High versus Low-Moderate Intensity Exercise Training Program as an Adjunct to Antihypertensive Medication: A Pilot Clinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Physical Training Program
2.3. Data Collection
2.4. Statistical Analysis
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dickinson, H.O.; Mason, J.M.; Nicolson, D.J.; Campbell, F.; Beyer, F.R.; Cook, J.V.; Williams, B.; Ford, G.A. Lifestyle interventions to reduce raised blood pressure: A systematic review of randomized controlled trials. J. Hypertens. 2006, 24, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, V.A.; Arnout, J.; Holvoet, P.; Fagard, R.H. Influence of exercise at lower and higher intensity on blood pressure and cardiovascular risk factors at older age. J. Hypertens. 2009, 27, 753–762. [Google Scholar] [CrossRef]
- Costa, E.C.; Hay, J.L.; Kehler, D.S.; Boreskie, K.F.; Arora, R.C.; Umpierre, D.; Szwajcer, A.; Duhamel, T.A. Effects of high-intensity interval training versus moderate-intensity continuous training on blood pressure in adults with pre- to established hypertension: A systematic review and meta-analysis of randomized trials. Sports Med. 2018, 48, 2127–2142. [Google Scholar] [CrossRef] [PubMed]
- Bertani, R.F.; Campos, G.O.; Perseguin, D.M.; Bonardi, J.M.; Ferriolli, E.; Moriguti, J.C.; Lima, N.K. Resistance exercise training is more effective than interval aerobic training in reducing blood pressure during sleep in hypertensive elderly patients. J. Strength Cond. Res. 2018, 32, 2085–2090. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.G.; Bonardi, J.T.M.; Campos, G.O.; Bertani, R.F.; Scher, L.M.; Moriguti, J.C.; Ferriolli, E.; Lima, N.K. Combined aerobic and resistance training: Are there additional benefits for older hypertensive adults? Clinics (Sao Paulo) 2017, 72, 363–369. [Google Scholar] [CrossRef]
- Sousa, N.; Mendes, R.; Abrantes, C.; Sampaio, J.; Oliveira, J. A randomized 9-month study of blood pressure and body fat responses to aerobic training versus combined aerobic and resistance training in older men. Exp. Gerontol. 2013, 48, 727–733. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Smart, N.A. Exercise training for blood pressure: A systematic review and meta-analysis. J. Am. Heart Assoc. 2013, 2, e004473. [Google Scholar] [CrossRef] [Green Version]
- Boutcher, Y.N.; Boutcher, S.H. Exercise intensity and hypertension: What’s new? J. Hum. Hypertens. 2017, 31, 157–164. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar]
