Genetic Variants of lncRNA GAS5 Are Associated with the Clinicopathologic Development of Oral Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Selection
2.2. Genomic Extraction and Determination of GAS5 SNP via Real-Time PCR
2.3. Bioinformatics Analysis
2.4. Statistical Analysis
3. Results
3.1. Basic Characters between the Oral Cancer and Non-Oral Cancer Individuals
3.2. Distribution of GAS5 SNP Frequencies between the Study and Control Groups
3.3. Distribution Frequency of GAS5 SNP rs145204276 and the Clinicopathological Characteristics of Oral Cancers
3.4. Relationship among GAS5 rs145204276, GAS5 Expression and Clinical Characters of Head and Neck Cancers from Worldwide Database
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rivera, C. Essentials of oral cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 11884–11894. [Google Scholar]
- Valdez, J.A.; Brennan, M.T. Impact of oral cancer on quality of life. Dent. Clin. N. Am. 2018, 62, 143–154. [Google Scholar] [CrossRef]
- Montero, P.H.; Patel, S.G. Cancer of the oral cavity. Surg. Oncol. Clin. N. Am. 2015, 24, 491–508. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.F.; Hsieh, Y.S.; Tsai, C.H.; Chou, M.Y.; Chang, Y.C. The upregulation of type i plasminogen activator inhibitor in oral submucous fibrosis. Oral Oncol. 2003, 39, 367–372. [Google Scholar] [CrossRef]
- Su, S.C.; Chang, L.C.; Huang, H.D.; Peng, C.Y.; Chuang, C.Y.; Chen, Y.T.; Lu, M.Y.; Chiu, Y.W.; Chen, P.Y.; Yang, S.F. Oral microbial dysbiosis and its performance in predicting oral cancer. Carcinogenesis 2021, 42, 127–135. [Google Scholar] [CrossRef]
- Yang, S.F.; Huang, H.D.; Fan, W.L.; Jong, Y.J.; Chen, M.K.; Huang, C.N.; Chuang, C.Y.; Kuo, Y.L.; Chung, W.H.; Su, S.C. Compositional and functional variations of oral microbiota associated with the mutational changes in oral cancer. Oral Oncol. 2018, 77, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Dhanuthai, K.; Rojanawatsirivej, S.; Thosaporn, W.; Kintarak, S.; Subarnbhesaj, A.; Darling, M.; Kryshtalskyj, E.; Chiang, C.P.; Shin, H.I.; Choi, S.Y.; et al. Oral cancer: A multicenter study. Med. Oral Patol. Oral Cir. Bucal. 2018, 23, e23–e29. [Google Scholar] [CrossRef]
- Moro, J.D.S.; Maroneze, M.C.; Ardenghi, T.M.; Barin, L.M.; Danesi, C.C. Oral and oropharyngeal cancer: Epidemiology and survival analysis. Einstein (Sao Paulo) 2018, 16, eAO4248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanoni, D.K.; Montero, P.H.; Migliacci, J.C.; Shah, J.P.; Wong, R.J.; Ganly, I.; Patel, S.G. Survival outcomes after treatment of cancer of the oral cavity (1985–2015). Oral Oncol. 2019, 90, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Ghani, W.M.N.; Ramanathan, A.; Prime, S.S.; Yang, Y.H.; Razak, I.A.; Abdul Rahman, Z.A.; Abraham, M.T.; Mustafa, W.M.W.; Tay, K.K.; Kallarakkal, T.G.; et al. Survival of oral cancer patients in different ethnicities. Cancer Invest. 2019, 37, 275–287. [Google Scholar] [CrossRef]
