Predictive Biomarkers of COVID-19 Severity in SARS-CoV-2 Infected Patients with Obesity and Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Data Collection
2.3. Biochemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of Participants
3.2. Evaluation of Clinical Outcome of COVID-19 Regarding the Presence of Obesity and Metabolic Syndrome
3.3. Correlation between Clinical and Biochemical Variables with COVID-19 Severity
3.4. Predictive Value of Clinical and Biochemical Variables of COVID-19 Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Deng, S.-Q.; Peng, H.-J. Characteristics of and Public Health Responses to the Coronavirus Disease 2019 Outbreak in China. J. Clin. Med. 2020, 9, 575. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Ghosh, A.; Singh, A.K.; Misra, A. Clinical Considerations for Patients with Diabetes in Times of COVID-19 Epidemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.H.; Ravussin, E.; Heymsfield, S. COVID 19 and the Patient with Obesity—The Editors Speak Out. Obesity 2020, 28, 847. [Google Scholar] [CrossRef] [Green Version]
- del Rio, C.; Malani, P.N. COVID-19—New Insights on a Rapidly Changing Epidemic. JAMA J. Am. Med Assoc. 2020, 323, 1092–1093. [Google Scholar] [CrossRef] [Green Version]
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M.; et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obesity 2020, 28, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Chen, F.; Wang, T.; Luo, F.; Liu, X.; Wu, Q.; He, Q.; Wang, Z.; Liu, Y.; Liu, L.; et al. Obesity and COVID-19 Severity in a Designated Hospital in Shenzhen, China. Diabetes Care 2020, 43, 1392–1398. [Google Scholar] [CrossRef]
- Lighter, J.; Phillips, M.; Hochman, S.; Sterling, S.; Johnson, D.; Francois, F.; Stachel, A. Obesity in Patients Younger than 60 Years Is a Risk Factor for Covid-19 Hospital Admission. Clin. Infect. Dis. 2020, 71, 896–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhaskaran, K.; Dos-Santos-Silva, I.; Leon, D.A.; Douglas, I.J.; Smeeth, L. Association of BMI with Overall and Cause-Specific Mortality: A Population-Based Cohort Study of 3·6 Million Adults in the UK. Lancet Diabetes Endocrinol. 2018, 6, 944–953. [Google Scholar] [CrossRef] [Green Version]
- Morgan, O.W.; Bramley, A.; Fowlkes, A.; Freedman, D.S.; Taylor, T.H.; Gargiullo, P.; Belay, B.; Jain, S.; Cox, C.; Kamimoto, L.; et al. Morbid Obesity as a Risk Factor for Hospitalization and Death Due to 2009 Pandemic Influenza A(H1N1) Disease. PLoS ONE 2010, 5, e9694. [Google Scholar] [CrossRef]
- Huttunen, R.; Syrjänen, J. Obesity and the Risk and Outcome of Infection. Int. J. Obes. 2013, 37, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.K.; Feng, Y.; Yuan, M.Y.; Yuan, S.Y.; Fu, H.J.; Wu, B.Y.; Sun, G.Z.; Yang, G.R.; Zhang, X.L.; Wang, L.; et al. Plasma Glucose Levels and Diabetes Are Independent Predictors for Mortality and Morbidity in Patients with SARS. Diabet. Med. 2006, 23, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zheng, Z.; Zhang, C.; Zhang, X.; Wu, H.; Wang, J.; Wang, S.; Zheng, C. Clinical Characteristics of 145 Patients with Corona Virus Disease 2019 (COVID-19) in Taizhou, Zhejiang, China. Infection 2020, 48, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Luzi, L.; Radaelli, M.G. Influenza and Obesity: Its Odd Relationship and the Lessons for COVID-19 Pandemic. Acta Diabetol. 2020, 57, 759–764. [Google Scholar] [CrossRef] [Green Version]
