Implementation of Pharmacogenomics and Artificial Intelligence Tools for Chronic Disease Management in Primary Care Setting
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Environment and Process
2.2. Medical Record Analysis and the Clinical Semantic Network
2.3. Bioanalytic Phase
2.3.1. Clinical Pharmacogenomics
2.3.2. Clinical Pharmacokinetics
2.4. Synthesis and Reporting
3. Results
3.1. Clinical Environment and Process
3.2. Medical Record Analysis and the Clinical Semantic Network
- Number of side effects/complaints/diagnoses identified in the patient and believed to be related to his/her current medication regimen,
- Number of medications possibly contributing to the identified/diagnosed side effects,
- Number of drug metabolic pathways identified as being potentially overloaded,
- Number of drug metabolic pathways identified as borderline overloaded,
- Number of medications with pharmacogenomic profiles,
- Number of medications putting the patient at risk for serotonin syndrome,
- Number of medications putting the patient at risk for QT prolongation,
- Number of anticholinergic medications.
3.3. Bioanalytics
3.4. Virtual Patient A
4. Discussion
4.1. Integration with Primary Care
4.2. Medical Record Analysis and the Clinical Semantic Network
4.3. Bioanalytics
5. Conclusions
5.1. Challenges and Realities
5.2. Significance to ADRs
5.3. Bioanalytics and Future Directions
5.4. Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef] [Green Version]
- Hripcsak, G.; Ryan, P.B.; Duke, J.D.; Shah, N.H.; Park, R.W.; Huser, V.; Suchard, M.A.; Schuemie, M.J.; DeFalco, F.J.; Perotte, A.; et al. Characterizing treatment pathways at scale using the OHDSI network. Proc. Natl. Acad. Sci. USA 2016, 113, 7329. [Google Scholar] [CrossRef] [Green Version]
- Quinn, K.J.; Shah, N.H. A dataset quantifying polypharmacy in the United States. Sci. Data 2017, 4, 170167. [Google Scholar] [CrossRef] [Green Version]
- Akazawa, M.; Imai, H.; Igarashi, A.; Tsutani, K. Potentially inappropriate medication use in elderly Japanese patients. Am. J. Geriatr. Pharmacother. 2010, 8, 146–160. [Google Scholar] [CrossRef]
- Maher, R.L.; Hanlon, J.; Hajjar, E.R. Clinical consequences of polypharmacy in elderly. Expert Opin. Drug Saf. 2014, 13, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Mallet, L.; Spinewine, A.; Huang, A. The challenge of managing drug interactions in elderly people. Lancet 2007, 370, 185–191. [Google Scholar] [CrossRef]
- Jennings, E.L.M.; Murphy, K.D.; Gallagher, P.; O’Mahony, D. In-hospital adverse drug reactions in older adults; prevalence, presentation and associated drugs—a systematic review and meta-analysis. Age Ageing 2020, 49, 948–958. [Google Scholar] [CrossRef] [PubMed]
- Bahar, M.A.; Lanting, P.; Bos, J.H.J.; Sijmons, R.H.; Hak, E.; Wilffert, B. Impact of Drug-Gene-Interaction, Drug-Drug-Interaction, and Drug-Drug-Gene-Interaction on (es)Citalopram Therapy: The PharmLines Initiative. J. Pers. Med. 2020, 10, 256. [Google Scholar] [CrossRef]
- Ingelman-Sundberg, M. Genetic variability in susceptibility and response to toxicants. Toxicol. Lett. 2001, 120, 259–268. [Google Scholar] [CrossRef]
- Lazarou, J.; Pomeranz, B.H.; Corey, P.N. Incidence of adverse drug reactions in hospitalized patients: A meta-analysis of prospective studies. JAMA 1998, 279, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Klein, T.E. CPIC: Clinical Pharmacogenetics Implementation Consortium of the Pharmacogenomics Research Network. Clin. Pharmacol. Ther. 2011, 89, 464–467. [Google Scholar] [CrossRef]
- Caudle, K.E.; Klein, T.E.; Hoffman, J.M.; Muller, D.J.; Whirl-Carrillo, M.; Gong, L.; McDonagh, E.M.; Sangkuhl, K.; Thorn, C.F.; Schwab, M.; et al. Incorporation of pharmacogenomics into routine clinical practice: The Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr. Drug Metab. 2014, 15, 209–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef]
