Biomarkers Linked with Dynamic Changes of Renal Function in Asymptomatic and Mildly Symptomatic COVID-19 Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Clinical Evaluation
2.3. Statistical Analysis
3. Results
3.1. Study Population and Patient Characteristics
3.2. Disease Severity and Complications
3.3. Comparison of Laboratory Findings upon Admission and Discharge
3.4. Changes in Renal Function and Correlation with the Severity of Infection
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raisi-Estabragh, Z.; McCracken, C.; Bethell, M.S.; Cooper, J.; Cooper, C.; Caulfield, M.J.; Munroe, P.B.; Harvey, N.C.; Petersen, S.E. Greater risk of severe COVID-19 in Black, Asian and Minority Ethnic populations is not explained by cardiometabolic, socioeconomic or behavioural factors, or by 25(OH)-vitamin D status: Study of 1326 cases from the UK Biobank. J. Public Health 2020, 42, 451–460. [Google Scholar] [CrossRef]
- Pan, D.; Sze, S.; Minhas, J.S.; Bangash, M.N.; Pareek, N.; Divall, P.; Williams, C.M.; Oggioni, M.R.; Squire, I.B.; Nellums, L.B.; et al. The impact of ethnicity on clinical outcomes in COVID-19: A systematic review. EClinicalMedicine 2020, 23, 100404. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int. J. Oral Sci. 2020, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Li, K.; Ding, Y.; Lu, W.; Wang, J. ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Damage After 2019-nCoV Infection. MedRxiv 2020. [Google Scholar] [CrossRef]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef]
- Hong, D.; Long, L.; Wang, A.Y.; Lei, Y.; Tang, Y.; Zhao, J.W.; Song, X.; He, Y.; Wen, E.; Zheng, L.; et al. Kidney manifestations of mild, moderate and severe coronavirus disease 2019: A retrospective cohort study. Clin. Kidney J. 2020, 13, 340–346. [Google Scholar] [CrossRef]
- Fisher, M.; Neugarten, J.; Bellin, E.; Yunes, M.; Stahl, L.; Johns, T.S.; Abramowitz, M.K.; Levy, R.; Kumar, N.; Mokrzycki, M.H.; et al. AKI in Hospitalized Patients with and without COVID-19: A Comparison Study. J. Am. Soc. Nephrol. 2020, 31, 2145–2157. [Google Scholar] [CrossRef]
- Lin, C.; Wang, W.; Urbina, A.N.; Tseng, S.; Lu, P.; Chen, Y.; Yu, M.; Wang, S. Importation of SARS-CoV-2 infection leads to major COVID-19 epidemic in Taiwan. Int. J. Infect. Dis. 2020, 97, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Mutinelli-Szymanski, P.; Hude, I.; Merle, E.; Lombardi, Y.; Seris, P.; Abtahi, M.; Azeroual, L.; Bourgain, C.; Ensergueix, G.; Katerinis, I.; et al. Neutrophil:lymphocyte ratio predicts short-term outcome of COVID-19 in haemodialysis patients. Clin. Kidney J. 2020, 14, 124–131. [Google Scholar] [CrossRef]
- Jimeno, S.; Ventura, P.S.; Castellano, J.M.; García-Adasme, S.I.; Miranda, M.; Touza, P.; Lllana, I.; López-Escobar, A. Prognostic implications of neutrophil-lymphocyte ratio in COVID-19. Eur. J. Clin. Investig. 2021, 51, e13404. [Google Scholar] [CrossRef]
- Hartog, N.L.; Davis, A.T.; Prokop, J.W.; Walls, A.; Rajasekaran, S. Monitoring neutrophil-to-lymphocyte ratio in patients with coronavirus disease 2019 receiving tocilizumab. Ann. Allergy Asthma Immunol. 2021, 126, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.M.; Ahmad, U.; Usman, U.; Ali, M.; Shaukat, A.; Gul, N. Neutrophil/lymphocyte ratio-A marker of COVID-19 pneumonia severity. Int. J. Clin. Pract. 2021, 75, e13698. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, S.; Hu, H.; Liu, T.; Huang, J. The role of neutrophil-lymphocyte ratio and lymphocyte-monocyte ratio in the prognosis of type 2 diabetics with COVID-19. Scott. Med. J. 2020, 65, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Kong, J.; Wang, W.; Wu, M.; Yao, L.; Wang, Z.; Jin, J.; Wu, D.; Yu, X. The clinical implication of dynamic neutrophil to lymphocyte ratio and D-dimer in COVID-19: A retrospective study in Suzhou China. Thromb. Res. 2020, 192, 3–8. [Google Scholar] [CrossRef]