- Benetti, E.; Giliberti, A.; Emiliozzi, A.; Valentino, F.; Bergantini, L.; Fallerini, C.; Anedda, F.; Amitrano, S.; Conticini, E.; Tita, R.; et al. Clinical and Molecular Characterization of COVID-19 Hospitalized Patients. PLoS ONE 2020, 15, e0242534. [Google Scholar] [CrossRef]
- Zank, D.C.; Bueno, M.; Mora, A.L.; Rojas, M. Idiopathic Pulmonary Fibrosis: Aging, Mitochondrial Dysfunction, and Cellular Bioenergetics. Front. Med. 2018, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, N.; Oyama, Y.; Yasui, H.; Karayama, M.; Hozumi, H.; Suzuki, Y.; Kono, M.; Furuhashi, K.; Fujisawa, T.; Inui, N.; et al. Analysis of Serum Adiponectin and Leptin in Patients with Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Sci. Rep. 2019, 9, 10484. [Google Scholar] [CrossRef] [Green Version]
- d’Alessandro, M.; Bergantini, L.; Cameli, P.; Lanzarone, N.; Perillo, F.; Perrone, A.; Bargagli, E. BAL and Serum Multiplex Lipid Profiling in Idiopathic Pulmonary Fibrosis and Fibrotic Hypersensitivity Pneumonitis. Life Sci. 2020, 256, 117995. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO R&D Blueprint Novel Coronavirus COVID-19 Therapeutic Trial Synopsis; World Health Organization: Geneva, Switzerland, 2020; pp. 1–9. [Google Scholar]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Caussy, C.; Pattou, F.; Wallet, F.; Simon, C.; Chalopin, S.; Telliam, C.; Mathieu, D.; Subtil, F.; Frobert, E.; Alligier, M.; et al. Prevalence of Obesity among Adult Inpatients with COVID-19 in France. Lancet 2020, 1–3. [Google Scholar] [CrossRef]
- Cunningham, J.W.; Vaduganathan, M.; Claggett, B.L.; Jering, K.S.; Bhatt, A.S.; Rosenthal, N.; Solomon, S.D. Clinical Outcomes in Young US Adults Hospitalized with COVID-19. JAMA Intern. Med. 2020, 8–10. [Google Scholar] [CrossRef]
- Tamara, A.; Tahapary, D.L. Obesity as a Predictor for a Poor Prognosis of COVID-19: A Systematic Review. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Palaiodimos, L.; Kokkinidis, D.G.; Li, W.; Karamanis, D.; Ognibene, J.; Arora, S.; Southern, W.N.; Mantzoros, C.S. Severe Obesity Is Associated with Higher In-Hospital Mortality in a Cohort of Patients with COVID-19 in the Bronx, New York. Metab. Clin. Exp. 2020, 108, 154262. [Google Scholar] [CrossRef] [PubMed]