- Gordon, A.S.; Fulton, R.S.; Qin, X.; Mardis, E.R.; Nickerson, D.A.; Scherer, S. PGRNseq: A targeted capture sequencing panel for pharmacogenetic research and implementation. Pharm. Genom. 2016, 26, 161–168. [Google Scholar] [CrossRef]
- Bush, W.S.; Crosslin, D.R.; Owusu-Obeng, A.; Wallace, J.; Almoguera, B.; Basford, M.A.; Bielinski, S.J.; Carrell, D.S.; Connolly, J.J.; Crawford, D.; et al. Genetic variation among 82 pharmacogenes: The PGRNseq data from the eMERGE network. Clin. Pharm. Ther. 2016, 100, 160–169. [Google Scholar] [CrossRef]
- Van Driest, S.L.; Shi, Y.; Bowton, E.A.; Schildcrout, J.S.; Peterson, J.F.; Pulley, J.; Denny, J.C.; Roden, D.M. Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin. Pharm. Ther. 2014, 95, 423–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khezrian, M.; McNeil, C.J.; Murray, A.D.; Myint, P.K. An overview of prevalence, determinants and health outcomes of polypharmacy. Ther. Adv. Drug Saf. 2020, 11, 2042098620933741. [Google Scholar] [CrossRef]
- Pulley, J.M.; Denny, J.C.; Peterson, J.F.; Bernard, G.R.; Vnencak-Jones, C.L.; Ramirez, A.H.; Delaney, J.T.; Bowton, E.; Brothers, K.; Johnson, K.; et al. Operational Implementation of Prospective Genotyping for Personalized Medicine: The Design of the Vanderbilt PREDICT Project. Clin. Pharmacol. Ther. 2012, 92, 87–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roosan, D.; Hwang, A.; Roosan, M.R. Pharmacogenomics cascade testing (PhaCT): A novel approach for preemptive pharmacogenomics testing to optimize medication therapy. Pharm. J. 2021, 21, 1–7. [Google Scholar] [CrossRef]
- Shastry, B.S. SNPs in disease gene mapping, medicinal drug development and evolution. J. Hum. Genet. 2007, 52, 871–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, F.G.S.; Boyd, I.; Kriak, J.; Meyer, R.; Boyd, S. AI Based Health Signals Discovery Engine. In Proceedings of the SNOMED CT Expo, Kuala Lampur, Malaysia, 31 October–1 November 2019. [Google Scholar]
- Dolin, R.H.; Alschuler, L.; Beebe, C.; Biron, P.V.; Boyer, S.L.; Essin, D.; Kimber, E.; Lincoln, T.; Mattison, J.E. The HL7 Clinical Document Architecture. J. Am. Med. Inf. Assoc. 2001, 8, 552–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown-Johnson, C.G.; Safaeinili, N.; Baratta, J.; Palaniappan, L.; Mahoney, M.; Rosas, L.G.; Winget, M. Implementation outcomes of Humanwide: Integrated precision health in team-based family practice primary care. BMC Fam. Pract. 2021, 22, 28. [Google Scholar] [CrossRef] [PubMed]
- TaqMan SNP Genotyping Assays. Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2Fcms_040597.pdf&title=VGFxTWFuJnJlZzsgU05QIEdlbm90eXBpbmcgQXNzYXlz (accessed on 20 May 2021).
- Chang, H.W.; Chuang, L.Y.; Tsai, M.T.; Yang, C.H. The importance of integrating SNP and cheminformatics resources to pharmacogenomics. Curr. Drug Metab. 2012, 13, 991–999. [Google Scholar] [CrossRef]
- McConachie, S.M.; Volgyi, D.; Moore, H.; Giuliano, C.A. Evaluation of adverse drug reaction formatting in drug information databases. J. Med. Libr. Assoc. 2020, 108, 598–604. [Google Scholar] [CrossRef]
- Elovic, A.; Pourmand, A. Lexicomp App Review. J. Digit. Imaging 2020, 33, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Halper, M.; Wei, D.; Gu, H.; Perl, Y.; Xu, J.; Elhanan, G.; Chen, Y.; Spackman, K.A.; Case, J.T.; et al. Auditing complex concepts of SNOMED using a refined hierarchical abstraction network. J. Biomed. Inform. 2012, 45, 1–14. [Google Scholar] [CrossRef] [Green Version]
- National Institute of General Medical Sciences 2011. Available online: https://www.nigms.nih.gov/education/fact-sheets/Pages/pharmacogenomics.aspx (accessed on 20 May 2021).
