Robotic Transanal Total Mesorectal Excision (RTaTME): State of the Art
Abstract
:1. Introduction
2. Device and Technique
2.1. Robotic Platform
Future Direction: New Robotic Platforms
2.2. Transanal Device
2.3. Surgical Technique
3. Outcomes
Emerging Robotic Systems
4. Benefits and Limitations
4.1. Technical Advantages
4.2. Technical Limitations
4.3. Costs
5. Learning Curve of RTaTME
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Heald, R.J.; Husband, E.M.; Ryall, R.D. The mesorectum in rectal cancer surgery: The clue to pelvic recurrence? Br. J. Surg. 1982, 69, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Heald, R.J.; Ryall, R.D. Recurrence and survival after total mesorectal excision for rectal cancer. Lancet 1986, 327, 1479–1482. [Google Scholar] [CrossRef]
- Bernardshaw, S.V.; Øvrebø, K.; Eide, G.E.; Skarstein, A.; Røkke, O. Treatment of rectal cancer: Reduction of local recurrence after the introduction of TME-experience from one University Hospital. Dig. Surg. 2006, 23, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Quirke, P.; Steele, R.; Monson, J.; Grieve, R.; Khanna, S.; Couture, J.; O’Callaghan, C.; Myint, A.S.; Bessell, E.; Thompson, L.C.; et al. Effect of the plane of surgery achieved on local recurrence in patients with operable rectal cancer: A prospective study using data from the MRC CR07 and NCIC-CTG CO16 randomised clinical trial. Lancet 2009, 373, 821–828. [Google Scholar] [CrossRef] [Green Version]
- Maslekar, S.; Sharma, A.; Macdonald, A.; Gunn, J.; Monson, J.R.; Hartley, J.E. Mesorectal grades predict recurrences after curative resection for rectal cancer. Dis. Colon Rectum 2007, 50, 168–175. [Google Scholar] [CrossRef]
- Baik, S.H.; Kim, N.K.; Lee, K.Y.; Sohn, S.K.; Cho, C.H.; Kim, M.J.; Kim, H.; Shinn, R.K. Factors influencing pathologic results after total mesorectal excision for rectal cancer: Analysis of consecutive 100 cases. Ann. Surg. Oncol. 2008, 15, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Dulskas, A.; Miliauskas, P.; Tikuisis, R.; Escalante, R.; Samalavicius, N.E. The functional results of radical rectal cancer surgery: Review of the literature. Acta Chir. Belg. 2016, 116, 1–10. [Google Scholar] [CrossRef]
- Nocera, F.; Angehrn, F.; von Flüe, M.; Steinemann, D.C. Optimising functional outcomes in rectal cancer surgery. Langenbeck’s Arch. Surg. 2021, 406, 233–250. [Google Scholar] [CrossRef]
- Sylla, P.; Rattner, D.W.; Delgado, S.; Lacy, A.M. NOTES transanal rectal cancer resection using transanal endoscopic microsurgery and laparoscopic assistance. Surg. Endosc. 2010, 24, 1205–1210. [Google Scholar] [CrossRef]
- Rouanet, P.; Mourregot, A.; Azar, C.C.; Carrere, S.; Gutowski, M.; Quenet, F.; Saint-Aubert, B.; Colombo, P.E. Transanal endoscopic proctectomy: An innovative procedure for difficult resection of rectal tumorsin men with narrow pelvis. Dis. Colon Rectum 2013, 56, 408–415. [Google Scholar] [CrossRef]
- De Rosa, M.; Rondelli, F.; Boni, M.; Ermili, F.; Bugiantella, W.; Mariani, L.; Ceccarelli, G.; Giuliani, A. Transanal total mesorectal excision (TaTME): Single-centre early experience in a selected population. Updates Surg. 2019, 71, 157–163. [Google Scholar] [CrossRef] [PubMed]
- García-Granero, E.; Faiz, O.; Flor-Lorente, B.; García-Botello, S.; Esclápez, P.; Cervantes, A. Prognostic implications of circumferential location of distal rectal cancer. Colorectal Dis. 2011, 13, 650–657. [Google Scholar] [CrossRef]