- Hackam, D.G.; Quinn, R.R.; Ravani, P.; Rabi, D.M.; Dasgupta, K.; Daskalopoulou, S.S.; Khan, N.A.; Herman, R.J.; Bacon, S.L.; Cloutier, L.; et al. Canadian Hypertension Education Program. The 2013 Canadian Hypertension Education Program recommendations for blood pressure measurement, diagnosis, assessment of risk, prevention, and treatment of hypertension. Can. J. Cardiol. 2013, 29, 528–542. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, P.A. Community-based physical activity intervention. Arthritis Rheum. 2003, 49, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Bock, C.; Jarczok, M.N.; Litaker, D. Community-based efforts to promote physical activity: A systematic review of interventions considering mode of delivery, study quality and population subgroups. J. Sci. Med. Sport 2014, 17, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice Guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Blood Press 2018, 27, 314–340. [Google Scholar] [CrossRef]
- Olsen, M.H.; Angell, S.Y.; Asma, S.; Boutouyrie, P.; Burger, D.; Chirinos, J.A.; Damasceno, A.; Delles, C.; Gimenez-Roqueplo, A.P.; Hering, D.; et al. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: The Lancet Commission on hypertension. Lancet 2016, 388, 2665–2712. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- López-Román, F.J.; Tornel-Miñarro, F.I.; Delsors-Merida-Nicolich, E.; Fernández-López, L.; Martínez-Ros, M.T.; Garcia Sanchez, E.; López-Santiago, A. Feasibility of implementing a preventive physical exercise programme recommended by general practitioners in cardiovascular risk patients: A pre-post comparison study. Eur. J. Gen. Pract. 2020, 26, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Pollock, M.L.; Bohannon, R.L.; Cooper, K.H.; Ayres, J.J.; Ward, A.; White, S.R.; Linnerud, A.C. A comparative analysis of four protocols for maximal treadmill stress testing. Am. Heart J. 1976, 92, 39–46. [Google Scholar] [CrossRef]
- Tanaka, H.; Monahan, K.D.; Seals, D.R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 2001, 37, 153–156. [Google Scholar] [CrossRef] [Green Version]
- Vella, C.A.; Taylor, K.; Drummer, D. High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. Eur. J. Sport Sci. 2017, 17, 1203–1211. [Google Scholar] [CrossRef]
- De Feo, P. Is high-intensity exercise better than moderate-intensity exercise for weight loss? Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1037–1042. [Google Scholar] [CrossRef]
- Hall, E.E.; Ekkekakis, P.; Petruzzello, S.J. Predicting affective responses to exercise using resting EEG frontal asymmetry: Does intensity matter? Biol. Psychol. 2010, 83, 201–206. [Google Scholar] [CrossRef]
- Hartman, M.E.; Ekkekakis, P.; Dicks, N.D.; Pettitt, R.W. Dynamics of pleasure-displeasure at the limit of exercise tolerance: Conceptualizing the sense of exertional physical fatigue as an affective response. J. Exp. Biol. 2019, 222 Pt 3, jeb186585. [Google Scholar] [CrossRef] [Green Version]