- Tahmasebi, E.; Alikhani, M.; Yazdanian, A.; Yazdanian, M.; Tebyanian, H.; Seifalian, A. The current markers of cancer stem cell in oral cancers. Life Sci. 2020, 249, 117483. [Google Scholar] [CrossRef]
- Santosh, A.B.; Jones, T.; Harvey, J. A review on oral cancer biomarkers: Understanding the past and learning from the present. J. Cancer Res. Ther. 2016, 12, 486–492. [Google Scholar] [CrossRef]
- Khurshid, Z.; Zafar, M.S.; Khan, R.S.; Najeeb, S.; Slowey, P.D.; Rehman, I.U. Role of salivary biomarkers in oral cancer detection. Adv. Clin. Chem. 2018, 86, 23–70. [Google Scholar]
- Chung, T.T.; Pan, M.S.; Kuo, C.L.; Wong, R.H.; Lin, C.W.; Chen, M.K.; Yang, S.F. Impact of reck gene polymorphisms and environmental factors on oral cancer susceptibility and clinicopathologic characteristics in taiwan. Carcinogenesis 2011, 32, 1063–1068. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.K.; Chiou, H.L.; Su, S.C.; Chung, T.T.; Tseng, H.C.; Tsai, H.T.; Yang, S.F. The association between hypoxia inducible factor-1alpha gene polymorphisms and increased susceptibility to oral cancer. Oral Oncol. 2009, 45, e222–e226. [Google Scholar] [CrossRef]
- Teng, Y.H.; Liu, T.H.; Tseng, H.C.; Chung, T.T.; Yeh, C.M.; Li, Y.C.; Ou, Y.H.; Lin, L.Y.; Tsai, H.T.; Yang, S.F. Contribution of genetic polymorphisms of stromal cell-derived factor-1 and its receptor, cxcr4, to the susceptibility and clinicopathologic development of oral cancer. Head Neck 2009, 31, 1282–1288. [Google Scholar] [CrossRef]
- Chou, C.H.; Chang, C.Y.; Lu, H.J.; Hsin, M.C.; Chen, M.K.; Huang, H.C.; Yeh, C.M.; Lin, C.W.; Yang, S.F. Igf2bp2 polymorphisms are associated with clinical characteristics and development of oral cancer. Int. J. Mol. Sci. 2020, 21, 5662. [Google Scholar] [CrossRef]
- Chen, M.K.; Yeh, K.T.; Chiou, H.L.; Lin, C.W.; Chung, T.T.; Yang, S.F. Ccr2-64i gene polymorphism increase susceptibility to oral cancer. Oral Oncol. 2011, 47, 577–582. [Google Scholar] [CrossRef]
- Su, S.C.; Hsieh, M.J.; Lin, C.W.; Chuang, C.Y.; Liu, Y.F.; Yeh, C.M.; Yang, S.F. Impact of hotair gene polymorphism and environmental risk on oral cancer. J. Dent. Res. 2018, 97, 717–724. [Google Scholar] [CrossRef]
- Schneider, C.; King, R.M.; Philipson, L. Genes specifically expressed at growth arrest of mammalian cells. Cell 1988, 54, 787–793. [Google Scholar] [CrossRef]
- Ghaforui-Fard, S.; Taheri, M. Growth arrest specific transcript 5 in tumorigenesis process: An update on the expression pattern and genomic variants. Biomed. Pharm. 2019, 112, 108723. [Google Scholar] [CrossRef]
- Goustin, A.S.; Thepsuwan, P.; Kosir, M.A.; Lipovich, L. The growth-arrest-specific (gas)-5 long non-coding rna: A fascinating lncrna widely expressed in cancers. Noncoding RNA 2019, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Peng, X.; Wang, Z.; Zhang, H.; Huang, H.; Liu, H.; Cai, L. The long noncoding rna, growth arrest-specific 5, suppresses gastric cancer by downregulating mir-21 expression. Pharmacology 2020, 105, 434–444. [Google Scholar] [CrossRef]
