Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns
Abstract
:1. Introduction
2. Epidemiology
3. Genetic Basis
3.1. Genetic Counselling
3.2. Genetic Testing
4. Cardiac Malformations
4.1. Short-Circuit Disturbances
4.1.1. Atrial Septal Defect
4.1.2. Ventricular Septal Defect
4.1.3. Atrioventricular Septal Defect
4.1.4. Persistent Ductus Arteriosus
4.1.5. Common Artery Trunk
4.1.6. Transposition of the Great Vessels
4.2. Obstructive CHD
4.2.1. Aortic Coarctation
4.2.2. Pulmonary Stenosis
4.2.3. Bicuspid Aortic Valve
4.2.4. Aortic Valve Stenosis
4.3. Tetralogy of Fallot
4.4. Hypoplastic Left Heart Syndrome
5. Syndromes with Congenital Cardiac Alteration
5.1. Down Syndrome
5.2. Edwards Syndrome
5.3. Patau Syndrome
5.4. Turner Syndrome, Ullrich-Turner Syndrome, or 45,X Syndrome
5.5. DiGeorge Syndrome or 22q11.2 Deletion (Takao Syndrome, Velocardiofacial Syndrome, Cayler Cardiofacial Syndrome)
5.6. Trisomy 22q11.2 or 22q11.2 Duplication Syndrome
5.7. 1q21.1 Deletion and Duplication
5.8. Subtelomeric 1p36 Deletion or 1p36 Deletion Syndrome
5.9. Monosomy 8p23.1 or 8p23.1 Deletion
5.10. Kleefstra Syndrome
5.11. Wolf-Hirschhorn Syndrome or Telomeric Deletion 4p
5.12. Williams-Beuren Syndrome
5.13. Noonan Syndrome
5.14. Costello Syndrome or Faciocutaneoskeletal Syndrome
5.15. Leopard Syndrome or Cardiomyopathic Lentiginosis
5.16. Holt-Oram Syndrome or Heart-Hand Syndrome Type 1
5.17. Adams-Oliver Syndrome or Limb, Scalp, and Skull Defects
5.18. Alagille Syndrome or Alagille-Watson Syndrome or Arteriohepatic Dysplasia
5.19. Kabuki Syndrome or Niikawa-Kuroki Syndrome
5.20. CHARGE Syndrome
5.21. Koolen-De Vries Syndrome
5.22. Jacobsen Syndrome or Telomeric Deletion 11q
5.23. Char Syndrome or Patent Ductus Arteriosus with Facial Dysmorphism and Abnormal Fifth Digits
5.24. Myhre Syndrome or Facial Dysmorphism-Intellectual Disability-Short Stature-Deafness Syndrome
5.25. Ellis Van Creveld Syndrome or Chondroectodermal Dysplasia
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Campbell, M. Genetic and environmental factors in congenital heart disease. Q. J. Med. 1949, 18, 379–391. [Google Scholar] [PubMed]
- Nora, J.J. Multifactorial inheritance hypothesis for the etiology of congenital heart diseases. The genetic-environmental interaction. Circulation 1968, 38, 604–617. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; O’Reilly, V.C.; Moreau, J.L.; Bewes, T.R.; Yam, M.X.; Chapman, B.E.; Grieve, S.M.; Stocker, R.; Graham, R.M.; Chapman, G.; et al. Gestational stress induces the unfolded protein response, resulting in heart defects. Development 2016, 143, 2561–2572. [Google Scholar] [CrossRef] [Green Version]
- Vecoli, C.; Pulignani, S.; Foffa, I.; Andreassi, M.G. Congenital heart disease. the crossroads of genetics, epigenetics and environment. Curr. Genomics 2014, 15, 390–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Backer, J.; Callewaert, B.; Muino Mosquera, L. Genetics in congenital heart disease. Are we ready for it? Rev. Esp. Cardiol. 2020, 73, 937–947. [Google Scholar] [CrossRef]
- Leirgul, E.; Fomina, T.; Brodwall, K.; Greve, G.; Holmstrom, H.; Vollset, S.E.; Tell, G.S.; Oyen, N. Birth prevalence of congenital heart defects in Norway 1994-2009—A nationwide study. Am. Heart J. 2014, 168, 956–964. [Google Scholar] [CrossRef] [Green Version]
- Bernier, P.L.; Stefanescu, A.; Samoukovic, G.; Tchervenkov, C.I. The challenge of congenital heart disease worldwide. epidemiologic and demographic facts. Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu. 2010, 13, 26–34. [Google Scholar] [CrossRef]
- Perez-Lescure Picarzo, J.; Mosquera Gonzalez, M.; Latasa Zamalloa, P.; Crespo Marcos, D. Incidence and evolution of congenital heart disease in Spain from 2003 until 2012. An. Pediatr. 2018, 89, 294–301. [Google Scholar] [CrossRef]
- Jacobs, J.P.; Mayer, J.E., Jr.; Pasquali, S.K.; Hill, K.D.; Overman, D.M.; St Louis, J.D.; Kumar, S.R.; Backer, C.L.; Tweddell, J.S.; Dearani, J.A.; et al. The Society of Thoracic Surgeons Congenital Heart Surgery database. 2019 update on outcomes and quality. Ann. Thorac. Surg. 2019, 107, 691–704. [Google Scholar] [CrossRef]
- Jacobs, M.L.; Jacobs, J.P.; Hill, K.D.; O’Brien, S.M.; Pasquali, S.K.; Vener, D.; Kumar, S.R.; Chiswell, K.; St Louis, J.D.; Mayer, J.E.; et al. The Society of Thoracic Surgeons Congenital Heart Surgery database. 2019 update on research. Ann. Thorac. Surg. 2019, 108, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Raissadati, A.; Nieminen, H.; Jokinen, E.; Sairanen, H. Progress in late results among pediatric cardiac surgery patients. a population-based 6-decade study with 98% follow-up. Circulation 2015, 131, 347–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilboa, S.M.; Mai, C.T.; Shapiro-Mendoza, C.K.; Cragan, J.D.; Moore, C.A.; Meaney-Delman, D.M.; Jamieson, D.J.; Honein, M.A.; Boyle, C.A. Population-based pregnancy and birth defects surveillance in the era of Zika virus. Birth Defects Res. 2017, 109, 372–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierpont, M.E.; Brueckner, M.; Chung, W.K.; Garg, V.; Lacro, R.V.; McGuire, A.L.; Mital, S.; Priest, J.R.; Pu, W.T.; Roberts, A.; et al. Genetic basis for congenital heart disease. revisited. A scientific statement from the American Heart Association. Circulation 2018, 138, e653–e711. [Google Scholar] [CrossRef]