- Ekkekakis, P.; Hall, E.E.; Petruzzello, S.J. The relationship between exercise intensity and affective responses demystified: To crack the 40-year-old nut, replace the 40-year-old nutcracker! Ann. Behav. Med. 2008, 35, 136–149. [Google Scholar] [CrossRef]
- Ekkekakis, P.; Parfitt, G.; Petruzzello, S.J. The pleasure and displeasure people feel when they exercise at different intensities: Decennial update and progress towards a tripartite rationale for exercise intensity prescription. Sports Med. 2011, 41, 641–671. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.E.; Petruzzello, S.J.; Ekkekakis, P.; Miller, P.C.; Bixby, W.R. Role of self-reported individual differences in preference for and tolerance of exercise intensity in fitness testing performance. J. Strength Cond. Res. 2014, 28, 2443–2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekkekakis, P.; Vazou, S.; Bixby, W.R.; Georgiadis, E. The mysterious case of the public health guideline that is (almost) entirely ignored: Call for a research agenda on the causes of the extreme avoidance of physical activity in obesity. Obes. Rev. 2016, 17, 313–329. [Google Scholar] [CrossRef]
- Heisz, J.J.; Tejada, M.G.; Paolucci, E.M.; Muir, C. Enjoyment for high-intensity interval exercise increases during the first six weeks of training: Implications for promoting exercise adherence in sedentary adults. PLoS ONE 2016, 11, e0168534. [Google Scholar] [CrossRef]
- Guimarães, G.V.; Ciolac, E.G.; Carvalho, V.O.; D’Avila, V.M.; Bortolotto, L.A.; Bocchi, E.A. Effects of continuous vs. interval exercise training on blood pressure and arterial stiffness in treated hypertension. Hypertens. Res. 2010, 33, 627–632. [Google Scholar] [CrossRef]
- Rognmo, Ø.; Hetland, E.; Helgerud, J.; Hoff, J.; Slørdahl, S.A. High intensity aerobic interval exercise is superior to moderate intensity exercise for increasing aerobic capacity in patients with coronary artery disease. Eur. J. Cardiovasc. Prev. Rehabil. 2004, 11, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Tjønna, A.E.; Lee, S.J.; Rognmo, Ø.; Stølen, T.O.; Bye, A.; Haram, P.M.; Loennechen, J.P.; Al-Share, Q.Y.; Skogvoll, E.; Slørdahl, S.A.; et al. Aerobic interval training versus continuous moderate exercise as a treatment for the metabolic syndrome: A pilot study. Circulation 2008, 118, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Sosner, P.; Gayda, M.; Dupuy, O.; Garzon, M.; Lemasson, C.; Gremeaux, V.; Lalongé, J.; Gonzales, M.; Hayami, D.; Juneau, M.; et al. Ambulatory blood pressure reduction following high-intensity interval exercise performed in water or dryland condition. J. Am. Soc. Hypertens. 2016, 10, 420–428. [Google Scholar] [CrossRef]