- Stringer, D.; Braude, P.; Myint, P.K.; Evans, L.; Collins, J.T.; Verduri, A.; Quinn, T.J.; Vilches-Moraga, A.; Stechman, M.J.; Pearce, L.; et al. The role of C-reactive protein as a prognostic marker in COVID-19. Int. J. Epidemiol. 2021, 50, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Kunichoff, D.; Garshick, M.; Shah, B.; Pillinger, M.; Hochman, J.S.; Berger, J.S. C-reactive protein and clinical outcomes in patients with COVID-19. Eur. Heart J. 2021, ehaa1103. [Google Scholar] [CrossRef]
- Sharifpour, M.; Rangaraju, S.; Liu, M.; Alabyad, D.; Nahab, F.B.; Creel-Bulos, C.M.; Jabaley, C.S. C-Reactive protein as a prognostic indicator in hospitalized patients with COVID-19. PLoS ONE 2020, 15, e0242400. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, W.; Yan, X.; Guo, T.; Wang, B.; Xia, H.; Ye, L.; Xiong, J.; Jiang, Z.; Liu, Y.; et al. Prognostic Value of C-Reactive Protein in Patients With Coronavirus 2019. Clin. Infect. Dis. 2020, 71, 2174–2179. [Google Scholar] [CrossRef]
- Tan, C.; Huang, Y.; Shi, F.; Tan, K.; Ma, Q.; Chen, Y.; Jiang, X.; Li, X. C-reactive protein correlates with computed tomographic findings and predicts severe COVID-19 early. J. Med. Virol. 2020, 92, 856–862. [Google Scholar] [CrossRef] [Green Version]
- Wang, L. C-reactive protein levels in the early stage of COVID-19. Med. Mal. Infect. 2020, 50, 332–334. [Google Scholar] [CrossRef]
- Su, H.; Yang, M.; Wan, C.; Yi, L.; Tang, F.; Zhu, H.; Yi, F.; Yang, H.; Fogo, A.B.; Nie, X.; et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020, 98, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Cavalier, E.; Pottel, H. Serum Creatinine: Not So Simple! Nephron 2017, 136, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; de Jong, P.E.; Coresh, J.; El Nahas, M.; Astor, B.C.; Matsushita, K.; Gansevoort, R.T.; Kasiske, B.L.; Eckardt, K. The definition, classification, and prognosis of chronic kidney disease: A KDIGO Controversies Conference report. Kidney Int. 2011, 80, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Glassock, R.J.; Winearls, C. Ageing and the glomerular filtration rate: Truths and consequences. Trans. Am. Clin. Clim. Assoc. 2009, 120, 419–428. [Google Scholar]
- Delanaye, P.; Schaeffner, E.; Ebert, N.; Cavalier, E.; Mariat, C.; Krzesinski, J.; Moranne, O. Normal reference values for glomerular filtration rate: What do we really know? Nephrol. Dial. Transpl. 2012, 27, 2664–2672. [Google Scholar] [CrossRef] [Green Version]
- Uribarri, A.; Núñez-Gil, I.J.; Aparisi, A.; Becerra-Muñoz, V.M.; Feltes, G.; Trabattoni, D.; Fernández-Rozas, I.; Viana-Llamas, M.C.; Pepe, M.; Cerrato, E.; et al. Impact of renal function on admission in COVID-19 patients: An analysis of the international HOPE COVID-19 (Health Outcome Predictive Evaluation for COVID 19) Registry. J. Nephrol. 2020, 33, 737–745. [Google Scholar] [CrossRef]
- Min, H.K.; Sung, S.A.; Lee, S.Y.; Lee, S.W. Sub-morbid dehydration-associated glomerular hyperfiltration: An emerging reality? Kidney Res. Clin. Pract. 2019, 38, 196–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target. Ther. 2020, 5, 33. [Google Scholar] [CrossRef]