- You, J.F.; Tang, R.; Changchien, C.R.; Chen, J.S.; You, Y.T.; Chiang, J.M.; Yeh, C.Y.; Hsieh, P.S.; Tsai, W.S.; Fan, C.W.; et al. Effect of body mass index on the outcome of patients with rectal cancer receiving curative anterior resection: Disparity between the upper and lower rectum. Ann. Surg. 2009, 249, 783–787. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Sugito, M.; Kobayashi, A.; Nishizawa, Y.; Tsunoda, Y.; Saito, N. Relationship between multiple numbers of stapler firings during rectal division and anastomotic leakage after laparoscopic rectal resection. Int. J. Color Dis. 2008, 23, 703–707. [Google Scholar] [CrossRef]
- De Rosa, M.; Wynn, G.; Rondelli, F.; Ceccarelli, G. Transanal total mesorectal excision for rectal cancer: State of the art. Mini Invasive Surg. 2020, 4, 34. [Google Scholar] [CrossRef]
- Persiani, R.; Agnes, A.; Belia, F.; D’Ugo, D.; Biondi, A. The learning curve of TaTME for mid-low rectal cancer: A comprehensive analysis from a five-year institutional experience. Surg. Endosc. 2020. [Google Scholar] [CrossRef]
- Koedam, T.W.A.; Veltcamp Helbach, M.; van de Ven, P.M.; Kruyt, P.M.; van Heek, N.T.; Bonjer, H.J.; Tuynman, J.B.; Sietses, C. Transanal total mesorectal excision for rectal cancer: Evaluation of the learning curve. Tech. Coloproctol. 2018, 22, 279–287. [Google Scholar] [CrossRef]
- Lee, L.; de Lacy, B.; Gomez Ruiz, M.; Liberman, A.S.; Albert, M.R.; Monson, J.R.T.; Lacy, A.; Kim, S.H.; Atallah, S.B. A multicenter matched comparison of transanal and robotic total mesorectal excision for mid and low-rectal adenocarcinoma. Ann. Surg. 2019, 270, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Wexner, S.D. Robotic transanal minimally invasive surgery. Colorectal Dis. 2020, 22, 1217–1218. [Google Scholar] [CrossRef]
- Leal Ghezzi, T.; Campos Corleta, O. 30 Years of Robotic Surgery. World. J. Surg. 2016, 40, 2550–2557. [Google Scholar] [CrossRef]
- Davies, B.L.; Hibberd, R.D.; Ng, W.S.; Timoney, A.G.; Wickham, J.E. The development of a surgeon robot for prostatectomies. Proc. Inst. Mech. Eng. H 1991, 205, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Stefano, G.B. Robotic Surgery: Fast Forward to Telemedicine. Med. Sci. Monit. 2017, 17, 1856. [Google Scholar] [CrossRef] [Green Version]
- Pugin, F.; Bucher, P.; Morel, P. History of robotic surgery: From AESOP® and ZEUS® to da Vinci®. J. Visc. Surg. 2011, 148 (Suppl. S6), e3–e8. [Google Scholar] [CrossRef] [PubMed]
- Himpens, J.; Leman, G.; Cadiere, G.B. Telesurgical laparoscopic cholecystectomy. Surg. Endosc. 1998, 12, 1091. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, A.; Loulmet, D.; Aupècle, B.; Kieffer, J.P.; Tournay, D.; Guibourt, P.; Fiemeyer, A.; Méléard, D.; Richomme, P.; Cardon, C. Chirurgie à coeur ouvert assistée par ordinateur. Premier cas opéré avec succès. C. R. de l’Academie des Sci. Ser. III Sci. de la Vie 1998, 321, 437–442. [Google Scholar] [CrossRef]
- Atallah, S.; Parra-Davila, E.; Melani, A.; Romagnolo, L.G.; Larach, S.W.; Marescaux, J. Robotic-assisted stereotactic real-time navigation: Initial clinical experience and feasibility for rectal cancer surgery. Tech. Coloproctol. 2019, 23, 53–63. [Google Scholar] [CrossRef]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Autorino, R.; Piana, A.; Bellin, A.; Piazzolla, P.; Massa, F.; Bollito, E.; Gned, D.; et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D) technology: A radiological and pathological study. BJU Int. 2019, 123, 834–845. [Google Scholar] [CrossRef]
- U. S. Food and Drug FDA Clears New Robotically-Assisted Surgical Device for Adult Patients. 2017. Available online: http://news.doximity.com/entries/9699292?authenticated=false (accessed on 26 April 2021).