- Zaidi, S.; Brueckner, M. Genetics and genomics of congenital heart disease. Circ. Res. 2017, 120, 923–940. [Google Scholar] [CrossRef] [PubMed]
- Nees, S.N.; Chung, W.K. The genetics of isolated congenital heart disease. Am. J. Med. Genet. C Semin. Med. Genet. 2020, 184, 97–106. [Google Scholar] [CrossRef]
- Halloran, K.H.; Hsia, E.; Rosenberg, L.E. Genetic counseling for congenital heart disease. J. Pediatr. 1976, 88, 1054–1056. [Google Scholar] [CrossRef]
- Blue, G.M.; Kasparian, N.A.; Sholler, G.F.; Kirk, E.P.; Winlaw, D.S. Genetic counselling in parents of children with congenital heart disease significantly improves knowledge about causation and enhances psychosocial functioning. Int. J. Cardiol. 2015, 178, 124–130. [Google Scholar] [CrossRef]
- European Society of Human Group. Statement of the ESHG on direct-to-consumer genetic testing for health-related purposes. Eur. J. Hum. Genet. 2010, 18, 1271–1273. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, S.; Choi, M.; Wakimoto, H.; Ma, L.; Jiang, J.; Overton, J.D.; Romano-Adesman, A.; Bjornson, R.D.; Breitbart, R.E.; Brown, K.K.; et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 2013, 498, 220–223. [Google Scholar] [CrossRef] [Green Version]
- Sifrim, A.; Hitz, M.P.; Wilsdon, A.; Breckpot, J.; Turki, S.H.; Thienpont, B.; McRae, J.; Fitzgerald, T.W.; Singh, T.; Swaminathan, G.J.; et al. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing. Nat. Genet. 2016, 48, 1060–1065. [Google Scholar] [CrossRef]
- Oyen, N.; Poulsen, G.; Boyd, H.A.; Wohlfahrt, J.; Jensen, P.K.; Melbye, M. Recurrence of congenital heart defects in families. Circulation 2009, 120, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyvandi, S.; Ingall, E.; Woyciechowski, S.; Garbarini, J.; Mitchell, L.E.; Goldmuntz, E. Risk of congenital heart disease in relatives of probands with conotruncal cardiac defects. An evaluation of 1620 families. Am. J. Med Genet. Part A 2014, 164A, 1490–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, S.W.; Miao, Q.; Taljaard, M.; Lougheed, J.; Gaudet, L.; Davies, M.; Lanes, A.; Leader, A.; Corsi, D.J.; Sprague, A.E.; et al. Associations of assisted reproductive technology and twin pregnancy with risk of congenital heart defects. JAMA Pediatr. 2020, 174, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Giorgione, V.; Parazzini, F.; Fesslova, V.; Cipriani, S.; Candiani, M.; Inversetti, A.; Sigismondi, C.; Tiberio, F.; Cavoretto, P. Congenital heart defects in IVF/ICSI pregnancy. systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2018, 51, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lejeune, J.; Turpin, R.; Gautier, M. Chromosomic diagnosis of mongolism. Arch. Fr. Pediatr. 1959, 16, 962–963. [Google Scholar]
- Ahrens-Nicklas, R.C.; Khan, S.; Garbarini, J.; Woyciechowski, S.; D’Alessandro, L.; Zackai, E.H.; Deardorff, M.A.; Goldmuntz, E. Utility of genetic evaluation in infants with congenital heart defects admitted to the cardiac intensive care unit. Am. J. Med. Genet. Part A 2016, 170, 3090–3097. [Google Scholar] [CrossRef] [PubMed]
- Lalani, S.R.; Belmont, J.W. Genetic basis of congenital cardiovascular malformations. Eur. J. Med. Genet. 2014, 57, 402–413. [Google Scholar] [CrossRef] [Green Version]
- Vetrini, F.; D’Alessandro, L.C.; Akdemir, Z.C.; Braxton, A.; Azamian, M.S.; Eldomery, M.K.; Miller, K.; Kois, C.; Sack, V.; Shur, N.; et al. Bi-allelic Mutations in PKD1L1 are associated with laterality defects in humans. Am. J. Hum. Genet. 2016, 99, 886–893. [Google Scholar] [CrossRef] [Green Version]
- Homsy, J.; Zaidi, S.; Shen, Y.; Ware, J.S.; Samocha, K.E.; Karczewski, K.J.; DePalma, S.R.; McKean, D.; Wakimoto, H.; Gorham, J.; et al. De novo mutations in congenital heart disease with neurodevelopmental and other congenital anomalies. Science 2015, 350, 1262–1266. [Google Scholar] [CrossRef] [Green Version]
- Blue, G.M.; Kirk, E.P.; Giannoulatou, E.; Sholler, G.F.; Dunwoodie, S.L.; Harvey, R.P.; Winlaw, D.S. Advances in the Genetics of Congenital Heart Disease. A Clinician’s Guide. J. Am. Coll. Cardiol. 2017, 69, 859–870. [Google Scholar] [CrossRef]
- Mone, F.; Stott, B.K.; Hamilton, S.; Seale, A.N.; Quinlan-Jones, E.; Allen, S.; Hurles, M.E.; McMullan, D.J.; Maher, E.R.; Kilby, M.D. The Diagnostic yield of prenatal genetic technologies in congenital heart disease. A prospective cohort study. Fetal Diagn. Ther. 2021, 48, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mone, F.; Eberhardt, R.Y.; Morris, R.K.; Hurles, M.E.; McMullan, D.J.; Maher, E.R.; Lord, J.; Chitty, L.S.; Giordano, J.L.; Wapner, R.J.; et al. Congenital heart disease and the Diagnostic yield with Exome sequencing (CODE) study. prospective cohort study and systematic review. Ultrasound Obstet. Gynecol. 2021, 57, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants. a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Bowdin, S.; Gilbert, A.; Bedoukian, E.; Carew, C.; Adam, M.P.; Belmont, J.; Bernhardt, B.; Biesecker, L.; Bjornsson, H.T.; Blitzer, M.; et al. Recommendations for the integration of genomics into clinical practice. Genet. Med. 2016, 18, 1075–1084. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; McBride, K.L.; Garg, V.; Zhao, M.T. Decoding genetics of congenital heart disease using patient-derived induced pluripotent stem cells (iPSCs). Front Cell Dev. Biol. 2021, 9, 630069. [Google Scholar] [CrossRef] [PubMed]