- Huang, I.; Pranata, R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. J. Intensive Care 2020, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Elalamy, I.; Kastritis, E.; Sergentanis, T.N.; Politou, M.; Psaltopoulou, T.; Gerotziafas, G.; Dimopoulos, M.A. Hematological findings and complications of COVID-19. Am. J. Hematol. 2020, 95, 834–847. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Li, S.; Sun, Q.; Zhu, J.; Chen, B.; Xiong, M.; Cao, G. Immune-Inflammatory Parameters in COVID-19 Cases: A Systematic Review and Meta-Analysis. Front. Med. 2020, 7, 301. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, G.; He, J.; Liu, Y.; Li, M.; Zhang, R.; Li, Y.; Wu, Y.; Diao, B. Combined use of the neutrophil-to-lymphocyte ratio and CRP to predict 7-day disease severity in 84 hospitalized patients with COVID-19 pneumonia: A retrospective cohort study. Ann. Transl. Med. 2020, 8, 635. [Google Scholar] [CrossRef]
- Vetter, P.; Vu, D.L.; L’Huillier, A.G.; Schibler, M.; Kaiser, L.; Jacquerioz, F. Clinical features of covid-19. BMJ 2020, 369, m1470. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Li, J.; Zhu, G.; Zhang, Y.; Bi, Z.; Yu, Y.; Huang, B.; Fu, S.; Tan, Y.; Sun, J.; et al. Clinical Features of Maintenance Hemodialysis Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Clin. J. Am. Soc. Nephrol. 2020, 15, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Kotton, C.N.; Fishman, J.A. Viral infection in the renal transplant recipient. J. Am. Soc. Nephrol. 2005, 16, 1758–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronco, C.; Reis, T.; Husain-Syed, F. Management of acute kidney injury in patients with COVID-19. Lancet Respir. Med. 2020, 8, 738–742. [Google Scholar] [CrossRef]
- Durvasula, R.; Wellington, T.; McNamara, E.; Watnick, S. COVID-19 and Kidney Failure in the Acute Care Setting: Our Experience from Seattle. Am. J. Kidney Dis. 2020, 76, 4–6. [Google Scholar] [CrossRef]
- Ronco, C.; Reis, T. Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat. Rev. Nephrol. 2020, 16, 308–310. [Google Scholar] [CrossRef] [Green Version]
- Batlle, D.; Soler, M.J.; Sparks, M.A.; Hiremath, S.; South, A.M.; Welling, P.A.; Swaminathan, S. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J. Am. Soc. Nephrol. 2020, 31, 1380–1383. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Vardeny, O.; Michel, T.; McMurray, J.J.V.; Pfeffer, M.A.; Solomon, S.D. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N. Engl. J. Med. 2020, 382, 1653–1659. [Google Scholar] [CrossRef]
- Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020, 71, 732–739. [Google Scholar] [CrossRef] [Green Version]
- Cavalcanti, A.B.; Zampieri, F.G.; Rosa, R.G.; Azevedo, L.C.P.; Veiga, V.C.; Avezum, A.; Damiani, L.P.; Marcadenti, A.; Kawano-Dourado, L.; Lisboa, T.; et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N. Engl. J. Med. 2020, 383, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Guo, H.; Ling, L.; Ji, J.; Niu, J.; Gu, Y. The chronic adverse effect of chloroquine on kidney in rats through an autophagy dependent and independent pathways. Nephron 2020, 144, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Fajnzylber, J.; Regan, J.; Coxen, K.; Corry, H.; Wong, C.; Rosenthal, A.; Worrall, D.; Giguel, F.; Piechocka-Trocha, A.; Atyeo, C.; et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun. 2020, 11, 5493. [Google Scholar] [CrossRef] [PubMed]
- Pujadas, E.; Chaudhry, F.; McBride, R.; Richter, F.; Zhao, S.; Wajnberg, A.; Nadkarni, G.; Glicksberg, B.S.; Houldsworth, J.; Cordon-Cardo, C. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir. Med. 2020, 8, e70. [Google Scholar] [CrossRef]