- Kalligeros, M.; Shehadeh, F.; Mylona, E.K.; Benitez, G.; Beckwith, C.G.; Chan, P.A.; Mylonakis, E. Association of Obesity with Disease Severity Among Patients with Coronavirus Disease 2019. Obesity 2020, 28, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Mesas, A.E.; Cavero-Redondo, I.; Álvarez-Bueno, C.; Cabrera, M.A.S.; de Andrade, S.M.; Sequí-Dominguez, I.; Martínez-Vizcaíno, V. Predictors of In-Hospital COVID-19 Mortality: A Comprehensive Systematic Review and Meta-Analysis Exploring Differences by Age, Sex and Health Conditions. PLoS ONE 2020, 15, e0241742. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yu, X.; Zhao, H.; Wang, H.; Zhao, R.; Sheng, J. Host Susceptibility to Severe COVID-19 and Establishment of a Host Risk Score: Findings of 487 Cases Outside Wuhan. Crit. Care 2020, 24, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Marhl, M.; Grubelnik, V. Diabetes and Metabolic Syndrome as Risk Factors for COVID-19. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 671–677. [Google Scholar] [CrossRef]
- Pasquarelli-do-Nascimento, G.; Braz-de-Melo, H.A.; Faria, S.S.; Santos, I.D.O.; Kobinger, G.P.; Magalhães, K.G. Hypercoagulopathy and Adipose Tissue Exacerbated Inflammation May Explain Higher Mortality in COVID-19 Patients With Obesity. Front. Endocrinol. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk Factors Associated with Mortality among Patients with COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef]
- Gupta, S.; Hayek, S.S.; Wang, W.; Chan, L.; Mathews, K.S.; Melamed, M.L.; Brenner, S.K.; Leonberg-Yoo, A.; Schenck, E.J.; Radbel, J.; et al. Factors Associated with Death in Critically Ill Patients with Coronavirus Disease 2019 in the US. JAMA Intern. Med. 2020. [Google Scholar] [CrossRef]
- da Silveira, M.P.; da Silva Fagundes, K.K.; Bizuti, M.R.; Starck, É.; Rossi, R.C.; de Resende e Silva, D.T. Physical Exercise as a Tool to Help the Immune System against COVID-19: An Integrative Review of the Current Literature. Clin. Exp. Med. 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Farias, F.; Reis, W.; Ribeiro, A.C.; Guimaraes, R.; Duarte, R.-S.; Assunçao, W. Metabolic Syndrome and COVID-19: An Update on the Associated Comorbidities and Proposed Therapies. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 809–814. [Google Scholar] [CrossRef]
- Samaee, H.; Mohsenzadegan, M.; Ala, S.; Sedigh, S. Tocilizumab for Treatment Patients with COVID-19: Recommended Medication for Novel Disease. Int. Immunopharmacol. 2020, 89, 107018. [Google Scholar] [CrossRef]
- Qiu, P.; Zhou, Y.; Wang, F.; Wang, H.; Zhang, M.; Pan, X.; Zhao, Q.; Liu, J. Clinical Characteristics, Laboratory Outcome Characteristics, Comorbidities, and Complications of Related COVID-19 Deceased: A Systematic Review and Meta-Analysis. Aging Clin. Exp. Res. 2020, 32, 1869–1878. [Google Scholar] [CrossRef]
- Martins-Filho, P.R.; Tavares, C.S.S.; Santos, V.S. Factors Associated with Mortality in Patients with COVID-19. A Quantitative Evidence Synthesis of Clinical and Laboratory Data. Eur. J. Intern. Med. 2020, 76, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Trecarichi, E.M.; Mazzitelli, M.; Serapide, F.; Pelle, M.C.; Tassone, B.; Arrighi, E.; Perri, G.; Fusco, P.; Scaglione, V.; Davoli, C.; et al. Clinical Characteristics and Predictors of Mortality Associated with COVID-19 in Elderly Patients from a Long-Term Care Facility. