Free Myocutaneous Flap Assessment in a Rat Model: Verification of a Wireless Bioelectrical Impedance Assessment (BIA) System for Vascular Compromise Following Microsurgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioelectrical Impedance Analysis
2.2. Animal Experiment Design and Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- el-Gammal, T.A.; Wei, F.C. Microvascular reconstruction of the distal digits by partial toe transfer. Clin. Plast Surg. 1997, 24, 49–55. [Google Scholar] [CrossRef]
- Chen, H.C.; Tang, Y.B.; Chuang, D.; Wei, F.C.; Noordhoff, M.S. Microvascular free posterior interosseous flap and a comparison with the pedicled posterior interosseous flap. Ann. Plast Surg. 1996, 36, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.C.; Mosely, L.H.; Tang, Y.B.; Wei, F.C.; Noordhoff, M.S. Difficult reconstruction of an extensive injury in the lower extremity with a large cross-leg microvascular composite-tissue flap containing fibula. Plast Reconstr. Surg. 1989, 83, 723–727. [Google Scholar] [CrossRef]
- Tukiainen, E.; Popov, P.; Asko-Seljavaara, S. Microvascular reconstructions of full-thickness oncological chest wall defects. Ann. Surg. 2003, 238, 794–801. [Google Scholar] [CrossRef]
- Lutz, B.S.; Ng, S.H.; Cabailo, R.; Lin, C.H.; Wei, F.C. Value of routine angiography before traumatic lower-limb reconstruction with microvascular free tissue transplantation. J. Trauma 1998, 44, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Kroll, S.S.; Schusterman, M.A.; Reece, G.P.; Miller, M.J.; Evans, G.R.; Robb, G.L.; Baldwin, B.J. Timing of pedicle thrombosis and flap loss after free-tissue transfer. Plast Reconstr. Surg. 1996, 98, 1230–1233. [Google Scholar] [CrossRef]
- Chiu, E.S.; Altman, A.; Allen, R.J., Jr.; Allen, R.J., Sr. Free flap monitoring using skin temperature strip indicators: Adjunct to clinical examination. Plast Reconstr. Surg. 2008, 122, 144e–145e. [Google Scholar] [CrossRef] [Green Version]
- Khouri, R.K.; Shaw, W.W. Monitoring of free flaps with surface-temperature recordings: Is it reliable? Plast Reconstr. Surg. 1992, 89, 495–499. [Google Scholar] [CrossRef]
- Edsander-Nord, A.; Rojdmark, J.; Wickman, M. Metabolism in pedicled and free TRAM flaps: A comparison using the microdialysis technique. Plast Reconstr. Surg. 2002, 109, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Mucke, T.; Rau, A.; Merezas, A.; Loeffelbein, D.J.; Wagenpfeil, S.; Mitchell, D.A.; Wolff, K.D.; Steiner, T. Identification of perioperative risk factor by laser-doppler spectroscopy after free flap perfusion in the head and neck: A prospective clinical study. Microsurgery 2014, 34, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Wtorek, J.; Jozefiak, L.; Polinski, A.; Siebert, J. An averaging two-electrode probe for monitoring changes in myocardial conductivity evoked by ischemia. IEEE Trans. Biomed. Eng. 2002, 49, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gomez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Berthelot, M.; Yang, G.Z.; Lo, B. A Self-Calibrated Tissue Viability Sensor for Free Flap Monitoring. IEEE J. Biomed. Health Inform. 2018, 22, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Steijaert, M.; Deurenberg, P.; Van Gaal, L.; De Leeuw, I. The use of multi-frequency impedance to determine total body water and extracellular water in obese and lean female individuals. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 930–934. [Google Scholar] [CrossRef] [Green Version]
- Schwan, H.P. Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 1957, 5, 147–209. [Google Scholar] [CrossRef]
- Dean, D.A.; Ramanathan, T.; Machado, D.; Sundararajan, R. Electrical Impedance Spectroscopy Study of Biological Tissues. J Electrostat 2008, 66, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Tahirbegi, I.B.; Mir, M.; Schostek, S.; Schurr, M.; Samitier, J. In vivo ischemia monitoring array for endoscopic surgery. Biosens. Bioelectron. 2014, 61, 124–130. [Google Scholar] [CrossRef]
- Lingwood, B.E.; Dunster, K.R.; Colditz, P.B.; Ward, L.C. Noninvasive measurement of cerebral bioimpedance for detection of cerebral edema in the neonatal piglet. Brain Res. 2002, 945, 97–105. [Google Scholar] [CrossRef]