- Saripalle, R.; Runyan, C.; Russell, M. Using HL7 FHIR to achieve interoperability in patient health record. J. Biomed. Inform. 2019, 94, 103188. [Google Scholar] [CrossRef] [PubMed]
- Rutman, M.P.; Horn, J.R.; Newman, D.K.; Stefanacci, R.G. Overactive Bladder Prescribing Considerations: The Role of Polypharmacy, Anticholinergic Burden, and CYP2D6 Drug‒Drug Interactions. Clin. Drug Investig. 2021, 41, 293–302. [Google Scholar] [CrossRef]
- Kamenski, G.; Ayazseven, S.; Berndt, A.; Fink, W.; Kamenski, L.; Zehetmayer, S.; Pühringer, H. Clinical Relevance of CYP2D6 Polymorphisms in Patients of an Austrian Medical Practice: A Family Practice-Based Observational Study. Drugs Real World Outcomes 2020, 7, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boustani, M.; Campbell, N.; Munger, S.; Maidment, I.; Fox, C. Impact of anticholinergics on the aging brain: A review and practical application. Aging Health 2008, 4, 311–320. [Google Scholar] [CrossRef]
- Haga, S.B.; Allen LaPointe, N.M.; Moaddeb, J. Challenges to integrating pharmacogenetic testing into medication therapy management. J. Manag. Care Spec. Pharm. 2015, 21, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Haga, S.B.; Moaddeb, J. Comparison of delivery strategies for pharmacogenetic testing services. Pharm. Genom. 2014, 24, 139–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haga, S.B. Managing Increased Accessibility to Pharmacogenomic Data. Clin. Pharmacol. Ther. 2019, 106, 922–924. [Google Scholar] [CrossRef] [PubMed]
- Hresko, A.; Haga, S.B. Insurance coverage policies for personalized medicine. J. Pers. Med. 2012, 2, 201–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haga, S.B. Integrating pharmacogenetic testing into primary care. Expert Rev. Precis. Med. Drug Dev. 2017, 2, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Verbeurgt, P.; Mamiya, T.; Oesterheld, J. How common are drug and gene interactions? Prevalence in a sample of 1143 patients with CYP2C9, CYP2C19 and CYP2D6 genotyping. Pharmacogenomics 2014, 15, 655–665. [Google Scholar] [CrossRef]
- Raymond, J.; Imbert, L.; Cousin, T.; Duflot, T.; Varin, R.; Wils, J.; Lamoureux, F. Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J. Pers. Med. 2021, 11, 37. [Google Scholar] [CrossRef]
- Heise, C.W.; Gallo, T.; Curry, S.C.; Woosley, R.L. Identification of populations likely to benefit from pharmacogenomic testing. Pharm. Genom. 2020, 30, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.R.; Smith, R.L. Addressing phenoconversion: The Achilles’ heel of personalized medicine. Br. J. Clin. Pharm. 2015, 79, 222–240. [Google Scholar] [CrossRef] [Green Version]
Input Datum |
---|
Progress Notes (6 months) |
Complaints |
Active problem list |
Medical History |
Family History |
Social History |
Vitals |
Vaccination History |
Patient encounters (10 years) |
Medication and dosing |
Diagnosis codes |
Billing |
Quality of life questionnaires (disease specific, digital) |
Continuity of care documents |
Procedural notes |
