Hexosylceramides and Glycerophosphatidylcholine GPC(36:1) Increase in Multi-Organ Dysfunction Syndrome Patients with Pediatric Intensive Care Unit Admission over 8-Day Hospitalization
Abstract
:1. Introduction
1.1. Multi-Organ Dysfunction Syndrome (MODS) and Role of Lipids in Critical Illness
1.2. Lipidomics as Biomarkers in Critical Illness
2. Results
2.1. Study Description and Demographics
2.2. Percent Total Lipids over Time and Treatment Course
2.2.1. Sphingolipids and Glycerolipids
2.2.2. Sub-Groups of Sphingolipids
2.2.3. Lipids Species for Sphingolipids and Glycerolipids at Baseline and over Time
2.3. Correlations Analysis
3. Discussion
4. Materials and Methods
4.1. Design, Site, Sample and Data Collection
4.2. Blood Plasma Lipidomics Method
4.3. Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Quehenberger, O.; Dennis, E.A. The human plasma lipidome. N. Engl. J. Med. 2011, 365, 1812–1823. [Google Scholar] [CrossRef]
- Dennis, E.A. Lipidomics joins the omics evolution. Proc. Natl. Acad. Sci. USA 2009, 106, 2089–2090. [Google Scholar] [CrossRef] [Green Version]
- Buczynski, M.W.; Dumlao, D.S.; Dennis, E.A. Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology. J. Lipid Res. 2009, 50, 1015–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quehenberger, O.; Armando, A.M.; Brown, A.H.; Milne, S.B.; Myers, D.S.; Merrill, A.H.; Bandyopadhyay, S.; Jones, K.N.; Kelly, S.; Shaner, R.L.; et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 2010, 51, 3299–3305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Typpo, K.V.; Petersen, N.J.; Hallman, D.M.; Markovitz, B.P.; Mariscalco, M.M. Day 1 multiple organ dysfunction syndrome is associated with poor functional outcome and mortality in the pediatric intensive care unit. Pediatr. Crit. Care Med. 2009, 10, 562–570. [Google Scholar] [CrossRef]
- Typpo, K.; Watson, R.S.; Bennett, T.D.; Farris, R.W.D.; Spaeder, M.C.; Petersen, N.J.; Pediatric Existing Data Analysis (PEDAL) Investigators; Pediatric Acute Lung Injury; Sepsis Investigators (PALISI) Network. Outcomes of Day 1 Multiple Organ Dysfunction Syndrome in the PICU. Pediatr. Crit. Care Med. 2019, 20, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, E.; Di Nardo, M.; Ricci, Z. Chapter 202—Multiple Organ Dysfunction in the Pediatric Intensive Care Unit. In Critical Care Nephrology, 3rd ed.; Ronco, C., Bellomo, R., Kellum, J.A., Ricci, Z., Eds.; Elsevier: Philadelphia, PA, USA, 2019; pp. 1215–1218.e1211. [Google Scholar] [CrossRef]
- Mickiewicz, B.; Vogel, H.J.; Wong, H.R.; Winston, B.W. Metabolomics as a novel approach for early diagnosis of pediatric septic shock and its mortality. Am. J. Respir. Crit. Care Med. 2013, 187, 967–976. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.R.; Cvijanovich, N.; Lin, R.; Allen, G.L.; Thomas, N.J.; Willson, D.F.; Freishtat, R.J.; Anas, N.; Meyer, K.; Checchia, P.A.; et al. Identification of pediatric septic shock subclasses based on genome-wide expression profiling. BMC Med. 2009, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.R.; Cvijanovich, N.Z.; Allen, G.L.; Thomas, N.J.; Freishtat, R.J.; Anas, N.; Meyer, K.; Checchia, P.A.; Lin, R.; Shanley, T.P.; et al. Validation of a gene expression-based subclassification strategy for pediatric septic shock. Crit. Care Med. 2011, 39, 2511–2517. [Google Scholar] [CrossRef] [PubMed]