- Reza-Izadi, M.; Ghardashi-Afousi, A.; Asvadi-Fard, M.; Babaee-Bigi, M.A. High intensity interval training lowers blood pressure and improves apelin and NOx plasma levels in older treated hypertensive individuals. J. Physiol. Biochem. 2018, 74, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Banegas, J.R.; Rodríguez-Artalejo, F. Cardiovascular-risk prediction and type of event. J. Hypertens. 2014, 32, 473–474. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.; Diaz, K.M.; Kretzschmar, J.; Feairheller, D.L.; Sturgeon, K.M.; Perkins, A.; Veerabhadrappa, P.; Williamson, S.T.; Lee, H.; Grimm, H.; et al. Chronic aerobic exercise improves blood pressure dipping status in African American nondippers. Blood Press Monit. 2014, 19, 353–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancia, G.; Bombelli, M.; Facchetti, R.; Madotto, F.; Corrao, G.; Trevano, F.Q.; Grassi, G.; Sega, R. Long-term prognostic value of blood pressure variability in the general population: Results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension 2007, 49, 1265–1270. [Google Scholar] [CrossRef] [Green Version]
- Sander, D.; Kukla, C.; Klingelhöfer, J.; Winbeck, K.; Conrad, B. Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: A 3-year follow-up study. Circulation 2000, 102, 1536–1541. [Google Scholar] [CrossRef] [Green Version]
- Pagonas, N.; Dimeo, F.; Bauer, F.; Seibert, F.; Kiziler, F.; Zidek, W.; Westhoff, T.H. The impact of aerobic exercise on blood pressure variability. J. Hum. Hypertens. 2014, 28, 367–371. [Google Scholar] [CrossRef]
- Ruangthai, R.; Phoemsapthawee, J. Combined exercise training improves blood pressure and antioxidant capacity in elderly individuals with hypertension. J. Exerc. Sci. Fit. 2019, 17, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, E.C.; Franke, W.D.; Sharp, R.L.; Lee, D.C. Comparative effectiveness of aerobic, resistance, and combined training on cardiovascular disease risk factors: A randomized controlled trial. PLoS ONE 2019, 14, e0210292. [Google Scholar] [CrossRef] [Green Version]
- Ciolac, E.G. High-intensity interval training and hypertension: Maximizing the benefits of exercise? Am. J. Cardiovasc. Dis. 2012, 2, 102–110. [Google Scholar]
Block | Aim | Type | Exercises | Duration min | LMIT, Intensity % | HIT, Intensity % | ||
---|---|---|---|---|---|---|---|---|
Time | MHR | Time % | MHR | |||||
Warm up | Flexibility and mobility | Warm up | Deep inspirations, general stretching by muscular groups | 4–8 | ||||
Aerobic #1 | CV endurance | Intervals | Grapevines, boxing, kicks | 22 | 38 | 60 | 38 | 85 |
Aerobic #2 | CV endurance | Constant | Grapevines, kicks | 22 | 20 | 55 | 20 | 80 |
Tone up muscles | Muscle strength | Series | Elbow flexion, abdominal contractions, squats | 10 | 20 | 70 | 20 | 90 |
Strength and endurance | Muscle strength and CV endurance | Intervals | Elbow flexion, abdominal contractions, squats, side shoulder elevation, scissor | 12 | 11 | 60 | 11 | 75 |
