Predictive Values of Preoperative Characteristics for 30-Day Mortality in Traumatic Hip Fracture Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Primary Outcome and Predictor Variables
2.3. Descriptive Analysis and Association Analysis
2.4. Predictive Models
2.5. Data Augmentation and Normalization
2.6. Model Training and Test
2.7. Model Performance Metrics
2.8. Variable Importance
2.9. Software and Hardware Used
3. Results
3.1. Characteristics of the Patients
3.2. Associations between 30-Day Mortality and the Predictor Variables
3.3. Predictive Ability of the ML Models
3.4. Importance of the Predictor Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morris, A.H.; Zuckerman, J.D.; AAOS Council of Health Policy and Practice USA; American Academy of Orthopaedic Surgeons. National consensus conference on improving the continuum of care for patients with hip fracture. J. Bone Jt. Surg. Am. Vol. 2002, 84, 670–674. [Google Scholar] [CrossRef]
- Kanis, J.A.; Odén, A.; McCloskey, E.V.; Johansson, H.; Wahl, D.A.; Cooper, C.; IOF Working Group on Epidemiology and Quality of Life. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos. Int. 2012, 23, 2239–2256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancet, T. Ageing well: A global priority. Lancet 2012, 379, 1274. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Chen, P.-J. Population ageing challenges health care in China. Lancet 2014, 383, 870. [Google Scholar] [CrossRef]
- Lunenfeld, B.; Stratton, P. The clinical consequences of an ageing world and preventive strategies. Best Pr. Res. Clin. Obstet. Gynaecol. 2013, 27, 643–659. [Google Scholar] [CrossRef] [Green Version]
- Rikshoft Arsrapport 2018. Rikshoft, Ed. Lund, Sweden. Available online: https://www.xn--rikshft-e1a.se/forsking-och-utv%C3%A4rdering (accessed on 26 April 2021).
- Forssten, M.P.; Ismail, A.M.; Sjolin, G.; Ahl, R.; Wretenberg, P.; Borg, T.; Mohseni, S. The association between the Revised Cardiac Risk Index and short-term mortality after hip fracture surgery. Eur. J. Trauma Emerg. Surg. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.M.; Borg, T.; Sjolin, G.; Pourlotfi, A.; Holm, S.; Cao, Y.; Wretenberg, P.; Ahl, R.; Mohseni, S. β-adrenergic blockade is associated with a reduced risk of 90-day mortality after surgery for hip fractures. Trauma Surg. Acute Care Open 2020, 5, e000533. [Google Scholar] [CrossRef]
- Gundel, O.; Thygesen, L.C.; Gögenur, I.; Ekeloef, S. Postoperative mortality after a hip fracture over a 15-year period in Denmark: A national register study. Acta Orthop. 2019, 91, 58–62. [Google Scholar] [CrossRef]
- Das, A.; Ben-Menachem, T.; Cooper, G.S.; Chak, A.; Sivak, M.V.; Gonet, J.A.; Wong, R.C. Prediction of outcome in acute lower-gastrointestinal haemorrhage based on an artificial neural network: Internal and external validation of a predictive model. Lancet 2003, 362, 1261–1266. [Google Scholar] [CrossRef]
- Li, Y.-C.; Liu, L.; Chiu, W.-T.; Jian, W.-S. Neural network modeling for surgical decisions on traumatic brain injury patients. Int. J. Med. Inform. 2000, 57, 1–9. [Google Scholar] [CrossRef]
- Nguyen, T.; Malley, R.; Inkelis, S.H.; Kuppermann, N. Comparison of prediction models for adverse outcome in pediatric meningococcal disease using artificial neural network and logistic regression analyses. J. Clin. Epidemiol. 2002, 55, 687–695. [Google Scholar] [CrossRef]
- Spackman, K.A. Combining logistic regression and neural networks to create predictive models. In Proceedings of the Seventh Annual Symposium on Computer Applications in Medical Care, Baltimore, MD, USA, 8–11 November 1992; AMIA: Baltimore, MD, USA, 1992; pp. 456–459. [Google Scholar]
- Lette, J.; Colletti, B.W.; Cerino, M.; McNamara, D.; Eybalin, M.-C.; Levasseur, A.; Natnel, S. Artificial intelligence versus logistic regression statistical modelling to predict cardiac complications after noncardiac surgery. Clin. Cardiol. 1994, 17, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Om Rikshöft. RIKSHÖFT, Ed. Lund, Sweden. Available online: https://www.xn--rikshft-e1a.se/om-oss (accessed on 26 April 2021).