Drug Class | Potentially Impacted Drugs | Gene(s) Tested |
---|---|---|
ADHD | Atomoxetine, Amphetamines, Dexmethylphendiate, Dextroamphetamine, Lisdexamfetamine, Methylphendiate Clonidine, Guanfacine | CYP2D6, COMT |
Alzheimer’s Disease | Donepezil, Galantamine Memantine | CYP2D6 |
Antiarrhythmics | Donepezil, Galantamine Memantine | CYP2D6 |
Anticancer Agents | Methotrexate, Belinostat, Erlotinib, Gefitinib, Nilotinib, Pazopanib, Azathioprine, Mercaptopurine, Thioguanine, Irinotecan, Irinotecan Liposomal | |
Antidepressants, SSRIs/SNRI | Citalopram, Escitalopram, Desvenlafaxine, Duloxetine, Mirtazapine, Paroxetine, Sertraline, Venlafaxine | CYP2D6, CYP2C19 |
Antidepressants, Tricyclic | Amitriptyline, Clomipramine, Desipramine, Doxepin, Imipramine, Nortriptyline, Trimipramine Amoxapine, Fluoxetine, Fluvoxamine, Levomilnacipran, Maprotiline, Nefazodone, Protriptyline, Vilazodone, Vortioxetine | CYP2C9 |
Antidiabetics | Glimepiride, Glipizide, Glyburide, Tolbutamide, Chlorpropamide Nateglinide, Repaglinide | CYP2C9 |
Antiemetics | Ondansetron, Dolasetron, Metoclopramide, Palonosetron | CYP2D6 |
Antiepileptic | Phenytoin, Carbamazepine, Carbatrol, Eslicarbazepine, Ethosuximide, Ezogabine, Felbamate, Fosphenytoin, Gabapentin, Lacosamide, Lamotrigine, Levetiracetam, Oxcarbazepine, Perampanel, Pregabalin, Rufinamide, Tiagabine, Topiramate, Valproic Acid, Vigabatrin, Brivaracetam, Phenobarbital, Primidone, Zonisamide | CYP2C9 |
Antihyperlipidemic Agents | Atorvastatin, Fluvastatin, Lovastatin, Pravastatin, Pitavastatin, Simvastatin, Rosuvastatin | SLCO1B1, CYP3A4, CYP2C9 |
Antihypertensives | Carvedilol, Metoprolol, Irbesartan, Nebivolol, Propranolol, Timolol, Labetalol | CYP2D6, CYP2C9 |
Antiplatelets/Anticoagulants | Clopidogrel, Prasugrel, Ticagrelor, Warfarin, Vorapaxar, Apixaban, Dabigatran Etexilate, Edoxaban, Fondaparinux, Rivaroxaban | CYP2C19, CYP2C9, VKORC1, CYP3A5 |
Antipsychotics | Aripiparazole, Haloperidol, Iloperidone, Paliperidone, Perphenazine, Pimozide, Risperidone, Thioridazine, Asenapine, Brexpiprazole, Chlorpromazine, Fluphenazine, Loxapine, Lurasidone, Pimavanserin, Quetiapine, Thiothixene, Trazodone, Trifluoperazine, Ziprasidone, Clozapine, Olanzapine, TetrabenazineOther Neurological Agents: Dextromethorphan/Quinidine, Flibanserin | CYP2D6, CYP1A2 |
Anxiety/Insomnia | Diazepam, Clobazam, Alprazolam, Clonazepam, Lorazepam, Oxazepam | CYP2C19 |
Acid Related Disorders | Dexlansoprazole, Esomeprazole, Lansoprazole, Omeprazole, Pantoprazole, Rabeprazole | CYP2C19 |
Cardiovascular | Angiotensin II Receptor Antagonists: Azilsartan, Candesartan, Eprosartan, Irbesartan, Losartan, Olmesartan, Telmisartan, Valsartan Antianginal Agents: Ranolazine Diuretics: Torsemide | |
Huntington Disease | Tetrabenazine | CYP2D6 |
Immunosuppressants | Tacrolimus | CYP3A5 |
Infections | Antifungals: Voriconazole Anti-HIV Agents: Atazanavir Antimalarials: Proguanil | |
Antifugals: Voriconazole | Carisoprodol, Tizanidine, Cyclobenzaprine, Metaxalone, Methocarbamol | CYP2C19, CYP1A2 |
Anti-HIV Agents: Atazanavir | Methadone | CYP2B6 |