- Langley, R.J.; Tsalik, E.L.; van Velkinburgh, J.C.; Glickman, S.W.; Rice, B.J.; Wang, C.; Chen, B.; Carin, L.; Suarez, A.; Mohney, R.P.; et al. An integrated clinico-metabolomic model improves prediction of death in sepsis. Sci. Transl. Med. 2013, 5, 195ra195. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, R.P.; Paden, M.L.; Guner, Y.S.; Raman, L.; Ryerson, L.M.; Alexander, P.; Nasr, V.G.; Bembea, M.M.; Rycus, P.T.; Thiagarajan, R.R. Pediatric Extracorporeal Life Support Organization Registry International Report 2016. ASAIO J. 2017, 63, 456–463. [Google Scholar] [CrossRef]
- Wu, D.; Shu, T.; Yang, X.; Song, J.-X.; Zhang, M.; Yao, C.; Liu, W.; Huang, M.; Yu, Y.; Yang, Q.; et al. Plasma Metabolomic and Lipidomic Alterations Associated with COVID-19. Natl. Sci. Rev. 2020. [Google Scholar] [CrossRef]
- Kyle, J.E.; Burnum-Johnson, K.E.; Wendler, J.P.; Eisfeld, A.J.; Halfmann, P.J.; Watanabe, T.; Sahr, F.; Smith, R.D.; Kawaoka, Y.; Waters, K.M.; et al. Plasma lipidome reveals critical illness and recovery from human Ebola virus disease. Proc. Natl. Acad. Sci. USA 2019, 116, 3919–3928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briassoulis, G.; Venkataraman, S.; Thompson, A. Cytokines and metabolic patterns in pediatric patients with critical illness. Clin. Dev. Immunol. 2010, 2010, 354047. [Google Scholar] [CrossRef] [Green Version]
- Maile, M.D.; Standiford, T.J.; Engoren, M.C.; Stringer, K.A.; Jewell, E.S.; Rajendiran, T.M.; Soni, T.; Burant, C.F. Associations of the plasma lipidome with mortality in the acute respiratory distress syndrome: A longitudinal cohort study. Respir. Res. 2018, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Erion, D.M.; Shulman, G.I. Diacylglycerol-mediated insulin resistance. Nat. Med. 2010, 16, 400–402. [Google Scholar] [CrossRef] [Green Version]
- Kent, C. Regulation of phosphatidylcholine biosynthesis. Prog. Lipid Res. 1990, 29, 87–105. [Google Scholar] [CrossRef]
- Trabado, S.; Al-Salameh, A.; Croixmarie, V.; Masson, P.; Corruble, E.; Fève, B.; Colle, R.; Ripoll, L.; Walther, B.; Boursier-Neyret, C.; et al. The human plasma-metabolome: Reference values in 800 French healthy volunteers; impact of cholesterol, gender and age. PLoS ONE 2017, 12, e0173615. [Google Scholar] [CrossRef] [Green Version]
- Holthuis, J.C.; Pomorski, T.; Raggers, R.J.; Sprong, H.; Van Meer, G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev. 2001, 81, 1689–1723. [Google Scholar] [CrossRef]
- Young, S.A.; Mina, J.G.; Denny, P.W.; Smith, T.K. Sphingolipid and ceramide homeostasis: Potential therapeutic targets. Biochem. Res. Int. 2012, 2012, 248135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, R.W.; Clarke, C.J.; Lucas, J.T., Jr.; Shabbir, M.; Wu, B.X.; Simbari, F.; Mueller, J.; Hannun, Y.A.; Lazarchick, J.; Shirai, K. Evaluation of the role of secretory sphingomyelinase and bioactive sphingolipids as biomarkers in hemophagocytic lymphohistiocytosis. Am. J. Hematol. 2013, 88, E265–E272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koal, T.; Klavins, K.; Seppi, D.; Kemmler, G.; Humpel, C. Sphingomyelin SM(d18:1/18:0) is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological amyloid-beta42, tau, and phospho-tau-181 levels. J. Alzheimer’s Dis. 2015, 44, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Nixon, G.F. Sphingolipids in inflammation: Pathological implications and potential therapeutic targets. Br. J. Pharmacol. 2009, 158, 982–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leimanis-Laurens, M.L.; Ferguson, K.; Wolfrum, E.; Boville, B.; Sanfilippo, D.; Lydic, T.A.; Prokop, J.W.; Rajasekaran, S. Pediatric Multi-Organ Dysfunction Syndrome: Analysis by an Untargeted "Shotgun" Lipidomic Approach Reveals Low-Abundance Plasma Phospholipids and Dynamic Recovery over 8-Day Period, a Single-Center Observational Study. Nutrients 2021, 13, 774. [Google Scholar] [CrossRef]
