Unique Polymorphisms at BCL11A, HBS1L-MYB and HBB Loci Associated with HbF in Kuwaiti Patients with Sickle Cell Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genotype Determination
2.2. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. BCL11A Locus
3.3. HBS1L-MYB Intergenic Region
3.4. HBB Locus
3.5. Chromosome X Associations
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menzel, S.; Jiang, J.; Silver, N.; Gallagher, J.; Cunningham, J.; Surdulescu, G.; Lathrop, M.; Farrall, M.; Spector, T.D.; Thein, S.L. The HBS1L-MYB intergenic region on chromosome 6q23.3 influences erythrocyte, platelet, and monocyte counts in humans. Blood 2007, 110, 3624–3626. [Google Scholar] [CrossRef] [Green Version]
- Thein, S.L.; Menzel, S. Discovering the genetics underlying foetal haemoglobin production in adults. Br. J. Haematol. 2009, 145, 455–467. [Google Scholar] [CrossRef]
- Uda, M.; Galanello, R.; Sanna, S.; Lettre, G.; Sankaran, V.G.; Chen, W.; Usala, G.; Busonero, F.; Maschio, A.; Albai, G.; et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc. Natl. Acad. Sci. USA 2008, 105, 1620–1625. [Google Scholar] [CrossRef] [Green Version]
- Adekile, A.D.; Gu, L.H.; Baysal, E.; Haider, M.Z.; Al-Fuzae, L.; Aboobacker, K.C.; Al-Rashied, A.; Huisman, T.H. Molecular characterization of alpha-thalassemia determinants, beta-thalassemia alleles, and beta S haplotypes among Kuwaiti Arabs. Acta Haematol. 1994, 92, 176–181. [Google Scholar] [CrossRef]
- Adekile, A.D.; Haider, M.Z. Morbidity, beta S haplotype and alpha-globin gene patterns among sickle cell anemia patients in Kuwait. Acta Haematol. 1996, 96, 150–154. [Google Scholar] [CrossRef]
- Galarneau, G.; Palmer, C.D.; Sankaran, V.G.; Orkin, S.H.; Hirschhorn, J.N.; Lettre, G. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat. Genet. 2010, 42, 1049–1051. [Google Scholar] [CrossRef] [Green Version]
- Adekile, A.; Menzel, S.; Gupta, R.; Al-Sharida, S.; Farag, A.; Haider, M.; Akbulut, N.; Mustafa, N.; Thein, S.L. Response to hydroxyurea among kuwaiti patients with sickle cell disease and elevated baseline HbF levels. Am. J. Hematol. 2015, 90, E138–E139. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D.; Bae, H.; Steinberg, M.H.; Sebastiani, P.; Solovieff, N.; Baldwin, C.T.; Melista, E.; Safaya, S.; Farrer, L.A.; Al-Suliman, A.M.; et al. Fetal hemoglobin in sickle cell anemia: Genetic studies of the Arab-Indian haplotype. Blood Cells Mol. Dis. 2013, 51, 22–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaikho, E.M.; Farrell, J.J.; Alsultan, A.; Sebastiani, P.; Steinberg, M.H. Genetic determinants of HbF in Saudi Arabian and African Benin haplotype sickle cell anemia. Am. J. Hematol. 2017, 92, E555–E557. [Google Scholar] [CrossRef] [PubMed]
- Adekile, A. The Genetic and Clinical Significance of Fetal Hemoglobin Expression in Sickle Cell Disease. Med. Princ. Pr. 2020, 1–11. [Google Scholar] [CrossRef]