- Long, Q.; Tang, X.; Shi, Q.; Li, Q.; Deng, H.; Yuan, J.; Hu, J.; Xu, W.; Zhang, Y.; Lv, F.; et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- Rees, E.M.; Nightingale, E.S.; Jafari, Y.; Waterlow, N.R.; Clifford, S.; Pearson, C.A.B.; Group, C.W.; Jombart, T.; Procter, S.R.; Knight, G.M. COVID-19 length of hospital stay: A systematic review and data synthesis. BMC Med. 2020, 18, 270. [Google Scholar] [CrossRef]
- Woloshin, S.; Patel, N.; Kesselheim, A.S. False Negative Tests for SARS-CoV-2 Infection—Challenges and Implications. N. Engl. J. Med. 2020, 383, e38. [Google Scholar] [CrossRef]
Variables | N (%) or Median (IQR) |
---|---|
Age (years) | 34 (23–54) |
Male | 15 (55.6%) |
BMI (kg/m2) | 21.8 (20.17–23.94) |
SBP (mmHg) | 130 (119–137) |
DBP (mmHg) | 80 (76–86) |
Cormobidities | |
Diabetes | 2 (7.4%) |
Hypertension | 2 (7.4%) |
Dyslipidemia | 7 (25.9%) |
Hepatic cirrhosis | 1 (3.7%) |
Coronary artery disease | 1 (3.7%) |
Hyperthyroidism | 1 (3.7%) |
Heart failure | 0 (0%) |
COPD | 0 (0%) |
Cerebrovascular accident | 0 (0%) |
Malignancy | 1 (3.7%) |
Symptoms on admission | |
Cough | 23 (85.2%) |
Fever | 17 (62.9%) |
Rhinorrhea | 12 (44.4%) |
Abnormal sense of smell | 11 (40.7%) |
Diarrhea | 10 (37.0%) |
Shortness of breath | 9 (33.3%) |
Sore throat | 9 (33.3%) |
Abnormal sense of taste | 8 (29.6%) |
Chillness | 5 (18.5%) |
Myalgia | 5 (18.5%) |
Chest pain | 5 (18.5%) |
Headache | 4 (14.8%) |
Fatigue | 4 (14.8%) |
Nausea/Vomiting | 3 (11.1%) |
Asymptomatic | 5 (18.5%) |
Variables | N (%) or Median (IQR) |
---|---|
Hospital stay (day) | 28 (21–35) |
CURB-65 | |
0 | 23 (85.2%) |
1 | 3 (11.1%) |
2 | 1 (3.7%) |
Chest images | |
Ground-glass opacity | 12 (44.4%) |
No pneumonia | 15 (55.5%) |
Complications | |
Hepatitis | 4 (14.8%) |
Multiple organ dysfunction | 0 (0%) |
Pulmonary fibrosis | 0 (0%) |
DIC | 0 (0%) |
Acute kidney injury | 0 (0%) |
Septic shock | 0 (0%) |
Myocarditis | 0 (0%) |
Acute coronary syndrome | 0 (0%) |
Cardiac arrest | 0 (0%) |
Variables | N (%) or Median (IQR) |
---|---|
Chloroquine | 20 (74.0%) |
Macrolide antibiotics | 15 (55.5%) |
Floroquinolones | 9 (33.3%) |
Cephalosporin | 8 (29.6%) |
Piperacillin/Tazobactam | 2 (7.4%) |
Corticosteroids | 1 (3.7%) |
No treatment | 5 (18.5%) |
Parameters | On Admission [Median (IQR)] | On Discharge [Median (IQR)] | p-Value a |
---|---|---|---|
Hemoglobin (g/dL) | 14.3 (13.2–15.1) | 13.9 (12.1–15.0) | 0.006 |
WBC (cells/µL) | 4760 (4070–6700) | 5680 (4980–6630) | 0.027 |
Platelet (cells/µL) | 230,000 (194,000–272,000) | 233,000 (220,000–290,000) | 0.516 |
Neutrophil (%) | 65.8 (59.6–71.6) | 57.3 (46.3–60.3) | <0.001 |
Monocyte (%) | 6.7 (5.3–8.5) | 6.5 (5.5–7.4) | 0.243 |
Lymphocyte (%) | 25.3 (16.0–33.9) | 31.7 (26.5–41.3) | 0.001 |
NLR (%) | 2.64 (1.79–4.41) | 1.81 (1.17–2.37) | <0.001 |
BUN (mg/dL) | 12 (10–14) | 11 (10–13) | 0.455 |
Creatinine (mg/dL) | 0.8 (0.7–0.9) | 0.7 (0.6–0.9) | 0.069 |
eGFR (mL/min/1.732 m2) | 106.7 (89.0–119.9) | 112.2 (102.1–128.5) | 0.044 |
CRP (mg/dL) | 0.39 (0.1–1.09) | 0.1 (0.1–0.14) | 0.001 |
Albumin (g/dL) | 4.2 (3.98–4.43) | - | - |
AST (U/L) | 18 (14–21) | 17 (14–23) | 0.946 |
ALT (U/L) | 15 (12–21) | 20 (10–31) | 0.095 |
Na (mmol/L) | 138 (137–140) | 139 (138–140) | 0.497 |
K (mmol/L) | 3.6 (3.5–4.0) | 3.8 (3.7–4.1) | 0.088 |
Author (Year) | Region | Study Period | Study Population | Biomarker | Positive Correlation |
---|---|---|---|---|---|