Race technique | Muscle strength and CV endurance | Intervals | Standing hamstring curl, side jumps, long steps, knee-up | 5 | 5 | 60 | 5 | 80 |
Average intensity % MHR | 61.55 | 82.8 |
Variables | High Intensity Training Group | Low-Moderate Intensity Training Group | Control Group | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline (n = 20) | Study End (n = 10) | Dropout (n = 10) | Baseline (n = 20) | Study End (n = 16) | Dropout (n = 4) | Baseline (n = 20) | Study End (n = 18) | Dropout (n = 2) | |
Age, years | 54.2 ± 7.8 | 53.5 ± 7.5 | 55.0 ± 8.4 | 55.5 ± 6.3 | 56.1 ± 6.4 | 53.5 ± 5.8 | 60.0 ± 7.4 | 59.3 ± 8.2 | 61.0 ± 4.2 |
p value | 0.784 | 0.833 | 0.950 | ||||||
BMI, kg/m2 | 30.1 ± 3.9 | 30.4 ± 4.2 | 28.6 ± 3.2 | 30.1 ± 3.9 | 30.4 ± 4.2 | 29.0 ± 2.5 | 27.9 ± 4.0 | 28.2 ± 4.3 | 29.0 ± 2.5 |
p value | 0.995 | 0.835 | 0.882 | ||||||
Lean body mass, kg | 50.3 ± 8.2 | 48.9 ± 10.8 | 51.7 ± 4.7 | 47.9 ± 9.7 | 48.6 ± 10.1 | 45.1 ± 7.4 | 45.6 ± 8.4 | 45.1 ± 8.9 | 47.8 ± 7.1 |
p value | 0.878 | 0.823 | 0.912 | ||||||
Fat body mass, kg | 27.5 ± 8.6 | 27.6 ± 9.3 | 26.6 ± 7.6 | 31.6 ± 9.2 | 32.7 ± 9.6 | 27.4 ± 6.3 | 27.3 ± 7.6 | 28.5 ± 7.5 | 21.2 ± 7.1 |
p value | 0.979 | 0.716 | 0.746 | ||||||
Systolic BP, mmHg | 131.2 ± 9.1 | 131.5 ±12.3 | 131.0 ± 4.8 | 128.6 ± 7.7 | 128.6 ± 8.3 | 128.2 ± 5.7 | 126.7 ± 9.7 | 126.2 ±10.2 | 129.0 ± 9.9 |
p value | 0.921 | 0.978 | 0.907 | ||||||
Diastolic BP, mmHg | 80.9 ± 6.0 | 81.3 ± 7.3 | 80.5 ± 4.6 | 79.7 ± 4.7 | 79.9 ± 4.4 | 78.8 ± 6.5 | 78.3 ± 9.2 | 77.7 ± 9.8 | 81.5 ± 6.3 |
p value | 0.878 | 0.920 | 0.826 |
Antihypertensive Pharmacological Treatment | ||||||
---|---|---|---|---|---|---|
ACE Inhibitors | ARB | α-Blockers | β-Blockers | Calcium Antagonists | Diuretics | |
Control group, n (%) | 2 (10.0) | 13 (65.0) | 0(0) | 3 (15.0) | 5 (24.9) | 5 (24.9) |
LMIT, n (%) | 2 (10.0) | 15 (75.0) | 0(0) | 5 (24.9) | 3 (15.0) | 7 (35.0) |
HIT, n (%) | 2 (10.0) | 9 (45.0) | 2 (10.0) | 3 (15.0) | 0 (0) | 3 (15.0) |
Total, n (%) | 6 (10.0) | 37 (61.7) | 2 (3.3) | 11 (18.3) | 8 (13.3) | 15 (25.0) |
p value | 1.0 | 0.139 | 0.246 | 0.641 | 0.245 | 0.344 |
Variable | Group | T1 (±SD) | Δ T2−T1 (95% CI) | T3 (±SD) | Δ T4−T3 (95% CI) | Δ T4−T1 (95% CI) | PT2−T1 | PT4−T3 | PT4−T1 |
---|---|---|---|---|---|---|---|---|---|
Average SBP (mmHg) | Control | 126.2 ± 10.2 | 0.2 (−3.7 to 4.1) | 125.1± 9.4 | 1.4 (−3.2 to 6.0) | 0.3 (−4.0 to 4.6) | 0.860 | <0.001 | <0.001 |
LMIT | 128.7 ± 8.3 | 1.1(−2.0 to 4.2) | 130.1 ± 10.4 | −3.1 (−6.7 to 0.6) | −1.6 (−5.0 to 1.7) | ||||
HIT | 131.5 ± 12.3 | 0.3 (–3.6 to 4.2) | 134.0 ± 12.7 | −10.8 (−15.4 to −6.2) *†‡ | −8.3 (−12.6 to −4.0) * | ||||
Average DBP (mmHg) | Control | 77.7 ± 9.8 | 0.3 (−2.7 to 3.3) | 78.7 ± 9.6 | −0.3 (−2.8 to 2.1) | 0.7 (−2.7 to 4.1) | 0.611 | <0.001 | <0.001 |