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Lee, T.H.; Marcantonio, E.R.; Mangione, C.M.; Thomas, E.J.; Polanczyk, C.A.; Cook, E.F.; Sugarbaker, D.J.; Donaldson, M.C.; Poss, R.; Ho, K.K.L.; et al. Derivation and Prospective Validation of a Simple Index for Prediction of Cardiac Risk of Major Noncardiac Surgery. Circulation 1999, 100, 1043–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindenauer, P.K.; Pekow, P.; Wang, K.; Mamidi, D.K.; Gutierrez, B.; Benjamin, E.M. Perioperative Beta-Blocker Therapy and Mortality after Major Noncardiac Surgery. N. Engl. J. Med. 2005, 353, 349–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, G.S.; Reitsma, J.B.; Altman, U.G.; Moons, K.G. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD). Circulation 2015, 131, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.W. Missing Data Analysis: Making It Work in the Real World. Annu. Rev. Psychol. 2009, 60, 549–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derksen, S.; Keselman, H.J. Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. Br. J. Math. Stat. Psychol. 1992, 45, 265–282. [Google Scholar] [CrossRef]
- Lee, C.K.; Hofer, I.; Gabel, E.; Baldi, P.; Cannesson, M. Development and Validation of a Deep Neural Network Model for Prediction of Postoperative In-hospital Mortality. Anesthesiology 2018, 129, 649–662. [Google Scholar] [CrossRef]
- Cao, Y.; Raoof, M.; Montgomery, S.; Ottosson, J.; Näslund, I. Predicting Long-Term Health-Related Quality of Life after Bariatric Surgery Using a Conventional Neural Network: A Study Based on the Scandinavian Obesity Surgery Registry. J. Clin. Med. 2019, 8, 2149. [Google Scholar] [CrossRef] [Green Version]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Wong, T.-T.; Yeh, P.-Y. Reliable Accuracy Estimates from k-Fold Cross Validation. IEEE Trans. Knowl. Data Eng. 2020, 32, 1586–1594. [Google Scholar] [CrossRef]
- Cao, Y.; Fang, X.; Ottosson, J.; Näslund, E.; Stenberg, E. A Comparative Study of Machine Learning Algorithms in Predicting Severe Complications after Bariatric Surgery. J. Clin. Med. 2019, 8, 668. [Google Scholar] [CrossRef] [Green Version]
- Lawson, C.R.; Hodgson, J.A.; Wilson, R.J.; Richards, S.A. Prevalence, thresholds and the performance of presence-absence models. Methods Ecol. Evol. 2014, 5, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden Index and its Associated Cutoff Point. Biom. J. 2005, 47, 458–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Ling, C. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Valverde, A. Threshold-dependence as a desirable attribute for discrimination assessment: Implications for the evaluation of species distribution models. Biodivers. Conserv. 2014, 23, 369–385. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [Green Version]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; Van Calster, B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 2019, 110, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-C.; Ou, Y.-K.; Chen, S.-H.; Liu, Y.-C.; Lin, J. Comparison of artificial neural network and logistic regression models for predicting mortality in elderly patients with hip fracture. Injury 2010, 41, 869–873. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.