ScanBious: Survey for Obesity Genes Using PubMed Abstracts and DisGeNET
Abstract
:1. Introduction
2. Materials and Methods
2.1. Jaccard Index for PubMed Abstracts
2.2. ScanBious Interface
2.3. Resources and Workflow
- PP “obesity” = PPOb → MeSH Network
- PM “obesity” = PMOb
- PMOb UP = UPOb
- DGN “obesity” = DGNOb → Gene Network
- UPOb DSNOb → Gene Clusters
3. Results
3.1. Obesity Overview
3.2. Network of Obesity Genes from DisGeNET
3.3. Genetic Determinants of Obesity
3.4. Combining the PubMed Survey with DisGeNET Data on Obesity Genes
3.5. Relationships between the Clusters
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choquet, H.; Meyre, D. Genetics of Obesity: What Have We Learned? Curr. Genom. 2012, 12, 169–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barabási, A.L.; Gulbahce, N.; Loscalzo, J. Network Medicine: A Network-Based Approach to Human Disease. Nat. Rev. Genet. 2011, 12, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Goh, K.I.; Cusick, M.E.; Valle, D.; Childs, B.; Vidal, M.; Barabási, A.L. The Human Disease Network. Proc. Natl. Acad. Sci. USA 2007, 104, 8685–8690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Cao, Q.; Liao, S.S. An Overview of Literature on COVID-19, MERS and SARS: Using Text Mining and Latent Dirichlet Allocation. J. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Bian, F.; Li, W.; Li, X.; Lu, J. Application of GoPubMed in bibliometric analysis of literature on CRISPR. Zhonghua Liu Xing Bing Xue Za Zhi 2014, 35, 1400–1403. (In Chinese) [Google Scholar] [PubMed]
- Hooton, F.; Menichetti, G.; Barabási, A.L. Exploring Food Contents in Scientific Literature with FoodMine. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.J.; Sheu, P.C.Y.; Tsai, J.J.P.; Wang, C.C.N.; Chou, C.Y. Text Mining in a Literature Review of Urothelial Cancer Using Topic Model. BMC Cancer 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Doms, A.; Schroeder, M. GoPubMed: Exploring PubMed with the Gene Ontology. Nucleic Acids Res. 2005, 33 (Suppl. 2), W783–W786. [Google Scholar] [CrossRef] [Green Version]
- Ilgisonis, E.; Lisitsa, A.; Kudryavtseva, V.; Ponomarenko, E. Creation of Individual Scientific Concept-Centered Semantic Maps Based on Automated Text-Mining Analysis of PubMed. Adv. Bioinform. 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Ren, J.; Li, G.; Ross, K.; Arighi, C.; McGarvey, P.; Rao, S.; Cowart, J.; Madhavan, S.; Vijay-Shanker, K.; Wu, C.H. ITextMine: Integrated Text-Mining System for Large-Scale Knowledge Extraction from the Literature. Database 2018. [Google Scholar] [CrossRef] [PubMed]
- Ponomarenko, E.A.; Lisitsa, A.V.; Petrak, J.; Moshkovskiĭ, S.A.; Archakov, A.I. Identification of Differentially Expressed Proteins Using Automatic Meta-Analysis of Proteomics-Related Articles. Biomeditsinskaya Khimiya 2009, 55, 5–14. [Google Scholar]
- Ray, I.; Bhattacharya, A.; De, R.K. OCDD: An Obesity and Co-Morbid Disease Database. BioData Min. 2017, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET Knowledge Platform for Disease Genomics: 2019 Update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, J.; Cai, Q.; Galer, P.; Ma, D.; Chen, X.; Huang, J.; Bao, S.; Luo, R.; Zhang, Q. Mapping the Knowledge Structure and Trends of Epilepsy Genetics over the Past Decade: A Co-Word Analysis Based on Medical Subject Headings Terms. Medicine 2019, 98, e16782. [Google Scholar] [CrossRef]
- Harzing, A.W. Publish or Perish. Available online: https://harzing.com/resources/publish-or-perish (accessed on 26 December 2020).