- Shaikho, E.M.; Farrell, J.J.; Alsultan, A.; Qutub, H.; Al-Ali, A.K.; Figueiredo, M.S.; Chui, D.H.; Farrer, L.; Murphy, G.J.; Mostoslavsky, G.; et al. A phased SNP-based classification of sickle cell anemia HBB haplotypes. BMC Genom. 2017, 18, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Thein, S.L.; Menzel, S.; Peng, X.; Best, S.; Jiang, J.; Close, J.; Silver, N.; Gerovasilli, A.; Ping, C.; Yamaguchi, M.; et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc. Natl. Acad. Sci. USA 2007, 104, 11346–11351. [Google Scholar] [CrossRef] [Green Version]
- Lettre, G.; Sankaran, V.G.; Bezerra, M.A.; Araújo, A.S.; Uda, M.; Sanna, S.; Cao, A.; Schlessinger, D.; Costa, F.F.; Hirschhorn, J.N.; et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl. Acad. Sci. USA 2008, 105, 11869–11874. [Google Scholar] [CrossRef] [Green Version]
- Galanello, R.; Sanna, S.; Perseu, L.; Sollaino, M.C.; Satta, S.; Lai, M.E.; Barella, S.; Uda, M.; Usala, G.; Abecasis, G.R.; et al. Ame-lioration of Sardinian beta0 thalassemia by genetic modifiers. Blood 2009, 114, 3935–3937. [Google Scholar] [CrossRef]
- Solovieff, N.; Milton, J.N.; Hartley, S.W.; Sherva, R.; Sebastiani, P.; Dworkis, D.A.; Klings, E.S.; Farrer, L.A.; Garrett, M.E.; Ashley-Koch, A.; et al. Fetal hemoglobin in sickle cell anemia: Genome-wide association studies suggest a regulatory region in the 5′ olfactory receptor gene cluster. Blood 2010, 115, 1815–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzel, S.; Garner, C.; Gut, I.; Matsuda, F.; Yamaguchi, M.; Heath, S.; Foglio, M.; Zelenika, D.; Boland, A.; Rooks, H.; et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chro-mosome 2p15. Nat. Genet. 2007, 39, 1197–1199. [Google Scholar] [CrossRef]
- Sankaran, V.G.; Menne, T.F.; Xu, J.; Akie, T.E.; Lettre, G.; Van Handel, B.; Mikkola, H.K.A.; Hirschhorn, J.N.; Cantor, A.B.; Orkin, S.H. Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-Specific Repressor BCL11A. Science 2008, 322, 1839–1842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatnagar, P.; Purvis, S.; Barron-Casella, E.; DeBaun, M.R.; Casella, J.F.; Arking, D.E.; Keefer, J.R. Genome-wide association study identifies genetic variants influencing F-cell levels in sickle-cell patients. J. Hum. Genet. 2011, 56, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.E.; Kamran, S.C.; Lessard, S.; Xu, J.; Fujiwara, Y.; Lin, C.; Shao, Z.; Canver, M.C.; Smith, E.C.; Pinello, L.; et al. An Erythroid Enhancer of BCL11A Subject to Genetic Variation Determines Fetal Hemoglobin Level. Science 2013, 342, 253–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, P.J.; Sebastiani, P.; Edward, H.; Baldwin, C.T.; Gladwin, M.T.; Gordeuk, V.R.; Chui, D.; Steinberg, M.H. The genetics of hemoglobin A2regulation in sickle cell anemia. Am. J. Hematol. 2014, 89, 1019–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Pertsemlidis, A.; Ding, L.-H.; Story, M.D.; Steinberg, M.H.; Sebastiani, P.; Hoppe, C.; Ballas, S.K.; Pace, B.S. Original Research: A case-control genome-wide association study identifies genetic modifiers of fetal hemoglobin in sickle cell disease. Exp. Biol. Med. 2016, 241, 706–718. [Google Scholar] [CrossRef] [Green Version]