-J.; Hung, L.-W.; Shieh, J.-S.; Abbod, M.F.; Lin, J. Hip fracture risk assessment: Artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study. BMC Musculoskelet. Disord. 2013, 14, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Wang, X.; Wang, Y. Artificial neural network models for predicting 1-year mortality in elderly patients with intertrochanteric fractures in China. Braz. J. Med. Biol. Res. 2013, 46, 993–999. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Chen, Y.-F.; Chen, H.-Y.; Hung, C.-T.; Shi, H.-Y. Artificial Neural Network and Cox Regression Models for Predicting Mortality after Hip Fracture Surgery: A Population-Based Comparison. Medicina 2020, 56, 243. [Google Scholar] [CrossRef] [PubMed]
- Van Der Ploeg, T.; Austin, P.C.; Steyerberg, E.W. Modern modelling techniques are data hungry: A simulation study for predicting dichotomous endpoints. BMC Med. Res. Methodol. 2014, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, M.J.; Moran, C.G.; Moppett, I.K. Development and validation of a preoperative scoring system to predict 30 day mortality in patients undergoing hip fracture surgery. Br. J. Anaesth. 2008, 101, 511–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copeland, G.P.; Jones, D.; Walters, M. POSSUM: A scoring system for surgical audit. J. Br. Surg. 2005, 78, 355–360. [Google Scholar] [CrossRef]
- Prytherch, D.R.; Whiteley, M.S.; Higgins, B.; Weaver, P.C.; Prout, W.G.; Powell, S.J. POSSUM and Portsmouth POSSUM for predicting mortality. J. Br. Surg. 1998, 85, 1217–1220. [Google Scholar] [CrossRef]
- Buecking, B.; Eschbach, D.; Knobe, M.; Oberkircher, L.; Balzer-Geldsetzer, M.; Dodel, R.; Sielski, R.; Doering, B.; Ruchholtz, S.; Bliemel, C. Predictors of noninstitutionalized survival 1 year after hip fracture. Medicine 2017, 96, e7820. [Google Scholar] [CrossRef]
- Smith, T.; Pelpola, K.; Ball, M.; Ong, A.; Myint, P.K. Pre-operative indicators for mortality following hip fracture surgery: A systematic review and meta-analysis. Age Ageing 2014, 43, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Marufu, T.C.; Mannings, A.; Moppett, I.K. Risk scoring models for predicting peri-operative morbidity and mortality in people with fragility hip fractures: Qualitative systematic review. Injury 2015, 46, 2325–2334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.J.; Scott, J.; Sivalingam, P. Evaluation of Nottingham Hip Fracture Score, Age-Adjusted Charlson Comorbidity Index and the Physiological and Operative Severity Score for the enumeration of Mortality and morbidity as predictors of mortality in elderly neck of femur fracture patients. SAGE Open Med. 2020, 8. [Google Scholar] [CrossRef]
- Karres, J.; Heesakkers, N.A.; Ultee, J.M.; Vrouenraets, B.C. Predicting 30-day mortality following hip fracture surgery: Evaluation of six risk prediction models. Injury 2015, 46, 371–377. [Google Scholar] [CrossRef]
- Ramanathan, T.S.; Moppett, I.K.; Wenn, R.; Moran, C.G. POSSUM scoring for patients with fractured neck of femur. Br. J. Anaesth. 2005, 94, 430–433. [Google Scholar] [CrossRef] [Green Version]