- Wang, Z.V.; Scherer, P.E. Adiponectin, the Past Two Decades. J. Mol. Cell Biol. 2016, 8, 93–100. [Google Scholar] [CrossRef]
- Fang, H.; Judd, R.L. Adiponectin Regulation and Function. Compr. Physiol. 2018, 8, 1031–1063. [Google Scholar] [CrossRef]
- Jantaratnotai, N.; Mosikanon, K.; Lee, Y.; McIntyre, R.S. The Interface of Depression and Obesity. Obes. Res. Clin. Pract. 2017, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kolb, R.; Sutterwala, F.S.; Zhang, W. Obesity and Cancer: Inflammation Bridges the Two. Curr. Opin. Pharmacol. 2016, 29, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Bauer, F.; Elbers, C.C.; Adan, R.A.H.; Loos, R.J.F.; Onland-Moret, N.C.; Grobbee, D.E.; Van Vliet-Ostaptchouk, J.V.; Wijmenga, C.; Van Der Schouw, Y.T. Obesity Genes Identified in Genome-Wide Association Studies Are Associated with Adiposity Measures and Potentially with Nutrient-Specific Food Preference. Am. J. Clin. Nutr. 2009, 90, 951–959. [Google Scholar] [CrossRef] [Green Version]
- Thaker, V. Genetic and Epigenetic Causes of Obesity. Adolesc. Med. State Art Rev. 2017, 28, 379–405. [Google Scholar] [PubMed]
- Rodrigues, J.M.; Fernandes, H.D.; Caruthers, C.; Braddock, S.R.; Knutsen, A.P. Cohen Syndrome: Review of the Literature. Cureus 2018, 10, e3330. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, K.; Franik, G.; Kowalczyk, D.; Pluta, D.; Blukacz, Ł.; Madej, P. Thyroid Disorders in Polycystic Ovary Syndrome. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 346–360. [Google Scholar]
- Seo, S.; Baye, L.M.; Schulz, N.P.; Beck, J.S.; Zhang, Q.; Slusarski, D.C.; Sheffield, V.C. BBS6, BBS10, and BBS12 Form a Complex with CCT/TRiC Family Chaperonins and Mediate BBSome Assembly. Proc. Natl. Acad. Sci. USA 2010, 107, 1488–1493. [Google Scholar] [CrossRef] [Green Version]
- Marion, V.; Stoetzel, C.; Schlicht, D.; Messaddeq, N.; Koch, M.; Flori, E.; Danse, J.M.; Mandel, J.L.; Dollfus, H. Transient Ciliogenesìs Involving Bardet-Biedl Syndrome Proteins Is a Fundamental Characteristic of Adipogenic Differentiation. Proc. Natl. Acad. Sci. USA 2009, 106, 1820–1825. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Osborn, D.P.; Lee, J.; Araki, M.; Araki, K.; Mohun, T.; Känsäkoski, J.; Brandstack, N.; Kim, H.; Miralles, F.; et al. WDR11-mediated Hedgehog Signalling Defects Underlie a New Ciliopathy Related to Kallmann Syndrome. EMBO Rep. 2018, 19, 269–289. [Google Scholar] [CrossRef]
- Navarro Negredo, P.; Edgar, J.R.; Manna, P.T.; Antrobus, R.; Robinson, M.S. The WDR11 Complex Facilitates the Tethering of AP-1-Derived Vesicles. Nat. Commun. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, H.; Yu, H.; Gong, J.; Jiang, J.; Qiao, X.; Perkey, E.; Kim, D.I.; Emont, M.P.; Zestos, A.G.; Cho, J.S.; et al. An Immune-Beige Adipocyte Communication via Nicotinic Acetylcholine Receptor Signaling. Nat. Med. 2018, 24, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Association of CHRNA2 Polymorphisms with Overweight/Obesity and Clinical Characteristics in a Korean Population. Clin. Chem. Lab. Med. 2008, 46, 1085–1089. [Google Scholar] [CrossRef]
- Keele, G.R.; Prokop, J.W.; He, H.; Holl, K.; Littrell, J.; Deal, A.; Francic, S.; Cui, L.; Gatti, D.M.; Broman, K.W.; et al. Genetic Fine-Mapping and Identification of Candidate Genes and Variants for Adiposity Traits in Outbred Rats. Obesity 2018, 26, 213–222. [Google Scholar] [CrossRef]