- Taylor, N.P. FDA Clears Medrobotics’ Robotic Surgical Platform for Expanded Use. 2018. Available online: https://www.fiercebiotech.com/medtech/fda-clears-medrobotics-robotic-surgical-platform-for-expanded-use (accessed on 26 April 2021).
- Peters, B.S.; Armijo, P.R.; Krause, C.; Choudhury, S.A.; Oleynikov, D. Review of emerging surgical robotic technology. Surg. Endosc. 2018, 32, 1636–1655. [Google Scholar] [CrossRef]
- Buess, G.; Mentges, B.; Manncke, K.; Starlinger, M.; Becker, H.D. Technique and results of transanal endoscopic microsurgery in early rectal cancer. Am. J. Surg. 1992, 163, 63–69. [Google Scholar] [CrossRef]
- Atallah, S.; Albert, M.; Larach, S. Transanal minimally invasive surgery: A giant leap forward. Surg. Endosc. 2010, 24, 2200–2205. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Hevia, M.; Delgado, S.; Castells, A.; Tasende, M.; Momblan, D.; Díaz del Gobbo, G.; DeLacy, B.; Balust, J.; Lacy, A.M. Transanal total mesorectal excision in rectal cancer: Short-term outcomes in comparison with laparoscopic surgery. Ann. Surg. 2015, 261, 221–227. [Google Scholar] [CrossRef] [PubMed]
- McLemore, E.C.; Coker, A.; Jacobsen, G.; Talamini, M.A.; Horgan, S. eTAMIS: Endoscopic visualization for transanal minimally invasive surgery. Surg. Endosc. 2013, 27, 1842–1845. [Google Scholar] [CrossRef]
- Gomez Ruiz, M.; Parra, I.M.; Palazuelos, C.M.; Martin, J.A.; Fernandez, C.C.; Diego, J.C.; Gomez Fleitas, M. Robotic-assisted laparoscopic transanal total mesorectal excision for rectal cancer: A prospective pilot study. Dis. Colon Rectum 2015, 58, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Cho, M.S.; Baek, S.J.; Hur, H.; Min, B.S.; Baik, S.H.; Lee, K.Y.; Kim, N.K. Long-term oncologic outcomes of robotic low anterior resection for rectal cancer: A comparative study with laparoscopic surgery. Ann. Surg. 2015, 261, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Atallah, S.B.; Albert, M.R.; deBeche-Adams, T.H.; Larach, S.W. Robotic transanal minimally invasive surgery in a cadaveric model. Tech. Coloproctol. 2011, 15, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Atallah, S.; Nassif, G.; Polavarapu, H.; deBeche-Adams, T.; Ouyang, J.; Albert, M.; Larach, S. Robotic-assisted transanal surgery for total mesorectal excision (RATS-TME): A description of a novel surgical approach with video demonstration. Tech. Coloproctol. 2013, 17, 441–447. [Google Scholar] [CrossRef]
- Atallah, S.; Martin-Perez, B.; Pinan, J.; Quinteros, F.; Schoonyoung, H.; Albert, M.; Larach, S. Robotic transanal total mesorectal excision: A pilot study. Tech. Coloproctol. 2014, 18, 1047–1053. [Google Scholar] [CrossRef]
- Verheijen, P.M.; Consten, E.C.; Broeders, I.A. Robotic transanal total mesorectal excision for rectal cancer: Experience with a first case. Int. J. Med. Robot. 2014, 10, 423–426. [Google Scholar] [CrossRef]
- Atallah, S.; Martin-Perez, B.; Parra-Davila, E.; deBeche-Adams, T.; Nassif, G.; Albert, M.; Larach, S. Robotic transanal surgery for local excision of rectal neoplasia, transanal total mesorectal excision, and repair of complex fistulae: Clinical experience with the first 18 cases at a single institution. Tech. Coloproctol. 2015, 19, 401–410. [Google Scholar] [CrossRef]