- Fleisher, L.A.; Fleischmann, K.E.; Auerbach, A.D.; Barnason, S.A.; Beckman, J.A.; Bozkurt, B.; Davila-Roman, V.G.; Gerhard-Herman, M.D.; Holly, T.A.; Kane, G.C.; et al. 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. Circulation 2014, 130, e278–e333. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, M.H.; Bentzer, P.; Turkiewicz, A.; Hommel, A. Accuracy of the Physiological and Operative Severity Score for the enUmeration of Mortality and morbidity score and the Nottingham risk score in hip fracture patients in Sweden - A prospective observational study. Acta Anaesthesiol. Scand. 2018, 62, 1057–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saklad, M. Grading of patients for surgical procedures. Anesthesiology 1941, 2, 281–284. [Google Scholar] [CrossRef]
- Cullen, S.C. Cybernesthesia. Anesthesiology 1963, 24, 110–111. [Google Scholar] [CrossRef]
- Meyer, A.C.; Hedström, M.; Modig, K. The Swedish Hip Fracture Register and National Patient Register were valuable for research on hip fractures: Comparison of two registers. J. Clin. Epidemiol. 2020, 125, 91–99. [Google Scholar] [CrossRef]
Variable | Total (n = 134,915) | Alive (n = 124,707) | Dead (n = 10,208) | p-Value |
---|---|---|---|---|
Age, mean ± SD | 82.0 ± 10.0 | 81.5 ± 10.1 | 86.9 ± 7.3 | <0.001 |
Male * (%) | 42,988 (31.9) | 38,314 (30.7) | 4674 (45.8) | <0.001 |
ASA classification * (%) | <0.001 | |||
1 | 6656 (5.0) | 6536 (5.34) | 120 (5.03) | |
2 | 48,264 (36.4) | 46,507 (38.0) | 1757 (17.6) | |
3 | 66,857 (50.5) | 60,857 (49.7) | 6000 (60.0) | |
4 | 10,534 (8.0) | 8459 (6.9) | 2075 (20.7) | |
5 | 135 (0.1) | 79 (0.1) | 56 (0.1) | |
RCRI (%) | <0.001 | |||
0 | 79,941 (59.3) | 75,864 (60.8) | 4077 (39.9) | |
1 | 36,848 (27.3) | 33,476 (26.8) | 3372 (33.0) | |
2 | 13,086 (9.7) | 11,284 (9.1) | 1802 (17.7) | |
3 | 3971 (2.9) | 3245 (2.6) | 726 (7.11) | |
≥4 | 1069 (0.8) | 838 (0.7) | 231 (2.26) | |
Fracture type * (%) | <0.001 | |||
Non-displaced cervical (Garden 1–2) | 17,868 (13.3) | 16,840 (13.5) | 1028 (10.1) | |
Displaced cervical (Garden 3–4) | 50,172 (37.2) | 46,248 (37.1) | 3924 (38.5) | |
Basicervical | 4480 (3.3) | 4126 (3.3) | 354 (3.5) | |
Pertrochanteric (two fragments) | 26,859 (19.9) | 24,775 (19.9) | 2084 (20.4) | |
Pertrochanteric (multiple fragments) | 24,493 (19.2) | 22,487 (18.0) | 2006 (19.7) | |
Subtrochanteric | 10,988 (8.2) | 10,178 (8.2) | 810 (7.9) | |
Surgery type * (%) | <0.001 | |||
Pins or screws | 23,548 (17.4) | 21,849 (17.5) | 1609 (15.8) | |
Screws or pins with sideplate | 34,902 (25.9) | 32,146 (25.8) | 2756 (27.0) | |
Intramedullary nail | 31,992 (23.7) | 29,496 (23.7) | 2496 (24.5) | |
Hemiarthroplasty | 34,596 (25.7) | 31,473 (25.3) | 3123 (30.6) | |
Total hip replacement | 9889 (7.33) | 9676 (7.8) | 213 (2.1) | |
CCI (%) | <0.001 | |||
≤4 | 59,611 (44.2) | 57,634 (46.2) | 1977 (19.4) | |
5–6 | 50,247 (37.2) | 45,733 (36.7) | 4514 (44.2) | |
≥7 | 25,057 (18.6) | 21,340 (17.1) | 3717 (36.4) | |
PVD (%) | 5890 (4.4) | 5236 (4.2) | 654 (6.4) | <0.001 |
COPD (%) | 15,577 (11.6) | 13,933 (11.2) | 1644 (16.1) | <0.001 |
Liver disease (%) | 1370 (1.0) | 1232 (1.0) | 138 (1.4) | <0.001 |
Dementia (%) | 27,304 (20.2) | 27,789 (19.1) | 3515 (34.4) | <0.001 |
Connective tissue disease (%) | 6487 (4.8) | 6036 (4.8) | 451 (4.4) | 0.055 |