- Sebastiani, P.; Farrell, J.; Alsultan, A.; Wang, S.; Edward, H.L.; Shappell, H.; Bae, H.; Milton, J.N.; Baldwin, C.; Al-Rubaish, A.; et al. BCL11A enhancer haplotypes and fetal hemoglobin in sickle cell anemia. Blood Cells Mol. Dis. 2015, 54, 224–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, J.J.; Sherva, R.M.; Chen, Z.-Y.; Luo, H.-Y.; Chu, B.F.; Ha, S.Y.; Li, C.K.; Lee, A.C.W.; Li, R.C.H.; Yuen, H.L.; et al. A 3-bp deletion in the HBS1L-MYB intergenic region on chromosome 6q23 is associated with HbF expression. Blood 2011, 117, 4935–4945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadhouders, R.; Aktuna, S.; Thongjuea, S.; Aghajanirefah, A.; Pourfarzad, F.; van Ijcken, W.; Lenhard, B.; Rooks, H.; Best, S.; Menzel, S.; et al. HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J. Clin. Investig. 2014, 124, 1699–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canver, M.C.; Lessard, S.; Pinello, L.; Wu, Y.; Ilboudo, Y.; Stern, E.N.; Needleman, A.J.; Galactéros, F.; Brugnara, C.; Kutlar, A.; et al. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci. Nat. Genet. 2017, 49, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Akinsheye, I.; Solovieff, N.; Ngo, D.; Malek, A.; Sebastiani, P.; Steinberg, M.H.; Chui, D.H.l. Fetal hemoglobin in sickle cell anemia: Molecular characterization of the unusually high fetal hemoglobin phenotype in African Americans. Am. J. Hematol. 2012, 87, 217–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeyemo, T.A.; Ojewunmi, O.O.; Oyetunji, I.A.; Rooks, H.; Rees, D.C.; Akinsulie, A.O.; Akanmu, A.S.; Thein, S.L.; Menzel, S. A survey of genetic fetal-haemoglobin modifiers in Nigerian patients with sickle cell anaemia. PLoS ONE 2018, 13, e0197927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhang, Q.; Tang, Y.; Cong, P.; Ye, Y.; Chen, S.; Zhang, X.; Chen, Y.; Zhu, B.; Cai, W.; et al. LOVD–DASH: A comprehensive LOVD database coupled with diagnosis and an at-risk assessment system for hemoglobinopathies. Hum. Mutat. 2019, 40, 2221–2229. [Google Scholar] [CrossRef]
- Adekile, A.; Al-Kandari, M.; Haider, M.; Rajaa, M.; D’Souza, M.; Sukumaran, J. Hemoglobin F Concentration as a Function of Age in Kuwaiti Sickle Cell Disease Patients. Med Princ. Pr. 2007, 16, 286–290. [Google Scholar] [CrossRef]
Locus | SNP ID | BP | MAF | A1 | % R2 | HbF-1 | HbF-2 | HbF-3 | β | p | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | p | χ2 | p | χ2 | p | ||||||||
BCL11A | rs1427407 | 60490908 | 0.2975 | T | 5.80 | 14.86 | 0.0003 | 17.31 | 3.32 × 10−5 | 9.97 | 0.0087 | 1.65 | 0.0023 |
rs7606173 | 60498316 | 0.3249 | C | 1.70 | 16.46 | 6.13 × 10−5 | 9.99 | 0.0143 | 8.53 | 0.0103 | −1.27 | 9.17 × 10−5 | |
rs10195871 | 60493454 | 0.4916 | G | 3.40 | 15.00 | 7.95 × 10−5 | 10.66 | 0.0234 | 6.22 | 0.0126 | −1.21 | 0.0003 | |
rs7569946 | 60460824 | 0.3207 | A | 1.80 | 3.21 | 0.13169 | 0.80 | 0.4420 | 7.51 | 0.0061 | 0.59 | 0.0073 | |
HBS1L-MYB | rs9399137 | 135097880 | 0.1181 | C | 0.10 | 3.33 | 0.1090 | 4.96 | 0.0259 | 9.49 | 0.0021 | 0.78 | 0.0056 |
rs66650371 | 135097495 | 0.1181 | 2 * | 3.40 | 3.33 | 0.1090 | 5.33 | 0.0214 | 9.49 | 0.0021 | 0.78 | 0.0056 | |
rs35786788 | 135097904 | 0.1181 | A | 0.20 | 3.33 | 0.1090 | 4.96 | 0.0259 | 9.17 | 0.0015 | 0.76 | 0.0043 | |
rs35959442 | 135103041 | 0.1983 | G | 2.70 | 1.60 | 0.3053 | 2.77 | 0.0960 | 9.19 | 0.0025 | 0.76 | 0.0026 | |
HBB | rs67385638 | 5269140 | 0.2089 | C | 1.70 | 19.22 | 1.65 × 10−5 | 19.82 | 9.96 × 10−6 | 3.65 | 0.1641 | −1.13 | 0.0002 |