- Salehian, O.; Horlick, E.; Schwerzmann, M.; Haberer, K.; McLaughlin, P.; Siu, S.C.; Webb, G.; Therrien, J. Improvements in cardiac form and function after transcatheter closure of secundum atrial septal defects. J. Am. Coll. Cardiol. 2005, 45, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Schott, J.J.; Benson, D.W.; Basson, C.T.; Pease, W.; Silberbach, G.M.; Moak, J.P.; Maron, B.J.; Seidman, C.E.; Seidman, J.G. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 1998, 281, 108–111. [Google Scholar] [CrossRef]
- Soto, B.; Becker, A.E.; Moulaert, A.J.; Lie, J.T.; Anderson, R.H. Classification of ventricular septal defects. Br. Heart J. 1980, 43, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Minette, M.S.; Sahn, D.J. Ventricular septal defects. Circulation 2006, 114, 2190–2197. [Google Scholar] [CrossRef] [Green Version]
- Li, C.S.; Lu, Z.; Song, X.R.; Yan, Z.Y. Hybrid procedure for treating adult congenital heart disease with valvular heart disease in two patients. J. Cardiothorac. Surg. 2019, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Erol, O.; Sevket, O.; Keskin, S.; Yazicioglu, H.F.; Gul, A. Natural history of prenatal isolated muscular ventricular septal defects. J. Turk. Ger. Gynecol. Assoc. 2014, 15, 96–99. [Google Scholar] [CrossRef]
- Nora, J.J.; Nora, A.H. Familial risk of congenital heart defect. Am. J. Med. Genet. 1988, 29, 231–233. [Google Scholar] [CrossRef]
- Nora, J.J.; Nora, A.H. Update on counseling the family with a first-degree relative with a congenital heart defect. Am. J. Med. Genet. 1988, 29, 137–142. [Google Scholar] [CrossRef]
- Chowdhury, R.; Ashraf, H.; Melanson, M.; Tanada, Y.; Nguyen, M.; Silberbach, M.; Wakimoto, H.; Benson, D.W.; Anderson, R.H.; Kasahara, H. Mouse model of human congenital heart disease: Progressive atrioventricular block induced by a heterozygous Nkx2-5 homeodomain missense mutation. Circ. Arrhythm. Electrophysiol. 2015, 8, 1255–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, V.; Kathiriya, I.S.; Barnes, R.; Schluterman, M.K.; King, I.N.; Butler, C.A.; Rothrock, C.R.; Eapen, R.S.; Hirayama-Yamada, K.; Joo, K.; et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 2003, 424, 443–447. [Google Scholar] [CrossRef]
- Ahmed, I.; Anjum, F. Atrioventricular Septal Defect. 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK562194/ (accessed on 19 May 2021).
- Crawford, F.A., Jr.; Stroud, M.R. Surgical repair of complete atrioventricular septal defect. Ann. Thorac. Surg. 2001, 72, 1621–1628, discussion 1628–1629. [Google Scholar] [CrossRef]
- Robinson, S.W.; Morris, C.D.; Goldmuntz, E.; Reller, M.D.; Jones, M.A.; Steiner, R.D.; Maslen, C.L. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am. J. Hum. Genet. 2003, 72, 1047–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Digilio, M.C.; Pugnaloni, F.; De Luca, A.; Calcagni, G.; Baban, A.; Dentici, M.L.; Versacci, P.; Dallapiccola, B.; Tartaglia, M.; Marino, B. Atrioventricular canal defect and genetic syndromes. The unifying role of sonic hedgehog. Clin. Genet. 2019, 95, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Su, B.H.; Lin, H.Y.; Chiu, H.Y.; Tsai, M.L.; Chen, Y.T.; Lu, I.C. Therapeutic strategy of patent ductus arteriosus in extremely preterm infants. Pediatr. Neonatol. 2020, 61, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Mani, A.; Meraji, S.M.; Houshyar, R.; Radhakrishnan, J.; Mani, A.; Ahangar, M.; Rezaie, T.M.; Taghavinejad, M.A.; Broumand, B.; Zhao, H.; et al. Finding genetic contributions to sporadic disease. a recessive locus at 12q24 commonly contributes to patent ductus arteriosus. Proc. Natl. Acad. Sci. USA 2002, 99, 15054–15059. [Google Scholar] [CrossRef] [Green Version]
- Khetyar, M.; Syrris, P.; Tinworth, L.; Abushaban, L.; Carter, N. Novel TFAP2B mutation in nonsyndromic patent ductus arteriosus. Genet. Test. 2008, 12, 457–459. [Google Scholar] [CrossRef]
- Satoda, M.; Zhao, F.; Diaz, G.A.; Burn, J.; Goodship, J.; Davidson, H.R.; Pierpont, M.E.; Gelb, B.D. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat. Genet. 2000, 25, 42–46. [Google Scholar] [CrossRef]
- Hajj, H.; Dagle, J.M. Genetics of patent ductus arteriosus susceptibility and treatment. Semin. Perinatol. 2012, 36, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Bhansali, S.; Phoon, C. Truncus Arteriosus. 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK534774/ (accessed on 19 May 2021).