Prisca Mutinelli-Szymanski et al. (2021) [9] | France | 19 March 2020, to 19 May 2020 | 62 dialysis patients | NLR (Day 7) | COVID-19 severity |
Sara Jimeno et al. (2021) [10] | Spain | 1 March 2020, to 31 March 2020 | 119 hospitalized patients | NLR | COVID-19 progression |
Nicholas L Hartog et al. (2021) [11] | USA | 20 March 2020, to 18 May 2020 | 66 hospitalized patients receiving tocilizumab | NLR | Unfavorable outcomes (intubation or mortality) |
Mehr Muhammad Imran et al. (2021) [12] | Pakistan | 1 May 2020, to 31 July 2020 | 63 hospitalized patients | NLR | Early warning signal for deteriorating severe COVID-19 infection |
Gaoli Liu et al. (2020) [13] | China | 28 January 2020, to 15 March 2020 | 134 hospitalized patients with type 2 diabetes mellitus | NLR | 1. COVID-19 severity 2. Timing of nucleic acid results turned negative 3. Duration of hospital stay |
Jianhong Fu et al. (2020) [14] | China | 20 January 2020, to 20 February 2020 | 75 hospitalized patients | NLR | Discriminate severe COVID-19 cases from mild or moderate ones |
Our study | Taiwan | 4 February 2020, to 26 May 2020 | 27 hospitalized patients | NLR (Day 1) | Decline of renal function |
Author (Year) | Region | Study Period | Study Population | Biomarker | Positive Correlation |
---|---|---|---|---|---|
Dominic Stringer et al. (2021) [15] | United Kingdom | 27 February 2020, to 10 June 2020 | 1835 hospitalized patients | CRP ≥40 mg/L | Mortality |
Nathaniel R. Smilowitz et al. (2021) [16] | USA | 1 March 2020, to 8 April 2020 | 2782 hospitalized patients | CRP | 1. Venous thromboembolism 2. Acute kidney injury 3. Critical illness 4. Mortality |
Milad Sharifpour et al. (2020) [17] | USA | 6 March 2020, to 5 May 2020 | 268 ICU patients | CRP | 1. Disease severity 2. Mortality |
Xiaomin Luo et al. (2020) [18] | China | 30 January 2020, to 20 February 2020 | 298 hospitalized patients | CRP | Mortality |
Chaochao Tan et al. (2020) [19] | China | 18 January 2020, to 10 February 2020 | 27 hospitalized patients | CRP | 1. Disease development 2. CT severity score |
L Wang (2020) [20] | China | 23 January 2020, to 29 February 2020 | 27 hospitalized patients | CRP | 1. Diameter of lung lesion 2. Disease severity |
Our study | Taiwan | 4 February 2020, to 26 May 2020 | 27 hospitalized patients | CRP (Day 1) | Decline of renal function |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-C.; Tsai, P.-H.; Chou, Y.-C.; Lu, K.-C.; Chang, F.-Y.; Wu, C.-C. Biomarkers Linked with Dynamic Changes of Renal Function in Asymptomatic and Mildly Symptomatic COVID-19 Patients. J. Pers. Med. 2021, 11, 432. https://doi.org/10.3390/jpm11050432
Chang Y-C, Tsai P-H, Chou Y-C, Lu K-C, Chang F-Y, Wu C-C. Biomarkers Linked with Dynamic Changes of Renal Function in Asymptomatic and Mildly Symptomatic COVID-19 Patients. Journal of Personalized Medicine. 2021; 11(5):432. https://doi.org/10.3390/jpm11050432
Chicago/Turabian StyleChang, Ya-Chieh, Ping-Huang Tsai, Yu-Ching Chou, Kuo-Cheng Lu, Feng-Yee Chang, and Chia-Chao Wu. 2021. "Biomarkers Linked with Dynamic Changes of Renal Function in Asymptomatic and Mildly Symptomatic COVID-19 Patients" Journal of Personalized Medicine 11, no. 5: 432. https://doi.org/10.3390/jpm11050432
APA StyleChang, Y. -C., Tsai, P. -H., Chou, Y. -C., Lu, K. -C., Chang, F. -Y., & Wu, C. -C. (2021). Biomarkers Linked with Dynamic Changes of Renal Function in Asymptomatic and Mildly Symptomatic COVID-19 Patients. Journal of Personalized Medicine, 11(5), 432. https://doi.org/10.3390/jpm11050432