- Somia, N.V.; Schmitt, M.J.; Vetter, D.E.; Van Antwerp, D.; Heinemann, S.F.; Verma, I.M. LFG: An Anti-Apoptotic Gene That Provides Protection from Fas-Mediated Cell Death. Proc. Natl. Acad. Sci. USA 1999, 96, 12667–12672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, M.; Segura, M.F.; Solé, C.; Colino, A.; Comella, J.X.; Ceña, V. Lifeguard/Neuronal Membrane Protein 35 Regulates Fas Ligand-Mediated Apoptosis in Neurons via Microdomain Recruitment. J. Neurochem. 2007, 103, 190–203. [Google Scholar] [CrossRef]
- Kang, J.; Guan, R.C.; Zhao, Y.; Chen, Y. Obesity-Related Loci in TMEM18, CDKAL1 and FAIM2 Are Associated with Obesity and Type 2 Diabetes in Chinese Han Patients. BMC Med. Genet. 2020, 21, 1–8. [Google Scholar] [CrossRef]
- Teng, X.; Aouacheria, A.; Lionnard, L.; Metz, K.A.; Soane, L.; Kamiya, A.; Hardwick, J.M. KCTD: A New Gene Family Involved in Neurodevelopmental and Neuropsychiatric Disorders. CNS Neurosci. Ther. 2019, 25, 887–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-García, M.A.; San-Millán, J.L.; Escobar-Morreale, H.F. The R453Q and D151A Polymorphisms of Hexose-6-Phosphate Dehydrogenase Gene (H6PD) Influence the Polycystic Ovary Syndrome (PCOS) and Obesity. Gene 2012, 497, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Lee, E.J.; Jin Go, M.; Sung, Y.A.; Lee, H.J.; Heon Kwak, S.; Jang, H.C.; Soo Park, K.; Lee, H.J.; Byul Jang, H.; et al. Genome-Wide Association Study Identifies GYS2 as a Novel Genetic Factor for Polycystic Ovary Syndrome through Obesity-Related Condition. J. Hum. Genet. 2012, 57, 660–664. [Google Scholar] [CrossRef] [Green Version]
- Scherneck, S.; Nestler, M.; Vogel, H.; Blüher, M.; Block, M.D.; Diaz, M.B.; Herzig, S.; Schulz, N.; Teichert, M.; Tischer, S.; et al. Positional Cloning of Zinc Finger Domain Transcription Factor Zfp69, a Candidate Gene for Obesity-Associated Diabetes Contributed by Mouse Locus Nidd/SJL. PLoS Genet. 2009, 5, e1000541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanisenko, T.V.; Saik, O.V.; Demenkov, P.S.; Ivanisenko, N.V.; Savostianov, A.N.; Ivanisenko, V.A. ANDDigest: A New Web-Based Module of ANDSystem for the Search of Knowledge in the Scientific Literature. BMC Bioinform. 2020, 21 (Suppl. 11), 228. [Google Scholar] [CrossRef] [PubMed]
Gene Name 1 | Number of References | Protein Name | ||
---|---|---|---|---|
Obesity/PubMed 2 | N.Diseases | Obesity/N.PMIDs | ||
FTO | 26 | 286 | 426 | Alpha-ketoglutarate-dependent dioxygenase |
POMC | 22 | 873 | 97 | Proopiomelanocortin |
MC4R | 17 | 149 | 283 | Melanocortin receptor 4 |
LEPR 3 | 13 | 416 | 214 | Leptin receptor |
BDNF | 8 | 992 | 88 | Brain-derived neurotrophic factor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarbeeva, S.; Lyamtseva, E.; Lisitsa, A.; Kozlova, A.; Ponomarenko, E.; Ilgisonis, E. ScanBious: Survey for Obesity Genes Using PubMed Abstracts and DisGeNET. J. Pers. Med. 2021, 11, 246. https://doi.org/10.3390/jpm11040246
Tarbeeva S, Lyamtseva E, Lisitsa A, Kozlova A, Ponomarenko E, Ilgisonis E. ScanBious: Survey for Obesity Genes Using PubMed Abstracts and DisGeNET. Journal of Personalized Medicine. 2021; 11(4):246. https://doi.org/10.3390/jpm11040246
Chicago/Turabian StyleTarbeeva, Svetlana, Ekaterina Lyamtseva, Andrey Lisitsa, Anna Kozlova, Elena Ponomarenko, and Ekaterina Ilgisonis. 2021. "ScanBious: Survey for Obesity Genes Using PubMed Abstracts and DisGeNET" Journal of Personalized Medicine 11, no. 4: 246. https://doi.org/10.3390/jpm11040246
APA StyleTarbeeva, S., Lyamtseva, E., Lisitsa, A., Kozlova, A., Ponomarenko, E., & Ilgisonis, E. (2021). ScanBious: Survey for Obesity Genes Using PubMed Abstracts and DisGeNET. Journal of Personalized Medicine, 11(4), 246. https://doi.org/10.3390/jpm11040246