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Cheng, A.; Wang, Y.; Li, H.; Hu, L.; Zhao, X.; Wang, T.; He, F. Cytokines and Their Relationship with the Severity and Prognosis of Coronavirus Disease 2019 ( COVID-19 ): A Retrospective Cohort Study. BMJ Open 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Grifoni, E.; Valoriani, A.; Cei, F.; Lamanna, R.; Gelli, A.M.G.; Ciambotti, B.; Vannucchi, V.; Moroni, F.; Pelagatti, L.; Tarquini, R.; et al. Interleukin-6 as Prognosticator in Patients with COVID-19. J. Infect. 2020, 81, 452–482. [Google Scholar] [CrossRef]
- Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X. Prognostic Value of Interleukin-6, C-Reactive Protein, and Procalcitonin in Patients. J. Clin. Virol. 2020, 127, 104370. [Google Scholar] [CrossRef]
Variables | WOB (n = 176) Mean ± SD; N (%) | OB (n = 67) Mean + SD; N (%) | p-Value | |
---|---|---|---|---|
Age (years) | 57 (41.25–72) | 56 (44–68) | 0.678 | |
Sex (%) | Male | 88 (50) | 33 (49.3) | 0.917 |
Female | 88 (50) | 34 (50.7) | ||
BMI (kg/m2) | 25.1 (22.92–27.34) | 34.08 (31.25–37.70) | <0.001 * | |
SBP (mmHg) | 126.62 (20.13) | 132.58 (20.19) | 0.062 | |
DBP (mmHg) | 77 (69–85) | 80 (71–88.25) | 0.085 | |
Background (N (%)) | ||||
Exercise | 77 (53.5) | 17 (30.4) | 0.003 * | |
Smoking | Active | 16 (9.4) | 5 (7.7) | 0.737 |
Former | 19 (11.2) | 7 (10.8) | 0.687 | |
Alcohol consumer | 32 (19.2) | 11 (17.5) | 0.938 | |
MS | 10 (5.7) | 24 (35.8) | <0.001 * | |
T2DM | 20 (11.4) | 15 (22.4) | 0.029 * | |
Dyslipidemia | 51 (29) | 20 (29.9) | 0.849 | |
Hypertension | 55 (31.3) | 32 (47.8) | 0.017 * | |
CVD | 30 (17) | 8 (11.9) | 0.329 | |
Respiratory diseases | 13 (7.4) | 7 (10.4) | 0.439 | |
Cancer | 15 (8.5) | 6 (9) | 0.915 | |
Clinical Characteristics (N (%)) | ||||
Symptoms | Mild | 57 (32.4) | 12 (17.9) | 0.026 * |
Moderate | 73 (41.5) | 39 (58.2) | 0.020 * | |
Critical | 36 (20.5) | 14 (22.8) | 0.940 | |
ICU admission | 33 (18.8) | 13 (20.9) | 0.908 | |
Mortality | 13 (7.4) | 8 (11.9) | 0.260 | |
Radiological characteristics | Bilateral interstitial pattern | 90 (51.1) | 45 (67.2) | 0.025 * |
Pleural effusion | 2 (1.1) | 0 (0) | 0.382 | |
Pneumonia | Mild | 17 (9.7) | 4 (6) | 0.361 |
Moderate | 68 (38.6) | 37 (55.2) | 0.020 * | |
Severe | 37 (21) | 17 (25.4) | 0.467 | |
Respiratory failure | 66 (37.5) | 34 (50.7) | 0.061 | |
PTE | 4 (2.3) | 3 (4.5) | 0.359 | |
Treatment (N (%)) | ||||
Hydroxychloroquine | 73 (41.5) | 30 (44.8) | 0.643 | |
Azithromycin | 63 (35.8) | 29 (43.9) | 0.246 | |
Lopinavir-ritonavir | 59 (33.5) | 22 (32.8) | 0.919 | |
Tocilizumab | 3 (1.7) | 5 (7.5) | 0.025 * | |
Interferon | 9 (5.1) | 2 (3) | 0.477 | |
Corticosteroids | 44 (25) | 23 (34.3) | 0.147 | |
Remdesivir | 21 (11.9) | 13 (19.4) | 0.134 | |
Other | 101 (57.4) | 47 (70.1) | 0.069 | |
Oxygen Therapy (N (%)) | ||||
Oxygen mask or nasal | 80 (45.5) | 36 (53.7) | 0.249 | |
High-flow nasal cannulas | 27 (15.3) | 10 (14.9) | 0.936 | |
NIV | CPAP | 3 (1.7) | 3 (4.5) | 0.214 |
BiPAP | 1 (0.6) | 1 (1.5) | 0.477 | |
