echocardiogr. 2005, 18, 1440–1463. [Google Scholar] [CrossRef]
- Janus, S.E.; Hajjari, J.; Karnib, M.; Tashtish, N.; Al-Kindi, S.G.; Hoit, B.D. Prognostic Value of Left Ventricular Global Longitudinal Strain in COVID-19. Am. J. Cardiol. 2020, 131, 134–136. [Google Scholar] [CrossRef]
- Goerlich, E.; Gilotra, N.A.; Minhas, A.S.; Bavaro, N.; Hays, A.G.; Cingolani, O.H. Prominent Longitudinal Strain Reduction of Basal Left Ventricular Segments in Patients With Coronavirus Disease-19. J. Card. Fail. 2021, 27, 100–104. [Google Scholar] [CrossRef]
- Yingchoncharoen, T.; Agarwal, S.; Popović, Z.B.; Marwick, T.H. Normal Ranges of Left Ventricular Strain: A Meta-Analysis. J. Am. Soc. Echocardiogr. 2013, 26, 185–191. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelista, A. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography. J. Am. Soc. Echocardiogr. 2009, 22, 107–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrettou, A.-R.; Parissis, J.; Ikonomidis, I. The Dual Role of Echocardiography in the Diagnosis of Acute Cardiac Complications and Treatment Monitoring for Coronavirus Disease 2019 (COVID-19). Front. Cardiovasc. Med. 2020, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Baycan, O.F.; Barman, H.A.; Atici, A.; Tatlisu, A.; Bolen, F.; Ergen, P.; Icten, S.; Gungor, B.; Caliskan, M. Evaluation of biventricular function in patients with COVID-19 using speckle tracking echocardiography. Int. J. Cardiovasc. Imaging 2021, 37, 135–144. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Zhu, S.; Xie, Y.; Wang, B.; He, L.; Zhang, D.; Zhang, Y.; Yuan, H.; Wu, C.; et al. Prognostic Value of Right Ventricular Longitudinal Strain in Patients With COVID-19. JACC Cardiovasc. Imaging 2020, 13, 2287–2299. [Google Scholar] [CrossRef]
- Freaney, P.M.; Shah, S.J.; Khan, S.S. COVID-19 and Heart Failure with Preserved Ejection Fraction. JAMA 2020, 324, 1499. [Google Scholar] [CrossRef] [PubMed]
- Szekely, Y.; Lichter, Y.; Taieb, P.; Banai, A.; Hochstadt, A.; Merdler, I.; Oz, A.G.; Rothschild, E.; Baruch, G.; Peri, Y.; et al. Spectrum of Cardiac Manifestations in COVID-19. Circulation 2020, 142, 342–353. [Google Scholar] [CrossRef]
- Argulian, E.; Sud, K.; Vogel, B.; Bohra, C.; Garg, V.P.; Talebi, S.; Lerakis, S.; Narula, J. Right Ventricular Dilation in Hospitalized Patients with COVID-19 Infection. JACC Cardiovasc. Imaging 2020, 13, 2459–2461. [Google Scholar] [CrossRef]
- Zanza, C.; Racca, F.; Longhitano, Y.; Piccioni, A.; Franceschi, F.; Artico, M.; Abenavoli, L.; Maiese, A.; Passaro, G.; Volonnino, G.; et al. Risk Management and Treatment of Coagulation Disorders Related to COVID-19 Infection. Int. J. Environ. Res. Public Heal. 2021, 18, 1268. [Google Scholar] [CrossRef]