- Shankar, R.; Leimanis, M.L.; Newbury, P.A.; Liu, K.; Xing, J.; Nedveck, D.; Kort, E.J.; Prokop, J.W.; Zhou, G.; Bachmann, A.S.; et al. Gene expression signatures identify paediatric patients with multiple organ dysfunction who require advanced life support in the intensive care unit. EBioMedicine 2020, 62, 103122. [Google Scholar] [CrossRef]
- Vieira, C.R.; Munoz-Olaya, J.M.; Sot, J.; Jiménez-Baranda, S.; Izquierdo-Useros, N.; Abad, J.L.; Apellániz, B.; Delgado, R.; Martinez-Picado, J.; Alonso, A.; et al. Dihydrosphingomyelin Impairs HIV-1 Infection by Rigidifying Liquid-Ordered Membrane Domains. Chem. Biol. 2010, 17, 766–775. [Google Scholar] [CrossRef]
- Kota, V.; Hama, H. 2’-Hydroxy ceramide in membrane homeostasis and cell signaling. Adv. Biol. Regul. 2014, 54, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Muilwijk, M.; Goorden, S.M.I.; Celis-Morales, C.; Hof, M.H.; Ghauharali-van der Vlugt, K.; Beers-Stet, F.S.; Gill, J.M.R.; Vaz, F.M.; van Valkengoed, I.G.M. Contributions of amino acid, acylcarnitine and sphingolipid profiles to type 2 diabetes risk among South-Asian Surinamese and Dutch adults. BMJ Open Diabetes Res. Care 2020, 8. [Google Scholar] [CrossRef]
- van der Meer-Janssen, Y.P.M.; van Galen, J.; Batenburg, J.J.; Helms, J.B. Lipids in host-pathogen interactions: Pathogens exploit the complexity of the host cell lipidome. Prog. Lipid Res. 2010, 49, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Negro, F. Abnormalities of lipid metabolism in hepatitis C virus infection. Gut 2010, 59, 1279–1287. [Google Scholar] [CrossRef]
- Zhang, J.-Y.; Qu, F.; Li, J.-F.; Liu, M.; Ren, F.; Zhang, J.-Y.; Bian, D.-D.; Chen, Y.; Duan, Z.-P.; Zhang, J.-L.; et al. Up-regulation of Plasma Hexosylceramide (d18: 1/18: 1) Contributes to Genotype 2 Virus Replication in Chronic Hepatitis C: A 20-Year Cohort Study. Medicine 2016, 95, e3773. [Google Scholar] [CrossRef]
- Brain, M.J.; Butt, W.W.; MacLaren, G. Physiology of Extracorporeal Life Support (ECLS). In Extracorporeal Life Support for Adults; Schmidt, G., Ed.; Humana Press: New York, NY, USA, 2016; Volume 16, pp. 1–60. [Google Scholar]
- Prokop, J.W.; Shankar, R.; Gupta, R.; Leimanis, M.L.; Nedveck, D.; Uhl, K.; Chen, B.; Hartog, N.L.; Van Veen, J.; Sisco, J.S.; et al. Virus-induced genetics revealed by multidimensional precision medicine transcriptional workflow applicable to COVID-19. Physiol. Genom. 2020, 52, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Leimanis-Laurens, M.; Gil, D.; Kampfschulte, A.; Krohn, C.; Prentice, E.; Sanfilippo, D.; Prokop, J.W.; Lydic, T.A.; Rajasekaran, S. The Feasibility of Studying Metabolites in PICU Multi-Organ Dysfunction Syndrome Patients over an 8-Day Course Using an Untargeted Approach. Children 2021, 8, 151. [Google Scholar] [CrossRef]