- Cheng, Y.; Dai, X.; Yang, T.; Zhang, N.; Liu, Z.; Jiang, Y. Low long noncoding rna growth arrest-specific transcript 5 expression in the exosomes of lung cancer cells promotes tumor angiogenesis. J. Oncol. 2019, 2019, 2476175. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, N.; Zheng, Y.; Chen, Y.D.; Liu, J.; Yang, M. Lncrna gas5 indel genetic polymorphism contributes to glioma risk through interfering binding of transcriptional factor tfap2a. DNA Cell Biol. 2018, 37, 750–757. [Google Scholar] [CrossRef]
- Weng, S.L.; Ng, S.C.; Lee, Y.C.; Hsiao, Y.H.; Hsu, C.F.; Yang, S.F.; Wang, P.H. The relationships of genetic polymorphisms of the long noncoding rna growth arrest-specific transcript 5 with uterine cervical cancer. Int. J. Med. Sci. 2020, 17, 1187–1195. [Google Scholar] [CrossRef]
- Yu, Y.; Hann, S.S. Novel tumor suppressor lncrna growth arrest-specific 5 (gas5) in human cancer. Onco Targets Ther. 2019, 12, 8421–8436. [Google Scholar] [CrossRef] [Green Version]
- Weng, W.C.; Chen, C.J.; Chen, P.N.; Wang, S.S.; Hsieh, M.J.; Yang, S.F. Impact of gene polymorphisms in gas5 on urothelial cell carcinoma development and clinical characteristics. Diagnostics 2020, 10, 260. [Google Scholar] [CrossRef]
- Hsiao, P.C.; Chen, M.K.; Su, S.C.; Ueng, K.C.; Chen, Y.C.; Hsieh, Y.H.; Liu, Y.F.; Tsai, H.T.; Yang, S.F. Hypoxia inducible factor-1alpha gene polymorphism g1790a and its interaction with tobacco and alcohol consumptions increase susceptibility to hepatocellular carcinoma. J. Surg. Oncol. 2010, 102, 163–169. [Google Scholar] [CrossRef]
- Chen, T.Y.; Li, Y.C.; Liu, Y.F.; Tsai, C.M.; Hsieh, Y.H.; Lin, C.W.; Yang, S.F.; Weng, C.J. Role of mmp14 gene polymorphisms in susceptibility and pathological development to hepatocellular carcinoma. Ann. Surg. Oncol. 2011, 18, 2348–2356. [Google Scholar] [CrossRef]
- The genotype-tissue expression (gtex) project. Nat. Genet. 2013, 45, 580–585. [CrossRef] [PubMed]
- Wang, Z.; Jensen, M.A.; Zenklusen, J.C. A practical guide to the cancer genome atlas (tcga). Methods Mol. Biol. 2016, 1418, 111–141. [Google Scholar] [PubMed]
- Sasahira, T.; Kirita, T. Hallmarks of cancer-related newly prognostic factors of oral squamous cell carcinoma. Int. J. Mol. Sci. 2018, 19, 2413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Nanavati, R.; Modi, T.G.; Dobariya, C. Oral cancer: Etiology and risk factors: A review. J. Cancer Res. Ther. 2016, 12, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.K.; Liu, Y.T.; Lin, J.T.; Lin, C.C.; Chuang, Y.C.; Lo, Y.S.; Hsi, Y.T.; Hsieh, M.J. Pinosylvin reduced migration and invasion of oral cancer carcinoma by regulating matrix metalloproteinase-2 expression and extracellular signal-regulated kinase pathway. Biomed. Pharm. 2019, 117, 109160. [Google Scholar] [CrossRef]
- Singh, P.K.; Chandra, G.; Bogra, J.; Gupta, R.; Kumar, V.; Hussain, S.R.; Jain, A.; Mahdi, A.A.; Ahmad, M.K. Association of genetic polymorphism in the interleukin-8 gene with risk of oral cancer and its correlation with pain. Biochem. Genet. 2016, 54, 95–106. [Google Scholar] [CrossRef]