- Briggs, S.E.; Banis, J.C., Jr.; Kaebnick, H.; Silverberg, B.; Acland, R.D. Distal revascularization and microvascular free tissue transfer: An alternative to amputation in ischemic lesions of the lower extremity. J. Vasc. Surg. 1985, 2, 806–811. [Google Scholar] [CrossRef] [Green Version]
- Gurlek, A.; Kroll, S.S.; Schusterman, M.A. Ischemic time and free flap success. Ann. Plast. Surg. 1997, 38, 503–505. [Google Scholar] [CrossRef]
- Keller, A. Noninvasive tissue oximetry for flap monitoring: An initial study. J. Reconstr. Microsurg. 2007, 23, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, H.; Shin, H.; Yun, S.; Kim, J.; Choi, J. Measurement of bioimpedance and cell viability during ischemia-reperfusion in the rat liver. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005, 2005, 1945–1947. [Google Scholar] [CrossRef] [PubMed]
- Gomez, R.; Ivorra, A.; Villa, R.; Godignon, P.; Millan, J.; Erill, I.; Sola, A.; Hotter, G.; Palacios, L. A SiC microdevice for the minimally invasive monitoring of ischemia in living tissues. Biomed. Microdevices. 2006, 8, 43–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivorra, A.; Gomez, R.; Noguera, N.; Villa, R.; Sola, A.; Palacios, L.; Hotter, G.; Aguilo, J. Minimally invasive silicon probe for electrical impedance measurements in small animals. Biosens. Bioelectron. 2003, 19, 391–399. [Google Scholar] [CrossRef]
- Kun, S.; Ristic, B.; Peura, R.A.; Dunn, R.M. Algorithm for tissue ischemia estimation based on electrical impedance spectroscopy. IEEE Trans. Biomed. Eng. 2003, 50, 1352–1359. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251–2269. [Google Scholar] [CrossRef] [Green Version]
- Issing, W.J.; Naumann, C. Evaluation of pedicled skin flap viability by pH, temperature and fluorescein: An experimental study. J. Craniomaxillofac. Surg. 1996, 24, 305–309. [Google Scholar] [CrossRef]
- Schepel, S.J.; Koning, G.; Oeseburg, B.; Langbroek, A.J.; Zijlstra, W.G. Performance of a pH monitoring system in vivo. Med. Biol. Eng. Comput. 1987, 25, 63–67. [Google Scholar] [CrossRef]
- Rojdmark, J.; Heden, P.; Ungerstedt, U. Prediction of border necrosis in skin flaps of pigs with microdialysis. J. Reconstr. Microsurg. 2000, 16, 129–134. [Google Scholar] [CrossRef]
- Rojdmark, J.; Blomqvist, L.; Malm, M.; Adams-Ray, B.; Ungerstedt, U. Metabolism in myocutaneous flaps studied by in situ microdialysis. Scand J. Plast. Reconstr. Surg. Hand. Surg. 1998, 32, 27–34. [Google Scholar] [CrossRef]
- Liasis, L.; Malietzis, G.; Galyfos, G.; Athanasiou, T.; Papaconstantinou, H.T.; Sigala, F.; Zografos, G.; Filis, K. The emerging role of microdialysis in diabetic patients undergoing amputation for limb ischemia. Wound Repair Regen. 2016, 24, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
Group | Impact Region | 1 kHz | 5 kHz | 10 kHz | 20 kHz |
---|---|---|---|---|---|
Experimental group | Thigh | 28.60% | 50.90% | 81.40% | 45.40% |
Feet | 31.40% | 40.50% | 91.60% | 3.30% | |
Control group |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.-K.; Wong, M.Y.; Wu, C.-R.; Cheng, Y.-Z.; Lin, B.-S. Free Myocutaneous Flap Assessment in a Rat Model: Verification of a Wireless Bioelectrical Impedance Assessment (BIA) System for Vascular Compromise Following Microsurgery. J. Pers. Med. 2021, 11, 373. https://doi.org/10.3390/jpm11050373
Huang Y-K, Wong MY, Wu C-R, Cheng Y-Z, Lin B-S. Free Myocutaneous Flap Assessment in a Rat Model: Verification of a Wireless Bioelectrical Impedance Assessment (BIA) System for Vascular Compromise Following Microsurgery. Journal of Personalized Medicine. 2021; 11(5):373. https://doi.org/10.3390/jpm11050373
Chicago/Turabian StyleHuang, Yao-Kuang, Min Yi Wong, Chi-Rung Wu, Yung-Ze Cheng, and Bor-Shyh Lin. 2021. "Free Myocutaneous Flap Assessment in a Rat Model: Verification of a Wireless Bioelectrical Impedance Assessment (BIA) System for Vascular Compromise Following Microsurgery" Journal of Personalized Medicine 11, no. 5: 373. https://doi.org/10.3390/jpm11050373
APA StyleHuang, Y. -K., Wong, M. Y., Wu, C. -R., Cheng, Y. -Z., & Lin, B. -S. (2021). Free Myocutaneous Flap Assessment in a Rat Model: Verification of a Wireless Bioelectrical Impedance Assessment (BIA) System for Vascular Compromise Following Microsurgery. Journal of Personalized Medicine, 11(5), 373. https://doi.org/10.3390/jpm11050373