Cancer (%) | 14,560 (10.8) | 13,108 (10.5) | 1452 (14.2) | <0.001 |
Metastatic carcinoma (%) | 2962 (2.2) | 2498 (2.0) | 464 (4.6) | <0.001 |
MI (%) | 8063 (5.9) | 6789 (5.4) | 1274 (12.5) | <0.001 |
CHF (%) | 21,097 (15.6) | 17,475 (14.0) | 3633 (35.8) | <0.001 |
Hypertension (%) | 51,756 (38.4) | 47,990 (38.5) | 3766 (36.9) | 0.001 |
Arrhythmia (%) | 24,998 (18.5) | 22,305 (17.9) | 2693 (26.4) | <0.001 |
CeVD (%) | 23,382 (17.3) | 21,036 (16.9) | 2346 (23.0) | <0.001 |
Peptic ulcer disease (%) | 4328 (3.21) | 3918 (3.1) | 410 (4.0) | <0.001 |
Diabetes (%) | 19,856 (14.7) | 18,166 (14.6) | 1690 (16.6) | <0.001 |
Hemiplegia (%) | 2911 (2.2) | 2715 (2.2) | 196 (1.9) | 0.086 |
Chronic kidney disease (%) | 6945 (5.2) | 5774 (4.6) | 1171 (11.5) | <0.001 |
Variable | OR | p-Value | 95% Confidence Interval | |
---|---|---|---|---|
Upper Limit | Lower Limit | |||
RCRI | ||||
0 | Reference | |||
1 | 1.371 | 0.210 | 0.837 | 2.246 |
2 | 1.787 | 0.247 | 0.669 | 4.774 |
3 | 2.249 | 0.280 | 0.516 | 9.802 |
≥4 | 2.764 | 0.324 | 0.367 | 20.821 |
Age | 1.074 | <0.001 | 1.070 | 1.078 |
Male | 1.927 | <0.001 | 1.842 | 2.017 |
PVD | 1.146 | 0.005 | 1.042 | 1.259 |
COPD | 1.291 | <0.001 | 1.209 | 1.378 |
Liver disease | 2.150 | <0.001 | 1.766 | 2.618 |
Dementia | 1.837 | <0.001 | 1.738 | 1.941 |
Connective tissue disease | 0.948 | 0.320 | 0.852 | 1.054 |
Cancer | 1.166 | <0.001 | 1.076 | 1.262 |
Metastatic carcinoma | 2.751 | <0.001 | 2.400 | 3.152 |
ASA classification | ||||
1 | Reference | |||
2 | 1.271 | 0.013 | 1.051 | 1.536 |
3 | 2.149 | <0.001 | 1.782 | 2.593 |
4 | 4.228 | <0.001 | 3.484 | 5.131 |
5 | 12.007 | <0.001 | 7.928 | 18.185 |
Fracture type | ||||
Non-displaced cervical (Garden 1–2) | Reference | |||
Displaced cervical (Garden 3–4) | 1.367 | <0.001 | 1.240 | 1.506 |
Basicervical | 1.266 | 0.008 | 1.064 | 1.506 |
Pertrochanteric (two fragments) | 1.337 | <0.001 | 1.141 | 1.568 |
Pertrochanteric (multiple fragments) | 1.443 | <0.001 | 1.226 | 1.699 |
Subtrochanteric | 1.455 | <0.001 | 1.222 | 1.731 |
Surgery type | ||||
Pins or screws | Reference | |||
Screws or pins with sideplate | 0.947 | 0.468 | 0.817 | 1.098 |
Intramedullary nail | 0.895 | 0.168 | 0.765 | 1.048 |
Hemiarthroplasty | 0.998 | 0.957 | 0.915 | 1.088 |
Total hip replacement | 0.593 | <0.001 | 0.505 | 0.696 |
CCI | ||||
≤4 | Reference | |||
5–6 | 1.150 | <0.001 | 1.064 | 1.242 |
≥7 | 1.143 | 0.037 | 1.008 | 1.295 |
MI | 1.070 | 0.786 | 0.654 | 1.752 |
CHF | 1.472 | 0.124 | 0.899 | 2.410 |
Hypertension | 0.649 | <0.001 | 0.618 | 0.682 |
Arrhythmia | 0.930 | 0.010 | 0.881 | 0.983 |
CeVD | 0.854 | 0.528 | 0.522 | 1.396 |
Peptic ulcer disease | 1.038 | 0.521 | 0.927 | 1.162 |
Diabetes | 0.808 | 0.396 | 0.494 | 1.322 |
Hemiplegia | 0.8620 | 0.073 | 0.732 | 1.014 |
Chronic kidney disease | 1.126 | 0.638 | 0.687 | 1.844 |
Variable | OR | p-Value | 95% Confidence Interval | |
---|---|---|---|---|
Upper Limit | Lower Limit | |||
RCRI | ||||
0 | Reference | |||
1 | 1.500 | 0.000 | 1.373 | 1.638 |
2 | 2.138 | 0.000 | 1.857 | 2.462 |
3 | 2.948 | 0.000 | 2.436 | 3.569 |
≥4 | 4.011 | 0.000 | 3.105 | 5.182 |
Age | 1.074 | 0.000 | 1.070 | 1.078 |
Male | 1.933 | 0.000 | 1.847 | 2.022 |
PVD | 1.147 | 0.004 | 1.043 | 1.261 |