- Frasch, S.C.; Bratton, D.L. Emerging roles for lysophosphatidylserine in resolution of inflammation. Prog. Lipid Res 2012, 51, 199–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratton, D.L.; Henson, P.M. Neutrophil clearance: When the party is over, clean-up begins. Trends Immunol. 2011, 32, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Caspar-Bauguil, S.; Genestal, M. Plasma Phospholipid Fatty Acid Profiles in Septic Shock. In Diet and Nutrition in Critical Care; Rajendram, R., Preedy, V.R., Patel, V.B., Eds.; Springer: New York, NY, USA, 2015; p. 219. [Google Scholar] [CrossRef]
- Schaffer, J.E. Lipotoxicity: When tissues overeat. Curr. Opin. Lipidol. 2003, 14, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Listenberger, L.L.; Han, X.; Lewis, S.E.; Cases, S.; Farese, R.V., Jr.; Ory, D.S.; Schaffer, J.E. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl. Acad. Sci. USA 2003, 100, 3077–3082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Jia, H.; Li, Q.; Cui, J.; Li, R.; Zou, Z.; Hong, X. Glycerophosphatidylcholine PC(36:1) absence and 3’-phosphoadenylate (pAp) accumulation are hallmarks of the human glioma metabolome. Sci. Rep. 2018, 8, 14783. [Google Scholar] [CrossRef] [PubMed]
- Høstmark, A.T.; Haug, A. Percentages of oleic acid and arachidonic acid are inversely related in phospholipids of human sera. Lipids Health Dis. 2013, 12, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Høstmark, A.T.; Haug, A. The inverse association between relative abundances of oleic acid and arachidonic acid is related to alpha -linolenic acid. Lipids Health Dis. 2014, 13, 76. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Rozen, S.; Boyle, S.H.; Hellegers, C.; Cheng, H.; Burke, J.R.; Welsh-Bohmer, K.A.; Doraiswamy, P.M.; Kaddurah-Daouk, R. Metabolomics in early Alzheimer’s disease: Identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS ONE 2011, 6, e21643. [Google Scholar] [CrossRef] [PubMed]
- Chadeau-Hyam, M.; Ebbels, T.M.; Brown, I.J.; Chan, Q.; Stamler, J.; Huang, C.C.; Daviglus, M.L.; Ueshima, H.; Zhao, L.; Holmes, E.; et al. Metabolic profiling and the metabolome-wide association study: Significance level for biomarker identification. J. Proteome Res. 2010, 9, 4620–4627. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thiekle, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics supports. J. Biomed. Inf. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Li, R. Concurrent profiling of polar metabolites and lipids in human plasma using HILIC-FTMS. Sci. Rep. 2016, 6, 36490. [Google Scholar] [CrossRef]
- Haimi, P.; Uphoff, A.; Hermansson, M.; Somerharju, P. Software tools for analysis of mass spectrometric lipidome data. Anal. Chem. 2006, 78, 8324–8331. [Google Scholar] [CrossRef]
- Lydic, T.A.; Busik, J.V.; Reid, G.E. A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J. Lipid Res. 2014, 55, 1797–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuckovic, D. Improving metabolome coverage and data quality: Advancing metabolomics and lipidomics for biomarker discovery. Chem. Commun. 2018, 54, 6728–6749. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; Scientific Research Publishing Inc.: Vienna, Austria, 2019. [Google Scholar]
- Cribari-Neto, F.; Zeileis, A. Beta Regression in R. J. Stat. Softw. 2010, 34, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Maehler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.4. 2019. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 15 February 2021).