MV | Intubation | 29 (16.5) | 9 (13.4) | 0.560 |
Mask with reservoir | 9 (5.1) | 8 (11.9) | 0.063 | |
MV/ECMO | Vasopressors | 22 (12.5) | 9 (13.4) | 0.846 |
Dialysis | 5 (2.8) | 2 (3) | 0.312 | |
Biochemical Parameters (Mean (SD); Median (25th–75th Percentiles)) | ||||
Leukocytes (x109/L) | 6.61 (4.33–3.37) | 6.37 (4.97–8.66) | 0.727 | |
Lymphocytes (%) | 15.1 (9–25.4) | 16.85 (11–23.02) | 0.404 | |
D-Dimer (ng/mL) | 579 (366–1190) | 591 (429–979) | 0.559 | |
ESR (mm) | 64 (38–97.5) | 54 (32–73.5) | 0.120 | |
IL-6 (pg/mL) | 8.46 (4.52–29.17) | 13.3 (6.7–38.5) | 0.174 | |
Ferritin (ng/mL) | 400 (160.75–831.5) | 414 (149.25–633) | 0.836 | |
CRP (mg/dL) | 7.1 (2.6–14) | 7.5 (3.35–14.8) | 0.568 | |
Glucose (mg/dL) | 102.5 (86–125) | 117 (99–141) | 0.006 * | |
Total-cholesterol (mg/dL) | 133.2 (37.37) | 144.88 (32.30) | 0.015 * | |
HDL-c (mg/dL) | 31.5 (9.92) | 31.25 (8.73) | 0.999 | |
LDL-c (mg/dL) | 70.46 (27.52) | 95.96 (27.95) | 0.102 | |
Triglycerides (mg/dL) | 119 (89–224) | 142.5 (97.25–156.75) | 0.896 | |
Creatinine (mg/dL) | 0.79 (0.61–0.95) | 0.74 (0.66–0.93) | 0.714 | |
AST (U/L) | 31 (23–44) | 33.5 (21.75–48) | 0.347 | |
ALT (U/L) | 28 (19–52.75) | 32.5 (21.25–58.5) | 0.191 | |
GGT (U/L) | 49 (25–89) | 57.5 (38.5–89.75) | 0.157 | |
AP (U/L) | 69 (54–90) | 68.5 (54.25–92.5) | 0.600 | |
LDH (U/L) | 263 (221.25–315) | 287 (237.5–344) | 0.047 * | |
Troponin (ng/L) | 8 (3.75–19.25) | 6 (3–26) | 0.666 |
Variables | NMS (n = 255) Mean ± SD; N (%) | MS (n = 48) Mean + SD; N (%) | p-Value | |||
---|---|---|---|---|---|---|
Age (years) | 56 (41–72) | 72.5 (64.25–78) | <0.001 * | |||
Sex (%) | Male | 126 (49.4) | 33 (68.8) | 0.014 * | ||
Female | 129 (50.6) | 15 (31.3) | ||||
BMI (kg/m2) | 26.06 (23.61–29.31) | 31.63 (27.27–35.12) | <0.001 * | |||
SBP (mmHg) | 127.16 (20.03) | 136.56 (18.27) | 0.003 * | |||
DBP (mmHg) | 78 (70.25–86) | 75 (70.5–82.5) | 0.161 | |||
Background (N (%)) | ||||||
Exercise | 89 (46.6) | 5 (15.6) | 0.001 * | |||
Smoking | Active | 20 (8.4) | 6 (14.3) | 0.291 | ||
Former | 25 (10.5) | 11 (26.2) | 0.010 * | |||
Alcohol consumer | 44 (18.9) | 10 (25) | 0.371 | |||
Obesity | 43 (20.6) | 24 (70.6) | <0.001 * | |||
T2DM | 15 (5.9) | 37 (77.1) | <0.001 * | |||
Dyslipidemia | 57 (22.4) | 43 (89.6) | <0.001 * | |||
Hypertension | 75 (29.4) | 48 (100) | <0.001 * | |||
CVD | 29 (11.4) | 23 (47.9) | <0.001 * | |||
Respiratory diseases | 18 (7.1) | 11 (22.9) | 0.001 * | |||
Cancer | 21 (8.2) | 6 (12.5) | 0.342 | |||
Clinical Characteristics (N (%)) | ||||||
Symptoms | Mild | 69 (27.1) | 5 (10.4) | 0.707 | ||
Moderate | 124 (48.6) | 29 (60.4) | 0.014 * | |||
Critical | 48 (18.8) | 12 (25) | 0.135 | |||
ICU admission | 42 (16.5) | 9 (18.8) | 0.699 | |||
Mortality | 22 (8.6) | 14 (29.2) | <0.001 * | |||
Radiological characteristics | Bilateral interstitial pattern | 149 (58.4) | 32 (66.7) | 0.287 | ||
Pleural effusion | 3 (1.2) | 1 (2.1) | 0.451 | |||
Pneumonia | Mild | 20 (7.8) | 3 (6.3) | 0.703 | ||
Moderate | 117 (45.9) | 22 (45.8) | 0.995 | |||