LMIT | 79.9 ± 4.4 | 0.9 (−1.5 to 3.3) | 81.3 ± 5.6 | −2.4 (−4.4 to −0.5) * | −1.1 (−3.7 to 1.6) | ||||
HIT | 81.3 ± 7.3 | −0.5 (−3.5 to 2.5) | 83.4 ± 7.0 | −8.3 (−10.8 to −5.8) *†‡ | −6.2(−9.6 to −2.8) * | ||||
Average MAP (mmHg) | Control | 93.9 ± 9.3 | 0.3 (−2.8 to 3.3) | 94.2 ± 9.1 | 0.3 (−2.7 to 3.2) | 0.6 (−2.8 to 3.9) | 0.688 | <0.001 | <0.001 |
LMIT | 96.1 ± 4.7 | 0.9 (−1.4 to 3.3) | 97.5 ± 6.8 | −2.6 (−5.0 to −0.3) * | −1.3 (−3.9 to 1.4) | ||||
HIT | 98.0 ± 7.4 | −0.2 (−3.3 to 2.8) | 100.3 ± 7.7 | −9.1 (−12.1 to −6.2) *†‡ | −6.9 (−10.2 to −3.5) * | ||||
Average PP (mmHg) | Control | 48.5 ± 7.5 | −0.1 (−3.2 to 3.0) | 48.4 ± 7.1 | 0.1 (−3.1 to 3.3) | −0.4 (−3.6 to 2.8) | 0.838 | 0.248 | 0.658 |
LMIT | 48.8 ± 8.0 | 0.2 (−2.2 to 2.6) | 49.0 ± 8.1 | −0.6 (−3.1 to 1.8) | −0.6 (−3.1 to 2.0) | ||||
HIT | 50.2 ± 12.0 | 0.8 (−2.3 to 3.9) | 51.0 ± 12.3 | −2.5 (−5.7 to 0.7) | −2.1 (−5.3 to 1.1) | ||||
SD of SBP (mmHg) | Control | 11.9 ± 3.2 | −0.8 (−3.5 to 1.9) | 11.9 ± 3.0 | −1.0 (−3.3 to 1.3) | −1.1 (−3.5 to 1.4) | 0.243 | 0.275 | 0.073 |
LMIT | 12.7 ± 3.3 | −0.3 (−2.4 to 1.9) | 12.3 ± 3.0 | −0.8 (−2.6 to 1.0) | −1.2 (−3.2 to 0.8) | ||||
HIT | 13.7 ± 2.4 | 1.4 (−1.3 to 4.1) | 13.6 ± 3.8 | −2.5 (−4.7 to −0.2) * | −2.6 (−5.0 to −0.1) * | ||||
SD of DBP (mmHg) | Control | 9.9 ± 2.5 | −0.5 (−3.1 to 2.2) | 9.5 ± 1.6 | 0.3 (−1.4 to 2.0) | −0.1 (−2.2 to 2.0) | 0.267 | 0.077 | 0.146 |
LMIT | 11.2 ± 2.1 | −1.1 (−3.2 to 1.0) | 10.0 ± 2.4 | −0.3 (−1.6 to 1.0) | −1.4 (−3.1 to 0.2) | ||||
HIT | 11.1 ± 1.8 | 0.9 (−1.8 to 3.5) | 11.4 ± 2.7 | −1.7 (−3.3 to 0.1) | −1.3 (−3.4 to 0.8) | ||||
Systolic load (%) | Control | 35.1 ± 26.0 | −2.4 (−10.2 to 5.4) | 34.4 ± 25.9 | −0.6 (−14.8 to 13.6) | −1.3 (−16.5 to 13.9) | 0.504 | <0.05 | <0.05 |
LMIT | 44.3 ± 25.9 | 1.1 (−5.1 to 7.3) | 45.4 ± 29.6 | −6.2 (−17.4 to 5.0) | −5.2 (−17.2 to 6.8) | ||||
HIT | 59.8 ± 28.9 | −2.3 (−10.2 to 5.5) | 59.7 ± 25.1 | −27.0 (−41.2 to −12.8) *†‡ | −27.0 (−42.2 to −11.9) * | ||||
Diastolic load (%) | Control | 36.3 ± 27.2 | 0.5 (−16.7 to 17.7) | 35.0 ± 26.5 | 0.8 (−12.2 to 13.8) | −0.6 (−55.6 to 54.4) | 0.334 | <0.05 | 0.148 |
LMIT | 45.8 ±16.6 | 1.7 (−11.9 to 15.4) | 50.4 ± 22.1 | −8.6 (−19.0 to 1.6) | −4.1 (47.6 to 39.4) | ||||
HIT | 88.4 ± 116.1 | −9.6 (−26.8 to 7.7) | 54.9 ± 21.5 | −26.9 (−40.0 to −14.0) *†‡ | −60.5 (−115.5 to −5.5) * |
Variable | Group | T1 (±SD) | Δ T2−T1 (95% CI) | T3 (±SD) | Δ T4−T3 (95%CI) | Δ T4−T1 (95%CI) | PT2−T1 | PT4−T3 | PT4−T1 |
---|---|---|---|---|---|---|---|---|---|
Average SBP (mmHg) | Control | 128.1 ± 9.1 | 0.2 (−4.5 to 4.9) | 127.9 ± 8.9 | −0.2 (−5 to 4.5) | −0.4 (−5.2 to 4.4) | 0.995 | <0.001 | <0.001 |
LMIT | 132.3 ± 8.2 | 0.0 (−3.7 to 3.7) | 132.5 ± 10.1 | −3.6 (−7.3 to 0.2) | −3.4 (−7.2 to 0.4) | ||||
HIT | 134.7 ± 12.5 | 0.0 (−4.7 to 4.7) | 137.2 ± 13.9 | −11.2 (−16.0 to −6.4) *†‡ | −8.7 (−13.5 to −0.4) * | ||||