- Su, S.C.; Hsieh, M.J.; Liu, Y.F.; Chou, Y.E.; Lin, C.W.; Yang, S.F. Adamts14 gene polymorphism and environmental risk in the development of oral cancer. PLoS ONE 2016, 11, e0159585. [Google Scholar] [CrossRef] [Green Version]
- Chou, Y.E.; Hsieh, M.J.; Hsin, C.H.; Chiang, W.L.; Lai, Y.C.; Lee, Y.H.; Huang, S.C.; Yang, S.F.; Lin, C.W. Cd44 gene polymorphisms and environmental factors on oral cancer susceptibility in taiwan. PLoS ONE 2014, 9, e93692. [Google Scholar] [CrossRef]
- Shen, H.; Sun, B.; Yang, Y.; Cai, X.; Bi, L.; Deng, L.; Zhang, L. Mir4435-2hg regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by upregulating tgf-β1. Odontology 2020, 108, 553–559. [Google Scholar] [CrossRef]
- Yao, T.; Lu, R.; Zhang, J.; Fang, X.; Fan, L.; Huang, C.; Lin, R.; Lin, Z. Growth arrest-specific 5 attenuates cisplatin-induced apoptosis in cervical cancer by regulating stat3 signaling via mir-21. J. Cell Physiol. 2019, 234, 9605–9615. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhao, W.; Lu, Z.; Zhang, W.; Yang, X. Long noncoding rna gas5 promotes proliferation, migration, and invasion by regulation of mir-301a in esophageal cancer. Oncol. Res. 2018, 26, 1285–1294. [Google Scholar] [CrossRef]
- Zeng, B.; Li, Y.; Jiang, F.; Wei, C.; Chen, G.; Zhang, W.; Zhao, W.; Yu, D. Lncrna gas5 suppresses proliferation, migration, invasion, and epithelial-mesenchymal transition in oral squamous cell carcinoma by regulating the mir-21/pten axis. Exp. Cell Res. 2019, 374, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wang, Y.; Zhao, Y.; Jin, Y.; An, L.; Wu, B.; Liu, Z.; Chen, X.; Zhou, H.; Wang, H.; et al. Genetic polymorphisms of long non-coding rna gas5 predict platinum-based concurrent chemoradiotherapy response in nasopharyngeal carcinoma patients. Oncotarget 2017, 8, 62286–62297. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.H.; Chen, M.K.; Chang, J.H.; Velmurugan, B.K.; Annamanedi, M.; Su, S.C.; Yeh, K.T.; Yang, S.F. Impact of polymorphisms in casein kinase 1 epsilon and environmental factors in oral cancer susceptibility. J. Cancer 2019, 10, 5065–5069. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Xiong, X.; Chen, L.; Yang, L.; Li, X. Identification and validation long non-coding rnas of oral squamous cell carcinoma by bioinformatics method. Oncotarget 2017, 8, 107469–107476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janisch, F.; Shariat, S.F.; Schernhammer, E.; Rink, M.; Fajkovic, H. The interaction of gender and smoking on bladder cancer risks. Curr. Opin. Urol. 2019, 29, 249–255. [Google Scholar] [CrossRef]
- Xu, L.; Xia, C.; Xue, B.; Sheng, F.; Xiong, J.; Wang, S. A promoter variant of lncrna gas5 is functionally associated with the development of osteosarcoma. J. Bone Oncol. 2018, 12, 23–26. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wang, S.S.; Yang, C.K.; Li, J.R.; Chen, C.S.; Hung, S.C.; Chiu, K.Y.; Cheng, C.L.; Ou, Y.C.; Yang, S.F. Impact of gas5 genetic polymorphism on prostate cancer susceptibility and clinicopathologic characteristics. Int. J. Med. Sci. 2019, 16, 1424–1429. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Wilhelmsen, K.; Hamilton, N. Gene-lifecourse interaction for alcohol consumption in adolescence and young adulthood: Five monoamine genes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144b, 417–423. [Google Scholar] [CrossRef]