- Naimo, P.S.; Konstantinov, I.E. Surgery for truncus arteriosus: Contemporary practice. Ann. Thorac. Surg. 2021, 111, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- McElhinney, D.B.; Driscoll, D.A.; Emanuel, B.S.; Goldmuntz, E. Chromosome 22q11 deletion in patients with truncus arteriosus. Pediatr. Cardiol. 2003, 24, 569–573. [Google Scholar] [CrossRef]
- Heathcote, K.; Braybrook, C.; Abushaban, L.; Guy, M.; Khetyar, M.E.; Patton, M.A.; Carter, N.D.; Scambler, P.J.; Syrris, P. Common arterial trunk associated with a homeodomain mutation of NKX2.6. Hum. Mol. Genet. 2005, 14, 585–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warnes, C.A. Transposition of the great arteries. Circulation 2006, 114, 2699–2709. [Google Scholar] [CrossRef] [Green Version]
- Turon-Vinas, A.; Riverola-de Veciana, A.; Moreno-Hernando, J.; Bartrons-Casas, J.; Prada-Martinez, F.H.; Mayol-Gomez, J.; Caffarena-Calvar, J.M. Characteristics and outcomes of transposition of great arteries in the neonatal period. Rev. Esp. Cardiol. 2014, 67, 114–119. [Google Scholar] [CrossRef]
- Megarbane, A.; Salem, N.; Stephan, E.; Ashoush, R.; Lenoir, D.; Delague, V.; Kassab, R.; Loiselet, J.; Bouvagnet, P. X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3. Eur. J. Hum. Genet. 2000, 8, 704–708. [Google Scholar] [CrossRef]
- Bamford, R.N.; Roessler, E.; Burdine, R.D.; Saplakoglu, U.; dela Cruz, J.; Splitt, M.; Goodship, J.A.; Towbin, J.; Bowers, P.; Ferrero, G.B.; et al. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat. Genet. 2000, 26, 365–369. [Google Scholar] [CrossRef]
- Unolt, M.; Putotto, C.; Silvestri, L.M.; Marino, D.; Scarabotti, A.; Valerio, M.; Caiaro, A.; Versacci, P.; Marino, B. Transposition of great arteries. new insights into the pathogenesis. Front. Pediatr. 2013, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Adegbola, A.; Musante, L.; Callewaert, B.; Maciel, P.; Hu, H.; Isidor, B.; Picker-Minh, S.; Le Caignec, C.; Delle Chiaie, B.; Vanakker, O.; et al. Redefining the MED13L syndrome. Eur. J. Hum. Genet. 2015, 23, 1308–1317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ita, M.; Cisneros, B.; Rosas-Vargas, H. Genetics of transposition of great arteries: Between laterality abnormality and outflow tract defect. J. Cardiovasc. Transl. Res. 2020. [Google Scholar] [CrossRef]
- Aboulhosn, J.; Child, J.S. Left ventricular outflow obstruction. subaortic stenosis, bicuspid aortic valve, supravalvar aortic stenosis, and coarctation of the aorta. Circulation 2006, 114, 2412–2422. [Google Scholar] [CrossRef]
- Rodes-Cabau, J.; Miro, J.; Dancea, A.; Ibrahim, R.; Piette, E.; Lapierre, C.; Jutras, L.; Perron, J.; Tchervenkow, C.I.; Poirier, N.; et al. Comparison of surgical and transcatheter treatment for native coarctation of the aorta in patients > or =1 year old. The Quebec native coarctation of the aorta study. Am. Heart J. 2007, 154, 186–192. [Google Scholar] [CrossRef]
- Freylikhman, O.; Tatarinova, T.; Smolina, N.; Zhuk, S.; Klyushina, A.; Kiselev, A.; Moiseeva, O.; Sjoberg, G.; Malashicheva, A.; Kostareva, A. Variants in the NOTCH1 gene in patients with aortic coarctation. Congenit. Heart Dis. 2014, 9, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Gravholt, C.H.; Backeljauw, P. New international Turner syndrome guideline. a multi-society feat. Eur. J. Endocrinol. 2017, 177, E1–E2. [Google Scholar] [CrossRef] [PubMed]
- Sarkozy, A.; Conti, E.; Esposito, G.; Pizzuti, A.; Dallapiccola, B.; Mingarelli, R.; Marino, B.; Digilio, M.C.; Paoletti, V. Nonsyndromic pulmonary valve stenosis and the PTPN11 gene. Am. J. Med Genet. Part A 2003, 116A, 389–390. [Google Scholar] [CrossRef] [PubMed]
- Cuypers, J.A.; Witsenburg, M.; van der Linde, D.; Roos-Hesselink, J.W. Pulmonary stenosis. update on diagnosis and therapeutic options. Heart 2013, 99, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.S. Bicuspid aortic valve. J. Insur. Med. 2006, 38, 72–74. [Google Scholar]
- Mordi, I.; Tzemos, N. Bicuspid aortic valve disease: A comprehensive review. Cardiol. Res. Pract. 2012, 2012, 196037. [Google Scholar] [CrossRef] [Green Version]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease. A Report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar] [CrossRef] [PubMed]
- Garg, V.; Muth, A.N.; Ransom, J.F.; Schluterman, M.K.; Barnes, R.; King, I.N.; Grossfeld, P.D.; Srivastava, D. Mutations in NOTCH1 cause aortic valve disease. Nature 2005, 437, 270–274. [Google Scholar] [CrossRef] [PubMed]
- Bravo-Jaimes, K.; Prakash, S.K. Genetics in bicuspid aortic valve disease. Where are we? Prog. Cardiovasc. Dis. 2020, 63, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Manning, W.J. Asymptomatic aortic stenosis in the elderly. a clinical review. JAMA 2013, 310, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, K.; Horigome, H.; Lin, L.; Murakami, T.; Shiono, J.; Yamashiro, Y.; Matsuura, H.; Yoda, H.; Yanagisawa, H. Novel ELN mutation in a Japanese family with a severe form of supravalvular aortic stenosis. Mol. Genet. Genom. Med. 2019, 7, e986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curran, M.E.; Atkinson, D.L.; Ewart, A.K.; Morris, C.A.; Leppert, M.F.; Keating, M.T. The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell 1993, 73, 159–168. [Google Scholar] [CrossRef]
- Apitz, C.; Webb, G.D.; Redington, A.N. Tetralogy of fallot. Lancet 2009, 374, 1462–1471. [Google Scholar] [CrossRef]
- Morgenthau, A.; Frishman, W.H. Genetic origins of tetralogy of fallot. Cardiol. Rev. 2018, 26, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Silversides, C.K.; Lionel, A.C.; Costain, G.; Merico, D.; Migita, O.; Liu, B.; Yuen, T.; Rickaby, J.; Thiruvahindrapuram, B.; Marshall, C.R.; et al. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet. 2012, 8, e1002843. [Google Scholar] [CrossRef]