- Zanza, C.; Longhitano, Y.; Artico, M.; Cammarota, G.; Barbanera, A.; Racca, F.; Audo, A.; Ravera, E.; Migneco, A.; Piccioni, A.; et al. Bedside Cardiac Pocus in Emergency Setting: A Practice Review. Rev. Recent Clin. Trials 2021, 15, 269–277. [Google Scholar] [CrossRef]
- Greenhalgh, T.; Knight, M.; A’Court, C.; Buxton, M.; Husain, L. Management of post-acute covid-19 in primary care. BMJ 2020, 370, m3026. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
-aged under 55 years | -age over 55 years |
-patients hospitalized during the first COVID-19 outbreak for a mild/moderate form | -severe/critical form of COVID-19 pulmonary infection |
-diagnosis confirmed by a positive result of real-time reverse transcriptase–polymerase chain reaction of nasal and pharyngeal swabs | -respiratory insufficiency, requiring mechanical ventilation and/or intensive care unit (ICU) stay, during hospitalization |
-TCT documented pneumonia | -absence of TCT or of pulmonary lesions on TCT |
-a normal routine TTE performed at admission | -patients diagnosed during the study with significant cardiac pathology |
-without history of significant CV diseases or diabetes mellitus |
Characteristics | A—Patients without DD and Normal LV-SF n = 93 (74.4%) | B—Patients with DD and Normal LV-SF n = 21 (16.8%) | C—Patients with Altered LV-SF n = 11 (8.8%) | p |
---|---|---|---|---|
Gender: Male Female | 46 (49.46%) 47 (50.53%) | 8 (38.08%)13 (61.9%) | 8 (72.72%) 3 (27.27%) | 0.176 a |
Age (median) | 46 (39.5–50) | 50 (43.5–54) | 49 (42–52) | 0.239 b |
BMI (Kg/m2) | 26.7 (23.5–30.3) | 28.56 (26.84–31.18) | 29.4 (24.47–31.8) | 0.106 b |
TCT global score | 4 (3–5) | 7 (5–8) | 10 (8–12) | <0.001 b |
<10 points ≥10 points | 91 (97.84%) 2 (2.15%) | 12 (57.14%) 9 (42.85%) | 5 (45.45%) 6 (54.54%) | <0.001 a |
Laboratory results | ||||
Leukocytes (/uL) | 5761 (4279–7604.5) | 6970 (4995–9985) | 5820 (3580–8880) | 0.255 b |
Lymphocytes (/uL) | 1790 (1410–2454.5) | 2030 (1415–3035) | 1500 (890–2230) | 0.166 b |
D-dimer (ng/mL) | 0.33 (0.30–0.41) | 0.4 (0.33–0.48) | 0.3 (0.25–0.35) | 0.026 b |
CRP (mg/L) | 28.05 (8.76–39.95) | 35.48 (21.9–50) | 57.7 (36.7–59.78) | <0.001 b |
Fibrinogen (g/L) | 2.92 (2.51–3.54) | 4.12 (3.22–5.4) | 5.45 (4.58–6.57) | <0.001 b |
Interleukin-6 (pg/mL) | 5.1 (3.65–6.9) | 6.9 (5.56–9.3) | 10.6 (8.6–12) | <0.001 b |
CK-MB (UI/L) | 25 (20–28) | 30 (22.5–42.5) | 60 (56–70) | <0.001 b |
Creatinine (mg/dL) | 0.78 (074–0.86) | 0.83 (0.74–0.98) | 0.97 (0.88–1.05) | <0.001 b |
Time to normal RT-PCR (days) | 16 (14–17) | 15 (14–20) | 20 (14–27) | 0.025 b |
Characteristics | Patients without DD and Normal LV-SF n = 93 (74.4%) | Patients with DD with and without Altered LV-SF n = 32 (25.6%) | p |
---|---|---|---|
Echocardiography parameters characterizing left ventricular function | |||
LAVI (ml/m2) | 20.6 (19.55–24.9) | 34.2 (24.4–35) | <0.001 |
LVMI (g/m2) | 96.7 (91.5–107.05) | 104.3 (94.7–114.5) | 0.008 |