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. 1), 5–41. [Google Scholar]
- Medicine, D.M. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006; p. 1344. [Google Scholar] [CrossRef]
Lipid Class | Sphingolipids | Glycerolipids | ||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Median | p-Value | Mean | SD | Median | p-Value | |
Sedation Controls (n = 4) | 13.03 | 1.24 | 13.21 | 3.43 | 3.34 | 2.57 | ||
MODS BL (n = 16) | 7.86 | 3.18 | 7.40 | p = 0.0056 | 12.25 | 13.35 | 5.39 | p = 0.0296 * |
ECMO BL (n = 8) | 12.32 | 2.59 | 11.91 | p = 0.6217 | 10.10 | 8.63 | 8.37 | p = 0.1746 |
MODS 72 h (n =15) | 9.06 | 3.82 | 9.88 | p = 0.0601 | 9.58 | 7.16 | 6.75 | p = 0.1182 |
ECMO 72 h (n = 7) | 11.50 | 3.22 | 10.80 | p = 0.3952 | 8.51 | 9.20 | 4.19 | p = 0.3234 |
MODS 8d (n = 8) | 14.85 | 3.71 | 15.20 | p = 0.3713 | 10.01 | 6.10 | 9.59 | p = 0.0759 |
ECMO 8d (n = 6) | 11.36 | 2.33 | 11.16 | p = 0.2305 | 11.67 | 5.48 | 11.80 | p = 0.0285 |
Lipid Class | dhSM | SM | Cer | 2-hydroxy Cer | Hex-Cer | Lac-Cer | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mdn | p-Value | Mean | SD | Mdn | p-Value | Mean | SD | Mdn | p-Value | Mean | SD | Mdn | p-Value | Mean | SD | Mdn | p-Value | Mean | SD | Mdn | p-Value | |
Sedation (n = 4) | 0.00 | 0.00 | 0.00 | 99.71 | 0.25 | 99.79 | 2.54 | 1.52 | 2.32 | 0.00 | 0.00 | 0.00 | 0.22 | 0.25 | 0.15 | 0.04 | 0.03 | 0.05 | ||||||
MODS BL (n = 16) | 0.00 | 0.00 | 0.00 | N/A | 95.22 | 3.98 | 96.33 | p = 0.0004 * | 3.04 | 3.51 | 1.79 | p = 0.79 | 0.00 | 0.00 | 0.00 | N/A | 1.63 | 1.57 | 1.19 | p = 0.0033 * | 0.11 | 0.10 | 0.09 | p = 0.0210 |
ECMO BL (n = 8) | 0.75 | 0.62 | 1.15 | N/A | 96.66 | 2.64 | 97.39 | p = 0.0143 * | 1.98 | 1.38 | 1.88 | p = 0.53 | 0.17 | 0.20 | 0.09 | N/A | 2.41 | 2.35 | 1.27 | p = 0.0347 * | 0.15 | 0.12 | 0.09 | p = 0.0367 * |
MODS 72 h (n = 15) | 0.00 | 0.00 | 0.00 | N/A | 95.17 | 1.79 | 95.50 | p < 0.0001 * | 1.49 | 1.04 | 1.21 | p = 0.12 | 0.25 | 0.43 | 0.06 | N/A | 2.73 | 1.59 | 2.46 | p < 0.0001 * | 0.37 | 0.31 | 0.31 | p = 0.0011 * |
ECMO 72 h (n = 7) | 1.05 | 1.05 | 1.15 | N/A | 95.67 | 2.12 | 96.77 | p = 0.0025 * | 1.02 | 0.51 | 0.85 | p = 0.15 | 0.41 | 0.32 | 0.56 | N/A | 3.19 | 2.65 | 1.97 | p = 0.0260 * | 0.06 | 0.05 | 0.06 | p = 0.3609 |
MODS 8d (n = 8) | 0.00 | 0.00 | 0.00 | N/A | 96.03 | 1.22 | 95.91 | p < 0.0001 * | 0.37 | 0.25 | 0.35 | p = 0.07 | 0.32 | 0.27 | 0.37 | N/A | 3.07 | 1.13 | 3.18 | p = 0.0001 * | 0.21 | 0.10 | 0.21 | p = 0.0090 |
ECMO 8d (n = 6) | 1.39 | 1.09 | 1.49 | N/A | 95.12 | 1.95 | 94.98 | p = 0.0023 * | 0.66 | 0.52 | 0.51 | p = 0.10 | 0.48 | 0.77 | 0.12 | N/A | 3.05 | 1.07 | 3.04 | p = 0.0008 * | 0.41 | 0.18 | 0.42 | p = 0.0045 |