- Huscher, C.G.S.; Bretagnol, F.; Ponzano, C. Robotic-assisted Transanal Total Mesorectal Excision: The Key against the Achilles’ Heel of Rectal Cancer? Ann. Surg. 2015, 261, e120–e121. [Google Scholar] [CrossRef]
- Kuo, L.J.; Ngu, J.C.; Tong, Y.S.; Chen, C.C. Combined robotic transanal total mesorectal excision (R-taTME) and single-site plus one-port (R-SSPO) technique for ultra-low rectal surgery-initial experience with a new operation approach. Int. J. Colorectal Dis. 2017, 32, 249–254. [Google Scholar] [CrossRef]
- Monsellato, I.; Morello, A.; Prati, M.; Argenio, G.; Piscioneri, D.; Lenti, L.M.; Priora, F. Robotic transanal total mesorectal excision: A new perspective for low rectal cancer treatment. A case series. Int. J. Surg. Case Rep. 2019, 61, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.M.; Chu, C.H.; Jiang, J.K.; Lai, Y.L.; Huang, I.P.; Cheng, A.Y.; Yang, S.H.; Chen, C.C. Robotic transanal total mesorectal excision assisted by laparoscopic transabdominal approach: A preliminary twenty-case series report. Asian J. Surg. 2020, 43, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Shen, H.; Li, F.; Tian, Y.; Gao, Y.; Zhao, S.; Liu, B.; Tong, W. Robotic-assisted transanal total mesorectal excision for rectal cancer: Technique and results from a single institution. Tech. Coloproctol. 2020, 25, 693–700. [Google Scholar] [CrossRef]
- Samalavicius, N.E.; Janusonis, V.; Smolskas, E.; Dulskas, A. Transanal and robotic total mesorectal excision (robotic-assisted TaTME) using the Senhance® robotic system—A video vignette. Colorectal Dis. 2020, 22, 114–115. [Google Scholar] [CrossRef] [PubMed]
- Atallah, S.; Parra-Davila, E.; Melani, A.G.F. Assessment of the Versius surgical robotic system for dual-field synchronous transanal total mesorectal excision (taTME) in a preclinical model: Will tomorrow’s surgical robots promise newfound options? Tech. Coloproctol. 2019, 23, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Atallah, S. Assessment of a flexible robotic system for endoluminal applications and transanal total mesorectal excision (taTME): Could this be the solution we have been searching for? Tech. Coloproctol. 2017, 21, 809–814. [Google Scholar] [CrossRef]
- Carmichael, H.; D’Andrea, A.P.; Skancke, M.; Obias, V.; Sylla, P. Feasibility of transanal total mesorectal excision (taTME) using the Medrobotics Flex® System. Surg. Endosc. 2020, 34, 485–491. [Google Scholar] [CrossRef]
- Marks, J.; Ng, S.; Mak, T. Robotic transanal surgery (RTAS) with utilization of a next-generation single-port system: A cadaveric feasibility study. Tech. Coloproctol. 2017, 21, 541–545. [Google Scholar] [CrossRef]
- Marks, J.H.; Salem, J.F.; Anderson, B.K.; Josse, J.M.; Schoonyoung, H.P. Single-port left colectomy: First clinical experience using the SP robot (rSILS). Tech. Coloproctol. 2020, 24, 57–63. [Google Scholar] [CrossRef]
- Ribero, D.; Baldassarri, D.; Spinoglio, G. Robotic taTME using the da Vinci SP: Technical notes in a cadaveric model. Updates Surg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Kneist, W.; Stein, H.; Rheinwald, M. Da Vinci Single-Port robot-assisted transanal mesorectal excision: A promising preclinical experience. Surg. Endosc. 2020, 34, 3232–3235. [Google Scholar] [CrossRef]