MAPSE lateral (mm) | 18 (15.5–21) | 12.5 (8.25–19.75) | <0.001 |
LVEF Simpson (%) | 60 (56–65) | 52 (45–58.75) | <0.001 |
VE (m/s) | 0.67 (0.63–0.72) | 0.7 (0.54–0.81) | 0.356 |
VA (m/s) | 0.6 (0.55–0.67) | 0.63 (0.44–0.75) | 0.939 |
E/A | 1.1 (1.02–1.15) | 1.03 (0.75–1.75) | 0.523 |
Ve’ average (cm/s) | 7.5 (6.7–8.1) | 5.4 (4.7–5.9) | <0.001 |
E/e’ average | 8.93 (8.52–9.51) | 14.2 (10.84–14.51) | <0.001 |
VS’ average (cm/s) | 9 (8.3–9.6) | 8.3 (6.2–9.4) | 0.007 |
LV-GLS (%) | −20 (−22–−19) | −18 (−20–−15.2) | <0.001 |
Echocardiography parameters for right ventricular function | |||
TAPSE lateral (mm) | 23 (22–24) | 21 (17.8–23) | <0.001 |
TRVmax (m/s) | 2.3 (2.1–2.46) | 3 (2.68–3.23) | <0.001 |
sPAP (mmHg) | 26.16 (22.64–29.2) | 41 (33.8–46.9) | <0.001 |
RV-GLS (%) | −29 (–30–−28) | −27 (–28–−19) | <0.001 |
LV−GLS | Age | LVEF Simpson | MAPSE | TRVMax | RV−GLS | E/e’ | TCT Score | CK−MB | CRP | Inter-Leukin6 | Fibri-Nogen |
---|---|---|---|---|---|---|---|---|---|---|---|
R | 0.272 | −0.797 | −0.734 | 0.507 | 0.290 | 0.265 | 0.367 | 0.631 | 0.390 | 0.404 | 0.312 |
p | 0.002 | 0.000 | 0.000 | 0.000 | 0.001 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
95%CI | 0.093 | −0.864 | −0.828 | 0.343 | 0.108 | 0.080 | 0.182 | 0.494 | 0.220 | 0.234 | 0.129 |
0.416 | −0.706 | −0.622 | 0.640 | 0.467 | 0.452 | 0.540 | 0.737 | 0.560 | 0.556 | 0.494 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudoran, M.; Tudoran, C.; Lazureanu, V.E.; Marinescu, A.R.; Pop, G.N.; Pescariu, A.S.; Enache, A.; Cut, T.G. Alterations of Left Ventricular Function Persisting during Post-Acute COVID-19 in Subjects without Previously Diagnosed Cardiovascular Pathology. J. Pers. Med. 2021, 11, 225. https://doi.org/10.3390/jpm11030225
Tudoran M, Tudoran C, Lazureanu VE, Marinescu AR, Pop GN, Pescariu AS, Enache A, Cut TG. Alterations of Left Ventricular Function Persisting during Post-Acute COVID-19 in Subjects without Previously Diagnosed Cardiovascular Pathology. Journal of Personalized Medicine. 2021; 11(3):225. https://doi.org/10.3390/jpm11030225
Chicago/Turabian StyleTudoran, Mariana, Cristina Tudoran, Voichita Elena Lazureanu, Adelina Raluca Marinescu, Gheorghe Nicusor Pop, Alexandru Silvius Pescariu, Alexandra Enache, and Talida Georgiana Cut. 2021. "Alterations of Left Ventricular Function Persisting during Post-Acute COVID-19 in Subjects without Previously Diagnosed Cardiovascular Pathology" Journal of Personalized Medicine 11, no. 3: 225. https://doi.org/10.3390/jpm11030225
APA StyleTudoran, M., Tudoran, C., Lazureanu, V. E., Marinescu, A. R., Pop, G. N., Pescariu, A. S., Enache, A., & Cut, T. G. (2021). Alterations of Left Ventricular Function Persisting during Post-Acute COVID-19 in Subjects without Previously Diagnosed Cardiovascular Pathology. Journal of Personalized Medicine, 11(3), 225. https://doi.org/10.3390/jpm11030225