COPD | 1.289 | 0.000 | 1.208 | 1.376 |
Liver disease | 2.161 | 0.000 | 1.776 | 2.630 |
Dementia | 1.838 | 0.000 | 1.741 | 1.942 |
arrythmia | 0.931 | 0.011 | 0.881 | 0.983 |
Cancer | 1.165 | 0.000 | 1.077 | 1.261 |
Metastatic carcinoma | 2.750 | 0.000 | 2.405 | 3.145 |
ASA class | ||||
1 | Reference | |||
2 | 1.270 | 0.014 | 1.051 | 1.536 |
3 | 2.148 | 0.000 | 1.781 | 2.591 |
4 | 4.229 | 0.000 | 3.485 | 5.131 |
5 | 11.987 | 0.000 | 7.918 | 18.147 |
Displaced cervical (Garden 3–4) | 1.366 | 0.000 | 1.267 | 1.473 |
Basicervical | 1.217 | 0.004 | 1.064 | 1.391 |
Peritrochanteric (two fragments) | 1.271 | 0.000 | 1.169 | 1.382 |
Peritrochanteric (multiple fragments) | 1.373 | 0.000 | 1.251 | 1.506 |
Subtrochanteric | 1.384 | 0.000 | 1.235 | 1.552 |
Diabetes | 0.739 | 0.000 | 0.680 | 0.802 |
Intramedullary nail | 0.944 | 0.094 | 0.883 | 1.010 |
CeVD | 0.780 | 0.000 | 0.722 | 0.843 |
Total hip replacement | 0.595 | 0.000 | 0.515 | 0.687 |
CCI | ||||
≤4 | Reference | |||
5–6 | 1.147 | 0.000 | 1.063 | 1.238 |
≥7 | 1.143 | 0.028 | 1.014 | 1.288 |
Hemiplegia | 0.861 | 0.070 | 0.732 | 1.013 |
CHF | 1.345 | 0.000 | 1.237 | 1.463 |
Hypertension | 0.649 | 0.000 | 0.618 | 0.682 |
Model | Training | Test | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | Specificity | Sensitivity | AUC | Accuracy | Specificity | Sensitivity | AUC | |
CNN 1 | 0.77 | 0.76 | 0.80 | 0.87 | 0.74 | 0.76 | 0.52 | 0.72 |
CNN 2 | 0.80 | 0.79 | 0.80 | 0.89 | 0.76 | 0.79 | 0.46 | 0.71 |
CNN 3 | 0.79 | 0.78 | 0.80 | 0.88 | 0.75 | 0.77 | 0.47 | 0.69 |
CNN 4 | 0.70 | 0.71 | 0.70 | 0.77 | 0.71 | 0.71 | 0.68 | 0.76 |
LR | 0.74 | 0.74 | 0.74 | 0.83 | 0.73 | 0.75 | 0.57 | 0.73 |
LR 5 | 0.74 | 0.72 | 0.76 | 0.82 | 0.72 | 0.73 | 0.60 | 0.74 |
LR 6 | 0.74 | 0.74 | 0.74 | 0.83 | 0.73 | 0.75 | 0.58 | 0.73 |
LR 7 | 0.74 | 0.74 | 0.75 | 0.83 | 0.73 | 0.74 | 0.58 | 0.73 |
LR 4 | 0.70 | 0.69 | 0.71 | 0.76 | 0.70 | 0.70 | 0.69 | 0.76 |
RF | 0.68 | 0.54 | 0.81 | 0.76 | 0.57 | 0.55 | 0.76 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Forssten, M.P.; Mohammad Ismail, A.; Borg, T.; Ioannidis, I.; Montgomery, S.; Mohseni, S. Predictive Values of Preoperative Characteristics for 30-Day Mortality in Traumatic Hip Fracture Patients. J. Pers. Med. 2021, 11, 353. https://doi.org/10.3390/jpm11050353
Cao Y, Forssten MP, Mohammad Ismail A, Borg T, Ioannidis I, Montgomery S, Mohseni S. Predictive Values of Preoperative Characteristics for 30-Day Mortality in Traumatic Hip Fracture Patients. Journal of Personalized Medicine. 2021; 11(5):353. https://doi.org/10.3390/jpm11050353
Chicago/Turabian StyleCao, Yang, Maximilian Peter Forssten, Ahmad Mohammad Ismail, Tomas Borg, Ioannis Ioannidis, Scott Montgomery, and Shahin Mohseni. 2021. "Predictive Values of Preoperative Characteristics for 30-Day Mortality in Traumatic Hip Fracture Patients" Journal of Personalized Medicine 11, no. 5: 353. https://doi.org/10.3390/jpm11050353
APA StyleCao, Y., Forssten, M. P., Mohammad Ismail, A., Borg, T., Ioannidis, I., Montgomery, S., & Mohseni, S. (2021). Predictive Values of Preoperative Characteristics for 30-Day Mortality in Traumatic Hip Fracture Patients. Journal of Personalized Medicine, 11(5), 353. https://doi.org/10.3390/jpm11050353