- Page, D.J.; Miossec, M.J.; Williams, S.G.; Monaghan, R.M.; Fotiou, E.; Cordell, H.J.; Sutcliffe, L.; Topf, A.; Bourgey, M.; Bourque, G.; et al. Whole exome sequencing reveals the major genetic contributors to nonsyndromic tetralogy of fallot. Circ. Res. 2019, 124, 553–563. [Google Scholar] [CrossRef]
- Javed, R.; Cetta, F.; Said, S.M.; Olson, T.M.; O’Leary, P.W.; Qureshi, M.Y. Hypoplastic left heart syndrome: An overview for primary care providers. Pediatr. Rev. 2019, 40, 344–353. [Google Scholar] [CrossRef]
- Saraf, A.; Book, W.M.; Nelson, T.J.; Xu, C. Hypoplastic left heart syndrome. From bedside to bench and back. J. Mol. Cell. Cardiol. 2019, 135, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, C.; Martinez, A.M.; Zuppan, C.W.; Shah, M.M.; Bailey, L.L.; Fletcher, W.H. Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (DGGE). Mutat. Res. 2001, 479, 173–186. [Google Scholar] [CrossRef]
- Yagi, H.; Liu, X.; Gabriel, G.C.; Wu, Y.; Peterson, K.; Murray, S.A.; Aronow, B.J.; Martin, L.J.; Benson, D.W.; Lo, C.W. The Genetic landscape of hypoplastic left heart syndrome. Pediatr. Cardiol. 2018, 39, 1069–1081. [Google Scholar] [CrossRef] [PubMed]
- Marin-Garcia, J. Advances in molecular genetics of congenital heart disease. Rev. Esp. Cardiol. 2009, 62, 242–245. [Google Scholar] [CrossRef]
- Lejeune, J.; Gautier, M.; Turpin, R. Study of somatic chromosomes from 9 mongoloid children. C. R. Hebd. Seances. Acad. Sci. 1959, 248, 1721–1722. [Google Scholar]
- Lejeune, J.; Turpin, R.; Gautier, M. Mongolism; a chromosomal disease (trisomy). Bull. Acad. Natl. Med. 1959, 143, 256–265. [Google Scholar]
- Kylat, R.I. Tracheal stenosis and congenital heart disease in trisomy 21. Children 2019, 6, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahari, N.; Mat Bah, M.N.; Hasliza, A.R.; Thong, M.K. Ten-year trend in prevalence and outcome of Down syndrome with congenital heart disease in a middle-income country. Eur. J. Pediatr. 2019, 178, 1267–1274. [Google Scholar] [CrossRef]
- Edwards, J.H.; Harnden, D.G.; Cameron, A.H.; Crosse, V.M.; Wolff, O.H. A new trisomic syndrome. Lancet 1960, 1, 787–790. [Google Scholar] [CrossRef]
- Springett, A.; Wellesley, D.; Greenlees, R.; Loane, M.; Addor, M.C.; Arriola, L.; Bergman, J.; Cavero-Carbonell, C.; Csaky-Szunyogh, M.; Draper, E.S.; et al. Congenital anomalies associated with trisomy 18 or trisomy 13. A registry-based study in 16 European countries, 2000-2011. Am. J. Med. Genet. Part A 2015, 167A, 3062–3069. [Google Scholar] [CrossRef]
- Cereda, A.; Carey, J.C. The trisomy 18 syndrome. Orphanet J. Rare. Dis. 2012, 7, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patau, K. The identification of individual chromosomes, especially in man. Am. J. Hum. Genet 1960, 12, 250–276. [Google Scholar] [PubMed]
- Patau, K.; Smith, D.W.; Therman, E.; Inhorn, S.L.; Wagner, H.P. Multiple congenital anomaly caused by an extra autosome. Lancet 1960, 1, 790–793. [Google Scholar] [CrossRef]
- Meyer, R.E.; Liu, G.; Gilboa, S.M.; Ethen, M.K.; Aylsworth, A.S.; Powell, C.M.; Flood, T.J.; Mai, C.T.; Wang, Y.; Canfield, M.A.; et al. Survival of children with trisomy 13 and trisomy 18. A multi-state population-based study. Am. J. Med. Genet. Part A 2016, 170A, 825–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gravholt, C.H.; Viuff, M.H.; Brun, S.; Stochholm, K.; Andersen, N.H. Turner syndrome: Mechanisms and management. Nat. Rev. Endocrinol. 2019, 15, 601–614. [Google Scholar] [CrossRef] [PubMed]
- Morales-Demori, R. Congenital heart disease and cardiac procedural outcomes in patients with trisomy 21 and Turner syndrome. Congenit. Heart Dis. 2017, 12, 820–827. [Google Scholar] [CrossRef]
- Turner, H. A Syndrome of infantilism, congenital webbed neck, and cubitus valgus. Endocrinology 1938, 23, 566–574. [Google Scholar] [CrossRef]
- Ford, C.E.; Jones, K.W.; Miller, O.J.; Mittwoch, U.; Penrose, L.S.; Ridler, M.; Shapiro, A. The chromosomes in a patient showing both mongolism and the Klinefelter syndrome. Lancet 1959, 1, 709–710. [Google Scholar] [CrossRef]
- Ford, C.E.; Jones, K.W.; Polani, P.E.; De Almeida, J.C.; Briggs, J.H. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner’s syndrome). Lancet 1959, 1, 711–713. [Google Scholar] [CrossRef]
- Ford, C.E.; Polani, P.E.; Briggs, J.H.; Bishop, P.M. A presumptive human XXY/XX mosaic. Nature 1959, 183, 1030–1032. [Google Scholar] [CrossRef]
- Saliba, A.; Figueiredo, A.C.V.; Baroneza, J.E.; Afiune, J.Y.; Pic-Taylor, A.; Oliveira, S.F.; Mazzeu, J.F. Genetic and genomics in congenital heart disease: A clinical review. J. Pediatr. 2020, 96, 279–288. [Google Scholar] [CrossRef]
- DiGeorge, A.M. Congenital Absence of the Thymus and Its Immunologic Consequences. Concurrence with Congenital Hypoparathyroidism; March of Dimes-Birth Defects Foundation: Arlington, VA, USA, 1968; pp. 116–121. [Google Scholar]
- De la Chapelle, A.; Herva, R.; Koivisto, M.; Aula, P. A deletion in chromosome 22 can cause DiGeorge syndrome. Hum. Genet. 1981, 57, 253–256. [Google Scholar] [CrossRef]
- Andersen, S.L.; Laurberg, P. Antithyroid drugs and congenital heart defects. ventricular septal defect is part of the methimazole/carbimazole embryopathy. Eur. J. Endocrinol. 2014, 171, C1–C3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelmann, L.; Pandita, R.K.; Spiteri, E.; Funke, B.; Goldberg, R.; Palanisamy, N.; Chaganti, R.S.; Magenis, E.; Shprintzen, R.J.; Morrow, B.E. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum. Mol. Genet. 1999, 8, 1157–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Digilio, M.C.; Marino, B. What is new in genetics of congenital heart defects? Front. Pediatr. 2016, 4, 120. [Google Scholar] [CrossRef] [Green Version]