Antimalarials: Proguanil | Codeine, Fentanyl, Hydrocodone, Morphine, Oxycodone, Tramadol, Alfentanil, Buprenorphine, Dihydrocodeine, Hydromorphone, Levorphanol, Meperidine, Oxymorphone, Sufentanil, Tapentadol, Methadone | CYP2D6, OPRM1 |
Other | Bupropion, Naltrexone | COMT, OPRM1, ANKK1/DRD2 |
Other Analgesics | Celecoxib, Flurbiprofen, Piroxicam, Diclofenac, Ibuprofen, Indomethacin, Ketoprofen, Ketorolac, Meloxicam, Nabumetone, Naproxen, Sulindac | CYP2C9 |
Pain | Fibromyalgia Agents: Milnacipran | |
Rheumatology | Anti-Gout Agents: AllopurinolImmunomodulators: Apremilast, Leflunomide, Tofacitinib | |
Urinary Incontinence | Antispasmodics: Tolterodine, Darifenacin, Fesoterodine, Mirabegron, Oxybutynin, Solifenacin, Trospium 5-Alpha Reductase Inhibitors: Dutasteride, Finasteride Alpha Blockers: Alfuzosin, Doxazosin, Silodosin, Tamsulosin, Terazosin Phosphodiesterase Inhibitors for Erectile Dysfunction: Avanafil, Sildenafil, Tadalafil, Vardenafil | CYP2D6 |
CYP2D6 Haplotypes |
---|
* 2, * 3, * 4, * 5, * 6, * 7, * 8, * 9, * 10, * 11, * 12, * 14, * 15, * 17, * 19, |
* 20, * 21, * 22, * 23, * 24, * 25, * 27, * 28, * 29, * 30, * 31, * 32, * 33, |
* 34, * 35, * 36, * 37, * 38, * 39, * 40, * 41, * 42, * 43, * 44, * 45, * 46, |
* 47, * 48, * 49, * 50, * 51, * 52, * 53, * 54, * 55, , * 56, * 57, * 58, |
* 59, * 60, * 62, * 64, * 65, * 69, * 70, * 71, * 72, * 73, * 74, * 75, * 81, |
* 82, * 83, * 84, * 85, * 86, * 87, * 88, * 89, * 90, * 91, * 94, * 95, |
* 96, * 98, * 99, * 100, * 101, * 102, * 103, * 104, * 105, * 106, * 107, |
* 108, * 109, * 110, * 111, * 112, * 113, * 114, * 115, * 116, * 117, |
* 118, * 119, * 121, * 122, * 123, * 125, * 126, * 127, * 128, * 129, |
, * 130, * 131,* 132, * 133, * 134, * 135, * 136, * 137, * 138, * 139 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, P.; Jacobs, D.; Kriak, J.; Abu-Baker, A.; Udeani, G.; Neal, G.; Ramos, K. Implementation of Pharmacogenomics and Artificial Intelligence Tools for Chronic Disease Management in Primary Care Setting. J. Pers. Med. 2021, 11, 443. https://doi.org/10.3390/jpm11060443
Silva P, Jacobs D, Kriak J, Abu-Baker A, Udeani G, Neal G, Ramos K. Implementation of Pharmacogenomics and Artificial Intelligence Tools for Chronic Disease Management in Primary Care Setting. Journal of Personalized Medicine. 2021; 11(6):443. https://doi.org/10.3390/jpm11060443
Chicago/Turabian StyleSilva, Patrick, David Jacobs, John Kriak, Asim Abu-Baker, George Udeani, Gabriel Neal, and Kenneth Ramos. 2021. "Implementation of Pharmacogenomics and Artificial Intelligence Tools for Chronic Disease Management in Primary Care Setting" Journal of Personalized Medicine 11, no. 6: 443. https://doi.org/10.3390/jpm11060443
APA StyleSilva, P., Jacobs, D., Kriak, J., Abu-Baker, A., Udeani, G., Neal, G., & Ramos, K. (2021). Implementation of Pharmacogenomics and Artificial Intelligence Tools for Chronic Disease Management in Primary Care Setting. Journal of Personalized Medicine, 11(6), 443. https://doi.org/10.3390/jpm11060443