Severe | 54 (21.2) | 18 (37.5) | 0.015 * | |||
Respiratory failure | 103 (40.4) | 29 (60.4) | 0.01 * | |||
PTE | 6 (2.4) | 2 (4.2) | 0.473 | |||
Treatment (N (%)) | ||||||
Hydroxychloroquine | 110 (43.1) | 20 (41.7) | 0.850 | |||
Azithromycin | 103 (40.4) | 20 (42.6) | 0.782 | |||
Lopinavir-ritonavir | 82 (32.2) | 12 (25) | 0.326 | |||
Tocilizumab | 9 (3.5) | 4 (8.3) | 0.133 | |||
Interferon | 13 (5.1) | 1 (2.1) | 0.362 | |||
Corticosteroids | 71 (27.8) | 17 (35.4) | 0.290 | |||
Remdesivir | 38 (14.9) | 10 (20.8) | 0.303 | |||
Other | 160 (62.7) | 38 (79.2) | 0.029 * | |||
Oxygen Therapy (N (%)) | ||||||
Oxygen mask or nasal | 122 (47.8) | 30 (62.5) | 0.063 | |||
High-flow nasal cannulas | 38 (14.9) | 8 (16.7) | 0.755 | |||
NIV | CPAP | 5 (2) | 2 (4.2) | 0.351 | ||
BiPAP | 2 (0.8) | 0 (0) | 0.539 | |||
MV | Intubation | 35 (13.7) | 8 (16.7) | 0.593 | ||
Mask with reservoir | 19 (7.5) | 6 (12.5) | 0.244 | |||
MV/ECMO | Vasopressors | 28 (11) | 7 (14.6) | 0.474 | ||
Dialysis | 7 (2.7) | 1 (2.1) | 0.793 | |||
Biochemical Parameters (Mean (SD); Median (25th–75th Percentiles)) | ||||||
Leukocytes (x109/L) | 6.62 (4.78–8.70) | 75 (70.5) | 0.870 | |||
Lymphocytes (%) | 16.8 (9.55–24) | 6.47 (4.73–8.55) | 0.219 | |||
D-Dimer (ng/mL) | 620 (395.5–1264.5) | 764 (435.25–1329.25) | 0.295 | |||
ESR (mm) | 60 (36–88.75) | 60 (32.25–115.5) | 0.745 | |||
IL-6 (pg/mL) | 12.55 (5.22–30.37) | 16 (5.88–58.8) | 0.349 | |||
Ferritin (ng/mL) | 418 (162–822) | 396 (167–556) | 0.310 | |||
CRP (mg/dL) | 7.7 (3.1–14) | 7.9 (2.45–16.7) | 0.725 | |||
Glucose (mg/dL) | 103 (85–124) | 132 (107.25–157) | <0.001 * | |||
Total-cholesterol (mg/dL) | 137.35 (34.45) | 132.59 (35.43) | 0.572 | |||
HDL-c (mg/dL) | 31.93 (8.94) | 25.33 (10.11) | 0.284 | |||
LDL-c (mg/dL) | 75.21 (28.72) | 60.67 (23.48) | 0.529 | |||
Triglycerides (mg/dL) | 121.5 (87.5–221.75) | 142.5 (110–165) | 0.734 | |||
Creatinine (mg/dL) | 0.78 (0.62–0.96) | 0.92 (0.75–1.14) | <0.001 * | |||
AST (U/L) | 31.5 (24–45) | 23 (19–48) | 0.098 | |||
ALT (U/L) | 28 (19–52) | 28 (16.25–41.75) | 0.538 | |||
GGT (U/L) | 49 (25–89) | 57.5 (38.5–89.75) | 0.157 | |||
AP (U/L) | 69 (54–90) | 68.5 (54.25–92.5) | 0.600 | |||
LDH (U/L) | 263 (221.25–315) | 287 (237.5–344) | 0.047 * | |||
Troponin (ng/L) | 8 (3.75–19.25) | 6 (3–26) | 0.666 |
Correlations | WHO 4 | WHO 5 | WHO 6 | WHO 7 | WHO 8 |
---|---|---|---|---|---|
Anthropometric Data | |||||
Age (years) | 0.336 ** | 0.182 ** | 0.19 ** | 0.093 | 0.324 ** |
BMI (kg/m2) | 0.187 ** | 0.107 | 0.154 ** | 0.103 | 0.067 |
SBP (mmHg) | 0.112 | −0.017 | 0.052 * | 0.038 | 0.097 |
DBP (mmHg) | −0.07 | −0.094 | −0.075 | −0.143 * | −0.112 |
Background and Comorbidities | |||||
Exercise | −0.308 ** | −0.194 ** | −0.287 ** | −0.22 ** | −0.275 ** |
MS | 0.107 | 0.018 | 0.031 | 0.041 | 0.232 ** |
T2DM | 0.191 ** | 0.125 * | 0.148 * | 0.021 | 0.212 ** |
Dyslipidemia | 0.11 | 0.075 | 0.069 | 0.143 * | 0.176 ** |
Hypertension | 0.286 ** | 0.062 | 0.1 | 0.091 | 0.257 ** |
CVD | 0.069 | −0.046 | −0.048 | 0.002 | 0.157 ** |