- Mefford, H.C.; Sharp, A.J.; Baker, C.; Itsara, A.; Jiang, Z.; Buysse, K.; Huang, S.; Maloney, V.K.; Crolla, J.A.; Baralle, D.; et al. Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N. Engl. J. Med. 2008, 359, 1685–1699. [Google Scholar] [CrossRef] [Green Version]
- Digilio, M.C.; Bernardini, L.; Consoli, F.; Lepri, F.R.; Giuffrida, M.G.; Baban, A.; Surace, C.; Ferese, R.; Angioni, A.; Novelli, A.; et al. Congenital heart defects in recurrent reciprocal 1q21.1 deletion and duplication syndromes: Rare association with pulmonary valve stenosis. Eur. J. Med. Genet. 2013, 56, 144–149. [Google Scholar] [CrossRef]
- Shapira, S.K.; McCaskill, C.; Northrup, H.; Spikes, A.S.; Elder, F.F.; Sutton, V.R.; Korenberg, J.R.; Greenberg, F.; Shaffer, L.G. Chromosome 1p36 deletions. the clinical phenotype and molecular characterization of a common newly delineated syndrome. Am. J. Hum. Genet. 1997, 61, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Arndt, A.K.; Schafer, S.; Drenckhahn, J.D.; Sabeh, M.K.; Plovie, E.R.; Caliebe, A.; Klopocki, E.; Musso, G.; Werdich, A.A.; Kalwa, H.; et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy. Am. J. Hum. Genet. 2013, 93, 67–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubs, H.A.; Lubs, L.M. New cytogenetic technics applied to a series of children with mental retardation. In Nobel Symposium 23. Chromosome Identification Technique and Applications in Biology and Medicine; Casperson, T., Ed.; New York and London Academic Press: Stockholm, Sweden, 1973; pp. 241–250. [Google Scholar]
- Wat, M.J.; Shchelochkov, O.A.; Holder, A.M.; Breman, A.M.; Dagli, A.; Bacino, C.; Scaglia, F.; Zori, R.T.; Cheung, S.W.; Scott, D.A.; et al. Chromosome 8p23.1 deletions as a cause of complex congenital heart defects and diaphragmatic hernia. Am. J. Med. Genet. Part A 2009, 149A, 1661–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, T.A.; de Troelsen, K.L.; Larsen, L.A. Of mice and men. molecular genetics of congenital heart disease. Cell. Mol. Life Sci. 2014, 71, 1327–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleefstra, T.; Brunner, H.G.; Amiel, J.; Oudakker, A.R.; Nillesen, W.M.; Magee, A.; Genevieve, D.; Cormier-Daire, V.; van Esch, H.; Fryns, J.P.; et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am. J. Hum. Genet 2006, 79, 370–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yatsenko, S.A.; Brundage, E.K.; Roney, E.K.; Cheung, S.W.; Chinault, A.C.; Lupski, J.R. Molecular mechanisms for subtelomeric rearrangements associated with the 9q34.3 microdeletion syndrome. Hum. Mol. Genet. 2009, 18, 1924–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, U.; Reinwein, H.; Porsch, R.; Schroter, R.; Baitsch, H. Deficiency on the short arms of a chromosome No. 4. Humangenetik 1965, 1, 397–413. [Google Scholar] [PubMed]
- Hirschhorn, K.; Cooper, H.L.; Firschein, I.L. Deletion of short arms of chromosome 4-5 in a child with defects of midline fusion. Humangenetik 1965, 1, 479–482. [Google Scholar] [CrossRef]
- Von Elten, K.; Sawyer, T.; Lentz-Kapua, S.; Kanis, A.; Studer, M. A case of Wolf-Hirschhorn syndrome and hypoplastic left heart syndrome. Pediatr. Cardiol. 2013, 34, 1244–1246. [Google Scholar] [CrossRef]
- Williams, J.C.; Barratt-Boyes, B.G.; Lowe, J.B. Supravalvular aortic stenosis. Circulation 1961, 24, 1311–1318. [Google Scholar] [CrossRef] [Green Version]
- Beuren, A.J.; Apitz, J.; Harmjanz, D. Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation 1962, 26, 1235–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Pasqua, A.; Rinelli, G.; Toscano, A.; Iacobelli, R.; Digilio, C.; Marino, B.; Saffirio, C.; Mondillo, S.; Pasquini, L.; Sanders, S.P.; et al. New findings concerning cardiovascular manifestations emerging from long-term follow-up of 150 patients with the Williams-Beuren-Beuren syndrome. Cardiol. Young 2009, 19, 563–567. [Google Scholar] [CrossRef]
- Kitagawa, H.; Fujiki, R.; Yoshimura, K.; Mezaki, Y.; Uematsu, Y.; Matsui, D.; Ogawa, S.; Unno, K.; Okubo, M.; Tokita, A.; et al. The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell 2003, 113, 905–917. [Google Scholar] [CrossRef] [Green Version]
- Noonan, J.A. Hypertelorism with Turner phenotype: A new syndrome with associated congenital heart disease. Am. J. Dis. Child. 1968, 116, 373–380. [Google Scholar] [CrossRef]
- Jhang, W.K.; Choi, J.H.; Lee, B.H.; Kim, G.H.; Yoo, H.W. cardiac manifestations and associations with gene mutations in patients diagnosed with RASopathies. Pediatr. Cardiol. 2016, 37, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.E.; Araki, T.; Swanson, K.D.; Montgomery, K.T.; Schiripo, T.A.; Joshi, V.A.; Li, L.; Yassin, Y.; Tamburino, A.M.; Neel, B.G.; et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Nat. Genet. 2007, 39, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Pandit, B.; Sarkozy, A.; Pennacchio, L.A.; Carta, C.; Oishi, K.; Martinelli, S.; Pogna, E.A.; Schackwitz, W.; Ustaszewska, A.; Landstrom, A.; et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat. Genet. 2007, 39, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Costello, J.M. A new syndrome. mental subnormality and nasal papillomata. Aust. Paediatr. J. 1977, 13, 114–118. [Google Scholar] [CrossRef]
- Gripp, K.W.; Morse, L.A.; Axelrad, M.; Chatfield, K.C.; Chidekel, A.; Dobyns, W.; Doyle, D.; Kerr, B.; Lin, A.E.; Schwartz, D.D.; et al. Costello syndrome. Clinical phenotype, genotype, and management guidelines. Am. J. Med. Genet. Part A 2019, 179, 1725–1744. [Google Scholar] [CrossRef] [PubMed]
- Gripp, K.W.; Rauen, K.A. Costello syndrome. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1507/ (accessed on 19 May 2021).