- Shirahase, T.; Aoki, M.; Watanabe, R.; Watanabe, Y.; Tanaka, M. Increased alcohol consumption in relaxin-3 deficient male mice. Neurosci. Lett. 2016, 612, 155–160. [Google Scholar] [CrossRef]
- Lu, S.; Su, Z.; Fu, W.; Cui, Z.; Jiang, X.; Tai, S. Altered expression of long non-coding rna gas5 in digestive tumors. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholizadeh, P.; Eslami, H.; Yousefi, M.; Asgharzadeh, M.; Aghazadeh, M.; Kafil, H.S. Role of oral microbiome on oral cancers, a review. Biomed. Pharm. 2016, 84, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Michaud, D.S.; Fu, Z.; Shi, J.; Chung, M. Periodontal disease, tooth loss, and cancer risk. Epidemiol. Rev. 2017, 39, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Farr, H.W.; Arthur, K. Epidermoid carcinoma of the mouth and pharynx 1960-1964. J. Laryngol. Otol. 1972, 86, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Silverman, S., Jr.; Gorsky, M.; Lozada, F. Oral leukoplakia and malignant transformation. A follow-up study of 257 patients. Cancer 1984, 53, 563–568. [Google Scholar]
Variables | Controls (n = 1195) | Patients (n= 1125) | p Value |
---|---|---|---|
Age (yrs) | 53.91 ± 10.01 | 55.28 ± 10.98 | |
<55 | 564 (47.2%) | 541 (48.1%) | p = 0.667 |
≥55 | 631 (52.8%) | 584 (51.9%) | |
Betel nut chewing | |||
No | 997 (83.4%) | 294 (26.1%) | |
Yes | 198 (16.6%) | 831 (73.9%) | p < 0.001 * |
Cigarette smoking | |||
No | 560 (46.9%) | 172 (15.3%) | |
Yes | 635 (53.1%) | 953 (84.7%) | p < 0.001 * |
Alcohol drinking | |||
No | 958 (80.2%) | 598 (53.2%) | |
Yes | 237 (19.8%) | 527 (46.8%) | p < 0.001 * |
Cancer location | |||
Buccal mucosa | 398 (35.4%) | ||
Tongue | 356 (31.6%) | ||
Gingiva | 111 (9.9%) | ||
Lip | 57 (5.1%) | ||
Others | 203 (18.0%) | ||
Stage | |||
I + II | 529 (47.0%) | ||
III + IV | 596 (53.0%) | ||
Tumor T status | |||
T1 + T2 | 582 (51.7%) | ||
T3 + T4 | 543 (48.3%) | ||
Lymph node status | |||
N0 | 745 (66.2%) | ||
N1 + N2 + N3 | 380 (33.8%) | ||
Metastasis | |||
M0 | 1114 (99.0%) | ||
M1 | 11 (1.0%) | ||
Cell differentiation | |||
Well differentiated | 162 (14.4%) | ||
Moderately or poorly differentiated | 963 (85.6%) |
Variables | Controls (n = 1195) N (%) | Patients (n = 1125) N (%) | OR (95% CI) | AOR (95% CI) |
---|---|---|---|---|
rs145204276 | ||||
Ins/Ins | 493 (41.3%) | 460 (40.9%) | 1.000 (reference) | 1.000 (reference) |
Ins/Del | 543 (45.4%) | 526 (46.8%) | 1.038 (0.872–1.236) | 1.073 (0.866–1.331) |
Del/Del | 159 (13.3%) | 139 (12.3%) | 0.937 (0.722–1.216) | 0.986 (0.716–1.358) |
Ins/Del + Del/Del | 702 (58.7%) | 665 (59.1%) | 1.015 (0.860–1.198) | 1.054 (0.859–1.292) |
rs55829688 | ||||
TT | 595 (49.8%) | 541 (48.1%) | 1.000 (reference) | 1.000 (reference) |
TC | 473 (39.6%) | 470 (41.8%) | 1.093 (0.919–1.299) | 1.077 (0.870–1.332) |