rs11036474 | 1253948 | 0.2131 | T | 1.50 | 18.13 | 2.65 × 10−5 | 18.22 | 2.44 × 10−5 | 3.43 | 0.0963 | −1.08 | 0.0002 | |
rs10128556 | 5242453 | 0.2152 | C | 1.30 | 17.61 | 3.34 × 10−5 | 17.47 | 3.76 × 10−5 | 3.11 | 0.1849 | −1.07 | 0.0003 | |
rs72872549 | 5268823 | 0.2152 | C | 1.70 | 16.48 | 4.95 × 10−5 | 15.45 | 0.0002 | 3.11 | 0.1849 | −1.07 | 0.0003 | |
rs7482144 | 5254939 | 0.2574 | G | 1.20 | 15.25 | 0.0002 | 16.04 | 9.02 × 10−5 | 2.59 | 0.3364 | −1.08 | 0.0005 | |
rs3759071 | 5270302 | 0.1160 | G | 0.20 | 1.45 | 0.2699 | 3.72 | 0.0804 | 8.55 | 0.0044 | 0.70 | 0.0100 |
Locus | Haplotype | HbF % | β | % R2 | % Frequency | p | SNPs |
---|---|---|---|---|---|---|---|
BCL11A | TAG | 25.96 | 4.83 | 11.00 | 27.91 | 3.00 × 10−7 | rs1427407|rs10195871|rs7606173 |
GGC | 15.30 | −4.94 | 10.00 | 30.12 | 9.59 × 10−7 | rs1427407|rs10195871|rs7606173 | |
HBS1L-MYB | 22GT * | 26.35 | 3.80 | 3.40 | 11.14 | 0.0040 | rs66650371|rs34778774|rs35959442|rs4895440 |
11CA ** | 18.66 | −3.13 | 3.80 | 77.02 | 0.0030 | rs66650371|rs34778774|rs35959442|rs4895440 | |
HBB | TCATG | 24.00 | 2.49 | 3.10 | 72.14 | 0.0010 | rs10128556|rs11036474|rs7482144|rs72872549|rs67385638 |
CTGCC | 16.20 | −3.40 | 6.00 | 19.36 | 0.0110 | rs10128556|rs11036474|rs7482144|rs72872549|rs67385638 |
Locus | SNP ID | BP | MAF | A1 | % R2 | HbF-1 | HbF-2 | HbF-3 | β | p | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
χ2 | p | χ2 | p | χ2 | p | ||||||||
HBS1L-MYB | rs13220662 | 135074410 | 0.3418 | A | 1.5 | 1.66 | 0.2857 | 2.82 | 0.0930 | 6.16 | 0.0303 | 0.45 | 0.0387 |
rs1406811 | 135118989 | 0.4726 | A | 1.6 | 0.31 | 0.5904 | 0.18 | 0.6737 | 6.72 | 0.0096 | −0.51 | 0.0118 | |
HBB | rs3813726 | 5234759 | 0.2574 | T | 0.8 | 10.20 | 0.0014 | 8.81 | 0.0041 | 0.95 | 0.5765 | −0.83 | 0.0033 |
rs72872549 | 5268823 | 0.2152 | C | 1.7 | 16.48 | 4.95 × 10−5 | 15.45 | 0.0001 | 3.11 | 0.1849 | −1.07 | 0.0003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbulut-Jeradi, N.; Fernandez, M.J.; Al Khaldi, R.; Sukumaran, J.; Adekile, A. Unique Polymorphisms at BCL11A, HBS1L-MYB and HBB Loci Associated with HbF in Kuwaiti Patients with Sickle Cell Disease. J. Pers. Med. 2021, 11, 567. https://doi.org/10.3390/jpm11060567
Akbulut-Jeradi N, Fernandez MJ, Al Khaldi R, Sukumaran J, Adekile A. Unique Polymorphisms at BCL11A, HBS1L-MYB and HBB Loci Associated with HbF in Kuwaiti Patients with Sickle Cell Disease. Journal of Personalized Medicine. 2021; 11(6):567. https://doi.org/10.3390/jpm11060567
Chicago/Turabian StyleAkbulut-Jeradi, Nagihan, Maria Jinky Fernandez, Rasha Al Khaldi, Jalaja Sukumaran, and Adekunle Adekile. 2021. "Unique Polymorphisms at BCL11A, HBS1L-MYB and HBB Loci Associated with HbF in Kuwaiti Patients with Sickle Cell Disease" Journal of Personalized Medicine 11, no. 6: 567. https://doi.org/10.3390/jpm11060567
APA StyleAkbulut-Jeradi, N., Fernandez, M. J., Al Khaldi, R., Sukumaran, J., & Adekile, A. (2021). Unique Polymorphisms at BCL11A, HBS1L-MYB and HBB Loci Associated with HbF in Kuwaiti Patients with Sickle Cell Disease. Journal of Personalized Medicine, 11(6), 567. https://doi.org/10.3390/jpm11060567