Average DBP (mmHg) | Control | 79.6 ± 10.0 | −0.2 (−4.4 to 4.0) | 79.8 ± 10.0 | −0.4 (−3.2 to 2.4) | −0.2 (−3.7 to 3.3) | 0.720 | <0.001 | <0.005 |
LMIT | 83.4 ± 4.8 | 0.3 (−3.1 to 3.6) | 83.9 ± 6.0 | −2.4 (−4.6 to −0.3) * | −2.0 (−4.7 to 0.8) | ||||
HIT | 84.5 ± 7.5 | −1.3 (−5.5 to 2.9) | 86.2 ± 7.5 | −8.2 (−11.0 to −5.4) *†‡ | −6.5 (−10.0 to −3.0) * | ||||
Average MAP (mmHg) | Control | 95.8 ± 9.0 | −0.1 (−4.1 to 3.9) | 95.8 ± 8.9 | −0.3 (−3.6 to 2.9) | −0.3 (−3.9 to 3.3) | |||
LMIT | 99.7 ± 4.9 | 0.2 (−3.0 to 3.3) | 100.1 ± 6.9 | −2.8 (−5.4 to −0.2)* | −2.4 (−5.3 to 0.4) | ||||
HIT | 101.2 ± 7.6 | −0.9 (−4.9 to 3.1) | 103.2 ± 8.4 | −9.2 (−12.5 to −5.9) *†‡ | −7.2 (−10.8 to −3.6) * | ||||
Systolic load (%) | Control | 31.2 ± 25.7 | −1.7 (−17.7 to 14.4) | 31.0 ± 25.7 | −1.1 (−17.5 to 15.3) | −1.4 (−18.3 to 15.5) | 0.335 | <0.05 | <0.05 |
LMIT | 40.1 ± 27.2 | 0.9 (−11.7 to 13.6) | 40.7 ± 31.1 | −8.7 (−21.6 to 4.3) | −8.1 (−21.4 to 5.3) | ||||
HIT | 56.7 ± 28.4 | −9.9 (−25.9 to 6.2) | 53.6 ± 33.4 | −24.4 (−40.8 to −8.0) *† | −27.5 (−44.4 to −10.6) * | ||||
Diastolic load (%) | Control | 26.9 ± 26.1 | 1.6 (−17.4 to 20.6) | 27.3 ± 27.2 | 1.2 (−13.1 to 15.4) | 1.6 (−16.2 to 19.4) | 0.512 | <0.005 | <0.05 |
LMIT | 40.7 ± 18.6 | 1.4 (−13.6 to 16.4) | 45.6 ± 23.1 | −9.9 (−21.2 to 1.4) | −5 (−19.1 to 9.1) | ||||
HIT | 48.8 ± 26.1 | −7.8 (−26.8 to 11.2) | 51.8 ± 25.7 | −27.3 (−41.6 to −13.1) *†‡ | −24.3 (−42.2 to −6.5) * |
Variable | Group | T1 (±SD) | Δ T2−T1 (95% CI) | T3 (±SD) | Δ T4−T3 (95% CI) | Δ T4−T1 (95% CI) | PT2−T1 | PT4−T3 | PT4−T1 |
---|---|---|---|---|---|---|---|---|---|
SBP decline (mmHg) | Control | 6.2 ± 9.0 | −0.7 (−8.5 to 7.1) | 5.0 ± 8.6 | −0.3 (−5.2 to 4.6) | −1.5 (−7.6 to 4.6) | 0.635 | 0.816 | 0.936 |
LMIT | 11.4 ± 7.3 | −2.4 (−8.5 to 3.8) | 8.8 ± 7.7 | −1.6 (−5.5 to 2.3) | −4.3 (−9.1 to 0.6) | ||||
HIT | 10.6 ± 4.9 | −0.5 (−8.3 to 7.3) | 11.0 ± 7.7 | −1.7 (−6.6 to 3.2) | −1.3 (−7.4 to 4.8) | ||||
DBP decline (mmHg) | Control | 7.0 ± 5.7 | −1.6 (−9.2 to 6.0) | 6.8 ± 6.1 | −2.3 (−6.7 to 2.1) | −2.5 (−7.9 to 2.9) | 0.991 | 0.561 | 0.960 |
LMIT | 10.9 ± 5.2 | −1.7 (−7.8 to 4.3) | 9.7 ± 5.6 | −0.1 (−3.6 to 3.4) | −1.4 (−5.6 to 2.9) | ||||
HIT | 10.8 ± 4.3 | −2.1 (−9.7 to 5.5) | 11.0 ± 5.7 | −1.2 (−5.6 to 3.2) | −1.0 (−6.4 to 4.4) | ||||
Average SBP (mmHg) | Control | 121.9 ± 14.7 | 0.9 (−5.1 to 6.9) | 122.9 ± 13.6 | 0.1 (−5.8 to 6.0) | 1.1 (−5 to 7.2) | 0.753 | <0.05 | <0.05 |
LMIT | 120.9 ± 10.2 | 2.4 (−2.3 to 7.1) | 123.8 ± 12.9 | −2.0 (−6.7 to 2.7) | 0.9 (−4.0 to 5.7) | ||||
HIT | 124.1 ± 11.8 | 0.5 (−0.5 to 6.5) | 126.2 ± 10.4 | −9.5 (15.4 to −3.6) *†‡ | −7.4(−13.5 to −1.3) * | ||||
Average DBP (mmHg) | Control | 72.6 ± 11.0 | 1.4 (−3.7 to 6.5) | 73.0 ± 10.7 | 1.9 (−2.5 to 6.3) | 2.3 (−3.3 to 7.9) | 0.871 | <0.001 | <0.05 |