Respiratory diseases | −0.035 | 0.019 | −0.003 | −0.082 | 0.123 * |
Cancer | 0.103 | 0.126* | 0.085 | 0.063 | 0.279 ** |
COVID-19 Treatment | |||||
Hydroxychloroquine | 0.664 ** | 0.284 ** | 0.496 ** | 0.336 ** | 0.218 ** |
Azithromycin | 0.217 ** | 0.024 | 0.066 | −0.04 | 0.049 |
Lopinavir−ritonavir | 0.569 ** | 0.293 ** | 0.462 ** | 0.372 ** | 0.107 |
Tocilizumab | 0.146 * | 0.137 * | 0.011 | 0.044 | 0.124 * |
Interferon | 0.219 ** | 0.214 ** | 0.329 ** | 0.416 ** | 0.065 |
Remdesivir | −0.038 | 0.043 | −0.133 * | −0.042 | −0.02 |
Biochemical Parameters | |||||
Leukocytes (x109/L) | 0.057 | 0.024 | 0.16 * | 0.101 | 0.087 |
Lymphocytes (%) | −0.221 ** | −0.217 ** | −0.277 ** | −0.204 ** | −0.158 * |
D-Dimer (ng/mL) | 0.246 ** | 0.119 | 0.192 * | 0.166 ** | 0.236 ** |
ESR (mm) | 0.19 * | 0.097 | 0.114 | 0.138 | 0.036 |
IL-6 (pg/mL) | 0.285 ** | 0.114 | 0.32 ** | 0.222 ** | 0.262 ** |
Ferritin (ng/mL) | 0.194 * | 0.162 * | 0.204 ** | 0.15 * | 0.082 |
CRP (mg/dL) | 0.334 ** | 0.223 ** | 0.323 ** | 0.177 ** | 0.085 |
Glucose (mg/dL) | 0.129 * | 0.038 | 0.116 | 0.106 | 0.165 ** |
Triglycerides (mg/dL) | 0.501 ** | 0.122 | 0.289 | 0.188 | 0.074 |
Creatinine (mg/dL) | 0.056 | −0.026 | 0.065 | 0.091 | 0.212 ** |
AST (U/L) | 0.104 | 0.106 | 0.137 * | 0.111 | 0.02 |
GGT (U/L) | 0.243 ** | 0.121 | 0.15 * | 0.186 ** | −0.054 |
AP (U/L) | 0.092 | 0.021 | 0.146 * | 0.117 | 0.09 |
LDH (U/L) | 0.299 ** | 0.22 ** | 0.286 ** | 0.21 ** | 0.15 * |
Troponin (ng/L) | 0.281 ** | 0.124 | 0.27 ** | 0.244 ** | 0.319 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perpiñan, C.; Bertran, L.; Terra, X.; Aguilar, C.; Lopez-Dupla, M.; Alibalic, A.; Riesco, D.; Camaron, J.; Perrone, F.; Rull, A.; et al. Predictive Biomarkers of COVID-19 Severity in SARS-CoV-2 Infected Patients with Obesity and Metabolic Syndrome. J. Pers. Med. 2021, 11, 227. https://doi.org/10.3390/jpm11030227
Perpiñan C, Bertran L, Terra X, Aguilar C, Lopez-Dupla M, Alibalic A, Riesco D, Camaron J, Perrone F, Rull A, et al. Predictive Biomarkers of COVID-19 Severity in SARS-CoV-2 Infected Patients with Obesity and Metabolic Syndrome. Journal of Personalized Medicine. 2021; 11(3):227. https://doi.org/10.3390/jpm11030227
Chicago/Turabian StylePerpiñan, Carles, Laia Bertran, Ximena Terra, Carmen Aguilar, Miguel Lopez-Dupla, Ajla Alibalic, David Riesco, Javier Camaron, Francesco Perrone, Anna Rull, and et al. 2021. "Predictive Biomarkers of COVID-19 Severity in SARS-CoV-2 Infected Patients with Obesity and Metabolic Syndrome" Journal of Personalized Medicine 11, no. 3: 227. https://doi.org/10.3390/jpm11030227
APA StylePerpiñan, C., Bertran, L., Terra, X., Aguilar, C., Lopez-Dupla, M., Alibalic, A., Riesco, D., Camaron, J., Perrone, F., Rull, A., Reverté, L., Yeregui, E., Marti, A., Vidal, F., & Auguet, T. (2021). Predictive Biomarkers of COVID-19 Severity in SARS-CoV-2 Infected Patients with Obesity and Metabolic Syndrome. Journal of Personalized Medicine, 11(3), 227. https://doi.org/10.3390/jpm11030227