- Tidyman, W.E.; Rauen, K.A. The RASopathies. developmental syndromes of Ras/MAPK pathway dysregulation. Curr. Opin. Genet. Dev. 2009, 19, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Gorlin, R.J.; Anderson, R.C.; Blaw, M. Multiple lentigenes syndrome. Am. J. Dis. Child. 1969, 117, 652–662. [Google Scholar] [CrossRef]
- Gelb, B.D.; Roberts, A.E.; Tartaglia, M. Cardiomyopathies in Noonan syndrome and the other RASopathies. Prog. Pediatr. Cardiol. 2015, 39, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Holt, M.; Oram, S. Familial heart disease with skeletal malformations. Br. Heart J. 1960, 22, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Picker, J.; Zheng, Z.; Zhang, X.; Wang, J.; Hisama, F.; Brown, D.W.; Mullen, M.P.; Harris, D.; Stoler, J.; et al. Chromosome microarray testing for patients with congenital heart defects reveals novel disease causing loci and high diagnostic yield. BMC Genom. 2014, 15, 1127. [Google Scholar] [CrossRef] [Green Version]
- Patel, C.; Silcock, L.; McMullan, D.; Brueton, L.; Cox, H. TBX5 intragenic duplication. a family with an atypical Holt-Oram syndrome phenotype. Eur. J. Hum. Genet. 2012, 20, 863–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, F.H.; Oliver, C.P. Hereditary deformities in man due to arrested development. J. Hered. 1945, 36, 3–7. [Google Scholar] [CrossRef]
- Digilio, M.C.; Marino, B.; Baban, A.; Dallapiccola, B. Cardiovascular malformations in Adams-Oliver syndrome. Am. J. Med. Genet. Part A 2015, 167A, 1175–1177. [Google Scholar] [CrossRef]
- Watson, G.H.; Miller, V. Arteriohepatic dysplasia. familial pulmonary arterial stenosis with neonatal liver disease. Arch. Dis. Child. 1973, 48, 459–466. [Google Scholar] [CrossRef]
- Alagille, D.; Odievre, M.; Gautier, M.; Dommergues, J.P. Hepatic ductular hypoplasia associated with characteristic facies, vertebral malformations, retarded physical, mental, and sexual development, and cardiac murmur. J. Pediatr. 1975, 86, 63–71. [Google Scholar] [CrossRef]
- Zhang, E.; Xu, Y.; Yu, Y.; Chen, S.; Yu, Y.; Sun, K. JAG1 lossoffunction mutations contributed to Alagille syndrome in two Chinese families. Mol. Med. Rep. 2018, 18, 2356–2364. [Google Scholar]
- Niikawa, N.; Matsuura, N.; Fukushima, Y.; Ohsawa, T.; Kajii, T. Kabuki make-up syndrome. a syndrome of mental retardation, unusual facies, large and protruding ears, and postnatal growth deficiency. J. Pediatr. 1981, 99, 565–569. [Google Scholar] [CrossRef]
- Kawame, H.; Hannibal, M.C.; Hudgins, L.; Pagon, R.A. Phenotypic spectrum and management issues in Kabuki syndrome. J. Pediatr. 1999, 134, 480–485. [Google Scholar] [CrossRef]
- Pagon, R.A.; Downing, A.L.; Ruvalcaba, R.H. Kabuki make-up syndrome in a Caucasian. Ophthalmic Paediatr. Genet. 1986, 7, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.B.; Bigham, A.W.; Buckingham, K.J.; Hannibal, M.C.; McMillin, M.J.; Gildersleeve, H.I.; Beck, A.E.; Tabor, H.K.; Cooper, G.M.; Mefford, H.C.; et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 2010, 42, 790–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulussen, A.D.; Stegmann, A.P.; Blok, M.J.; Tserpelis, D.; Posma-Velter, C.; Detisch, Y.; Smeets, E.E.; Wagemans, A.; Schrander, J.J.; van den Boogaard, M.J.; et al. MLL2 mutation spectrum in 45 patients with Kabuki syndrome. Hum. Mutat. 2011, 32, E2018–E2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, B.D. Choanal atresia and associated multiple anomalies. J. Pediatr. 1979, 95, 395–398. [Google Scholar] [CrossRef]
- Hittner, H.M.; Hirsch, N.J.; Kreh, G.M.; Rudolph, A.J. Colobomatous microphthalmia, heart disease, hearing loss, and mental retardation—A syndrome. J. Pediatr. Ophthalmol. Strabismus 1979, 16, 122–128. [Google Scholar] [CrossRef]
- Jongmans, M.C.; Admiraal, R.J.; van der Donk, K.P.; Vissers, L.E.; Baas, A.F.; Kapusta, L.; van Hagen, J.M.; Donnai, D.; de Ravel, T.J.; Veltman, J.A.; et al. CHARGE syndrome. the phenotypic spectrum of mutations in the CHD7 gene. J. Med. Genet. 2006, 43, 306–314. [Google Scholar] [CrossRef] [Green Version]
- Leon, L.E.; Benavides, F.; Espinoza, K.; Vial, C.; Alvarez, P.; Palomares, M.; Lay-Son, G.; Miranda, M.; Repetto, G.M. Partial microduplication in the histone acetyltransferase complex member KANSL1 is associated with congenital heart defects in 22q11.2 microdeletion syndrome patients. Sci. Rep. 2017, 7, 1795. [Google Scholar] [CrossRef]
- Koolen, D.A.; Morgan, A.; de Vries, B.B.A. Koolen-de Vries Syndrome. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK24676/ (accessed on 19 May 2021).