LMIT | 72.4 ± 5.0 | 2.0 (−2.0 to 6.0) | 74.3 ± (6.8) | −2.3 (−5.8 to 1.2) | −0.6 (−5.0 to 3.9) | ||||
HIT | 73.7 ± 8.4 | 0.8 (−4.3 to 5.9) | 75.2 ± 7.1 | −7.0 (−11.4 to −2.6) *†‡ | −5.5 (−11.1 to 0.1) | ||||
Average MAP (mmHg) | Control | 89.0 ± 11.7 | 1.2 (−3.9 to 6.3) | 89.6 ± 11.1 | 1.3 (−3.2 to 5.8) | 1.9 (−3.6 to 7.4) | 0.818 | <0.05 | <0.05 |
LMIT | 88.6 ± 5.7 | 2.1 (−1.9 to 6.2) | 90.7 ± 8.4 | −2.2 (−5.8 to 1.3) | −0.1 (−4.4 to 4.2) | ||||
HIT | 90.5 ± 8.0 | 1.7 (−2.5 to 5.9) | 92.2 ± 7.2 | −7.8 (−12.3 to −3.4) *†‡ | −6.1 (−11.6 to −0.7) * | ||||
Systolic load (%) | Control | 45.5 ± 35.8 | 5.0 (−14.6 to 24.6) | 47.9 ± 34.5 | 5.2 (−24.9 to 35.4) | 7.6 (−13.2 to 28.4) | 0.935 | <0.05 | 0.151 |
LMIT | 53.7 ± 33.0 | 3.0 (−12.5 to 18.6) | 59.4 ± 34.7 | −3.0 (−26.9 to 20.8) | 2.6 (−13.8 to 19.0) | ||||
HIT | 58.5 ± 38.0 | 1.4 (−18.2 to 21.0) | 77.9 ± 56.1 | −35.9 (−66.0 to −5.7) *†‡ | −16.5 (−37.3 to 4.3) | ||||
Diastolic load (%) | Control | 52.6 ± 29.3 | 2.0 (−15.4 to 19.4) | 55.4 ± 29.4 | 2.9 (−14.2 to 20.1) | 5.7 (−15.7 to 27.1) | 0.687 | <0.05 | <0.05 |
LMIT | 57.6 ± 21.4 | 8.0 (−5.7 to 21.8) | 64.7 ± 28.5 | −7.5 (−21.1 to 6.0) | −0.4 (−17.3 to 16.5) | ||||
HIT | 58.0 ± 24.5 | 2.6 (−14.8 to 20.0) | 63.3 ± 17.2 | −26.6 (−43.8 to −9.5) *†‡ | −21.3 (−42.7 to 0.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ávila-Gandía, V.; Sánchez-Macarro, M.; Luque-Rubia, A.; García-Sánchez, E.; Cánovas, F.; López-Santiago, A.; López-Román, F.J. High versus Low-Moderate Intensity Exercise Training Program as an Adjunct to Antihypertensive Medication: A Pilot Clinical Study. J. Pers. Med. 2021, 11, 291. https://doi.org/10.3390/jpm11040291
Ávila-Gandía V, Sánchez-Macarro M, Luque-Rubia A, García-Sánchez E, Cánovas F, López-Santiago A, López-Román FJ. High versus Low-Moderate Intensity Exercise Training Program as an Adjunct to Antihypertensive Medication: A Pilot Clinical Study. Journal of Personalized Medicine. 2021; 11(4):291. https://doi.org/10.3390/jpm11040291
Chicago/Turabian StyleÁvila-Gandía, Vicente, Maravillas Sánchez-Macarro, Antonio Luque-Rubia, Esther García-Sánchez, Fernando Cánovas, Asensio López-Santiago, and Francisco Javier López-Román. 2021. "High versus Low-Moderate Intensity Exercise Training Program as an Adjunct to Antihypertensive Medication: A Pilot Clinical Study" Journal of Personalized Medicine 11, no. 4: 291. https://doi.org/10.3390/jpm11040291
APA StyleÁvila-Gandía, V., Sánchez-Macarro, M., Luque-Rubia, A., García-Sánchez, E., Cánovas, F., López-Santiago, A., & López-Román, F. J. (2021). High versus Low-Moderate Intensity Exercise Training Program as an Adjunct to Antihypertensive Medication: A Pilot Clinical Study. Journal of Personalized Medicine, 11(4), 291. https://doi.org/10.3390/jpm11040291