(a) | |||||||
Group | Time | Total dhSM | Total SM | Total Cer | Total hydroxy Cer | Total Hex-Cer | Total Lac-Cer |
MODS | Day 1 | NA | −0.053 | −0.053 | NA | −0.172 | −0.238 |
MODS | Day 3 | NA | −0.059 | 0.029 | −0.217 | 0.029 | 0.074 |
MODS | Day 8 | NA | 0.071 | −0.357 | −0.218 | 0.214 | 0.214 |
ECMO | Day 1 | −0.577 | −0.655 | −0.218 | 0.000 | −0.546 | −0.655 |
ECMO | Day 3 | −0.149 | −0.552 | 0.138 | −0.414 | −0.276 | −0.354 |
ECMO | Day 8 | −0.730 | −0.730 | 0.183 | −0.365 | −0.730 | −0.730 |
(b) | |||||||
Group | Time | Total dhSM | Total SM | Total Cer | Total 2-hydroxy Cer | Total Hex-Cer | Total Lac-Cer |
ECMO | 1.000 | 0.499 | 0.262 | 0.577 | 0.000 | 0.157 | −0.052 |
ECMO | 3.000 | 0.264 | 0.390 | 0.098 | 0.683 | 0.390 | −0.250 |
ECMO | 8.000 | 0.733 | 0.600 | −0.067 | −0.067 | 0.600 | 0.867 |
MODS | 1.000 | NA | NA | NA | NA | NA | NA |
MODS | 3.000 | NA | NA | NA | NA | NA | NA |
MODS | 8.000 | NA | −0.429 | −0.071 | −0.182 | −0.357 | −0.214 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leimanis-Laurens, M.; Wolfrum, E.; Ferguson, K.; Grunwell, J.R.; Sanfilippo, D.; Prokop, J.W.; Lydic, T.A.; Rajasekaran, S. Hexosylceramides and Glycerophosphatidylcholine GPC(36:1) Increase in Multi-Organ Dysfunction Syndrome Patients with Pediatric Intensive Care Unit Admission over 8-Day Hospitalization. J. Pers. Med. 2021, 11, 339. https://doi.org/10.3390/jpm11050339
Leimanis-Laurens M, Wolfrum E, Ferguson K, Grunwell JR, Sanfilippo D, Prokop JW, Lydic TA, Rajasekaran S. Hexosylceramides and Glycerophosphatidylcholine GPC(36:1) Increase in Multi-Organ Dysfunction Syndrome Patients with Pediatric Intensive Care Unit Admission over 8-Day Hospitalization. Journal of Personalized Medicine. 2021; 11(5):339. https://doi.org/10.3390/jpm11050339
Chicago/Turabian StyleLeimanis-Laurens, Mara, Emily Wolfrum, Karen Ferguson, Jocelyn R. Grunwell, Dominic Sanfilippo, Jeremy W. Prokop, Todd A. Lydic, and Surender Rajasekaran. 2021. "Hexosylceramides and Glycerophosphatidylcholine GPC(36:1) Increase in Multi-Organ Dysfunction Syndrome Patients with Pediatric Intensive Care Unit Admission over 8-Day Hospitalization" Journal of Personalized Medicine 11, no. 5: 339. https://doi.org/10.3390/jpm11050339
APA StyleLeimanis-Laurens, M., Wolfrum, E., Ferguson, K., Grunwell, J. R., Sanfilippo, D., Prokop, J. W., Lydic, T. A., & Rajasekaran, S. (2021). Hexosylceramides and Glycerophosphatidylcholine GPC(36:1) Increase in Multi-Organ Dysfunction Syndrome Patients with Pediatric Intensive Care Unit Admission over 8-Day Hospitalization. Journal of Personalized Medicine, 11(5), 339. https://doi.org/10.3390/jpm11050339