- Koolen, D.A.; Pfundt, R.; Linda, K.; Beunders, G.; Veenstra-Knol, H.E.; Conta, J.H.; Fortuna, A.M.; Gillessen-Kaesbach, G.; Dugan, S.; Halbach, S.; et al. The Koolen-de Vries syndrome. a phenotypic comparison of patients with a 17q21.31 microdeletion versus a KANSL1 sequence variant. Eur. J. Hum. Genet. 2016, 24, 652–659. [Google Scholar] [CrossRef]
- Jacobsen, P.; Hauge, M.; Henningsen, K.; Hobolth, N.; Mikkelsen, M.; Philip, J. An (11;21) translocation in four generations with chromosome 11 abnormalities in the offspring. A clinical, cytogenetical, and gene marker study. Hum. Hered. 1973, 23, 568–585. [Google Scholar] [CrossRef]
- Tassano, E.; Janis, S.; Canepa, A.; Zanotto, E.; Torello, C.; Gimelli, G.; Cuoco, C. Interstitial 11q24 deletion. a new case and review of the literature. J. Appl. Genet. 2016, 57, 357–362. [Google Scholar] [CrossRef]
- Davidson, H.R. A large family with patent ductus arteriosus and unusual face. J. Med. Genet. 1993, 30, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Gelb, B.D. Char syndrome. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK1106/ (accessed on 19 May 2021).
- Myhre, S.A.; Ruvalcaba, R.H.; Graham, C.B. A new growth deficiency syndrome. Clin. Genet. 1981, 20, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Starr, L.J.; Lindor, N.M.; Lin, A.E. Myhre Syndrome. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. Available online: https://www.ncbi.nlm.nih.gov/books/NBK425723/ (accessed on 19 May 2021).
- Ruiz-Perez, V.L.; Ide, S.E.; Strom, T.M.; Lorenz, B.; Wilson, D.; Woods, K.; King, L.; Francomano, C.; Freisinger, P.; Spranger, S.; et al. Mutations in a new gene in Ellis-van Creveld syndrome and Weyers acrodental dysostosis. Nat. Genet. 2000, 24, 283–286. [Google Scholar] [CrossRef] [PubMed]
- McKusick, V.A.; Egeland, J.A.; Eldridge, R.; Krusen, D.E. Dwarfism in the Amish I: The Ellis-Van Creveld Syndrome. Bull. Johns Hopkins Hosp. 1964, 115, 306–336. [Google Scholar] [PubMed]
- Baujat, G.; Le Merrer, M. Ellis-van Creveld Syndrome. Orphanet J. Rare Dis. 2007, 2, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pathology | Frequency | Associated Genes |
---|---|---|
Aortic valve stenosis | 1:12,500 | ELN, NR2F2, NOTCH1, SMAD6, TAB2, ROBO4 |
Atrial septal defect or Interauricular communication | 1:1000 | MYH6, ACTC1, GATA4, TBX20, TLL1, CITED2, GATA6, TBX5, TBX6, NKX2-5, GATA4, NR2F2, ACVR1/ALK2, CRELD1 |
Atrioventricular septal defect | 1:1300 | GJA1, GATA6, GATA4, CRELD1, NR2F2, TBX5, NKX2-5 |
Bicuspid aortic valve | 1:100 | NOTCH1 |
Coarctation of the aorta | 1:7000 | NOTCH1, NR2F1, SMAD6, NKX2-5, NKX2-6, GATA6, TBX1 |
Hypoplastic left heart syndrome | 1:7000 | GJA1, NKX2-5, PCDHA13, NOTCH1 |
Persistent ductus arteriosus | 1:11,000 | ACTA2, PRDM6, R187, TFAB2B, SMADIP1, TGFBR1/2, PTPN11, TBX1, MYH11 |
Supravalvular aortic and pulmonary artery stenosis | 1:2500 | PTPN11, SOS1, JAG1, ELN, GATA4 |
Tetralogy of Fallot | 1:2000 | JAG1, TBX1, NKX2-5, NKX2-6, GATA4, GATA5, GATA6, NR2F2, ZFPM2/FOG2, NOTCH1, TAB2 |
Transposition of great vessels | 1: 3000 | GATA4, NKX2-5, MED13L, PITX2 |
Common artery trunk | 1:10,000 | NKX2-5, NKX2-6, GATA6, TBX1, ACTA2, R187 |
Ventricular septal defect or interventricular communication | 1:300 | GATA4, CITED2, ETS1, TBX5, TBX1, NKX2-5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diz, O.M.; Toro, R.; Cesar, S.; Gomez, O.; Sarquella-Brugada, G.; Campuzano, O. Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns. J. Pers. Med. 2021, 11, 562. https://doi.org/10.3390/jpm11060562
Diz OM, Toro R, Cesar S, Gomez O, Sarquella-Brugada G, Campuzano O. Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns. Journal of Personalized Medicine. 2021; 11(6):562. https://doi.org/10.3390/jpm11060562
Chicago/Turabian StyleDiz, Olga María, Rocio Toro, Sergi Cesar, Olga Gomez, Georgia Sarquella-Brugada, and Oscar Campuzano. 2021. "Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns" Journal of Personalized Medicine 11, no. 6: 562. https://doi.org/10.3390/jpm11060562
APA StyleDiz, O. M., Toro, R., Cesar, S., Gomez, O., Sarquella-Brugada, G., & Campuzano, O. (2021). Personalized Genetic Diagnosis of Congenital Heart Defects in Newborns. Journal of Personalized Medicine, 11(6), 562. https://doi.org/10.3390/jpm11060562