CC | 127 (10.6%) | 114 (10.1%) | 0.987 (0.747–1.304) | 1.022 (0.726–1.440) |
TC + CC | 600 (50.2%) | 584 (51.9%) | 1.070 (0.910–1.260) | 1.065 (0.872–1.302) |
Variables | GAS5 (rs145204276) | |||
---|---|---|---|---|
Ins/Ins (%) (n = 460) | Ins/Del + Del/Del (%) (n = 665) | OR (95% CI) | p Value | |
Clinical Stage | ||||
Stage I/II | 231 (50.2%) | 298 (44.8%) | 1.00 | p = 0.074 |
Stage III/IV | 229 (49.8%) | 367 (55.2%) | 1.242 (0.979–1.577) | |
Tumor size | ||||
≤T2 | 245 (53.3%) | 337 (50.7%) | 1.00 | p = 0.394 |
>T2 | 215 (46.7%) | 328 (49.3%) | 1.109 (0.874–1.407) | |
Lymph node metastasis | ||||
No | 310 (67.4%) | 435 (65.4%) | 1.00 | p = 0.490 |
Yes | 150 (32.6%) | 230 (34.6%) | 1.093 (0.849–1.406) | |
Distant metastasis | ||||
No | 453 (98.5%) | 661 (99.4%) | 1.00 | p = 0.123 |
Yes | 7 (1.5%) | 4 (0.6%) | 0.392 (0.114–1.346) | |
Cell differentiation | ||||
well | 79 (17.2%) | 83 (12.5%) | 1.00 | p = 0.028 * |
Moderate/poor | 381 (82.8%) | 582 (87.5%) | 1.454 (1.041–2.031) |
Variables | GAS5 (Rs145204276) | |||
---|---|---|---|---|
Ins/Ins (%) (n = 245) | Ins/Del + Del/Del (%) (n = 353) | OR (95% CI) | p Value | |
Clinical Stage | ||||
Stage I/II | 133 (54.3%) | 156 (44.2%) | 1.00 | p = 0.015 * |
Stage III/IV | 112 (45.7%) | 197 (55.8%) | 1.500 (1.081–2.081) | |
Tumor size | ||||
≤T2 | 139 (56.7%) | 165 (46.7%) | 1.00 | p = 0.016 * |
>T2 | 106 (43.3%) | 188 (53.3%) | 1.494 (1.076–2.074) | |
Lymph node metastasis | ||||
No | 170 (69.4%) | 241 (68.3%) | 1.00 | p = 0.772 |
Yes | 75 (30.6%) | 112 (31.7%) | 1.053 (0.741–1.498) | |
Distant metastasis | ||||
No | 243 (99.2%) | 352 (99.7%) | 1.00 | p = 0.364 |
Yes | 2 (0.8%) | 1 (0.3%) | 0.345 (0.031–3.828) | |
Cell differentiation | ||||
well | 42 (17.1%) | 45 (12.7%) | 1.00 | p = 0.134 |
Moderate/poor | 203 (82.9%) | 308 (87.3%) | 1.416 (0.897–2.235) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, M.-H.; Lu, H.-J.; Lin, C.-W.; Lee, C.-Y.; Yang, S.-J.; Wu, P.-H.; Chen, M.-K.; Yang, S.-F. Genetic Variants of lncRNA GAS5 Are Associated with the Clinicopathologic Development of Oral Cancer. J. Pers. Med. 2021, 11, 348. https://doi.org/10.3390/jpm11050348
Hsieh M-H, Lu H-J, Lin C-W, Lee C-Y, Yang S-J, Wu P-H, Chen M-K, Yang S-F. Genetic Variants of lncRNA GAS5 Are Associated with the Clinicopathologic Development of Oral Cancer. Journal of Personalized Medicine. 2021; 11(5):348. https://doi.org/10.3390/jpm11050348
Chicago/Turabian StyleHsieh, Ming-Hong, Hsueh-Ju Lu, Chiao-Wen Lin, Chia-Yi Lee, Shang-Jung Yang, Pei-Hsuan Wu, Mu-Kuan Chen, and Shun-Fa Yang. 2021. "Genetic Variants of lncRNA GAS5 Are Associated with the Clinicopathologic Development of Oral Cancer" Journal of Personalized Medicine 11, no. 5: 348. https://doi.org/10.3390/jpm11050348
APA StyleHsieh, M. -H., Lu, H. -J., Lin, C. -W., Lee, C. -Y., Yang, S. -J., Wu, P. -H., Chen, M. -K., & Yang, S. -F. (2021). Genetic Variants of lncRNA GAS5 Are Associated with the Clinicopathologic Development of Oral Cancer. Journal of Personalized Medicine, 11(5), 348. https://doi.org/10.3390/jpm11050348