- Van Der Meijden, O.A.J.; Schijven, M.P. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: A current review. Surg. Endosc. Other Interv. Tech. 2009, 23, 1180–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enayati, N.; De Momi, E.; Ferrigno, G. Haptics in robot-assisted surgery: Challenges and benefts. IEEE Rev. Biomed. Eng. 2016, 9, 49–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abiri, A.; Pensa, J.; Tao, A.; Ma, J.; Juo, Y.Y.; Askari, S.J.; Bisley, J.; Rosen, J.; Dutson, E.P.; Grundfest, W.S. Multi-Modal haptic feedback for grip force reduction in robotic surgery. Sci. Rep. 2019, 9, 5016. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.P. Robotic surgery: New robots and finally some real competition! World J. Urol. 2018, 36, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Prewitt, R.; Bochkarev, V.; McBride, C.L.; Kinney, S.; Oleynikov, D. The patterns and costs of the Da Vinci robotic surgery system in a large academic institution. J. Robot. Surg. 2008, 2, 17–20. [Google Scholar] [CrossRef]
- Jayne, D.; Pigazzi, A.; Marshall, H.; Croft, J.; Corrigan, N.; Copeland, J.; Quirke, P.; West, N.; Rautio, T.; Thomassen, N.; et al. Effect of Robotic-Assisted vs Conventional Laparoscopic Surgery on Risk of Conversion to Open Laparotomy among Patients Undergoing Resection for Rectal Cancer: The ROLARR Randomized Clinical Trial. JAMA 2017, 24, 1569–1580. [Google Scholar] [CrossRef]
- Baek, S.J.; Kim, S.H.; Cho, J.S.; Shin, J.W.; Kim, J. Robotic versus conventional laparoscopic surgery for rectal cancer: A cost analysis from a single institute in Korea. World J. Surg. 2012, 36, 2722–2729. [Google Scholar] [CrossRef]
- Kim, C.W.; Baik, S.H.; Roh, Y.H.; Kang, J.; Hur, H.; Min, B.S.; Lee, K.Y.; Kim, N.K. Cost-effectiveness of robotic surgery for rectal cancer focusing on short-term outcomes: A propensity score-matching analysis. Medicine 2015, 94, e823. [Google Scholar] [CrossRef] [PubMed]
- Ramji, K.M.; Cleghorn, M.C.; Josse, J.M.; MacNeill, A.; O’Brien, C.; Urbach, D.; Quereshy, F.A. Comparison of clinical and economic outcomes between robotic, laparoscopic, and open rectal cancer surgery: Early experience at a tertiary care center. Surg. Endosc. 2016, 30, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Ielpo, B.; Duran, H.; Diaz, E.; Fabra, I.; Caruso, R.; Malavé, L.; Ferri, V.; Nuñez, J.; Ruiz-Ocaña, A.; Jorge, E.; et al. Robotic versus laparoscopic surgery for rectal cancer: A comparative study of clinical outcomes and costs. Int. J. Colorectal Dis. 2017, 32, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Morelli, L.; Guadagni, S.; Lorenzoni, V.; Di Franco, G.; Cobuccio, L.; Palmeri, M.; Caprili, G.; D’Isidoro, C.; Moglia, A.; Ferrari, V.; et al. Robot-assisted versus laparoscopic rectal resection for cancer in a single surgeon’s experience: A cost analysis covering the initial 50 robotic cases with the da Vinci Si. Int. J. Colorectal Dis. 2016, 3, 1639–1648. [Google Scholar] [CrossRef] [PubMed]
- Nabi, J.; Friedlander, D.F.; Chen, X.; Cole, A.P.; Hu, J.C.; Kibel, A.S.; Dasgupta, P.; Trinh, Q.D. Assessment of out-of-Pocket Costs for Robotic Cancer Surgery in US Adults. JAMA Netw. Open. 2020, 3, e1919185. [Google Scholar] [CrossRef]
- D’Andrea, A.P.; McLemore, E.C.; Bonaccorso, A.; Cuevas, J.M.; Basam, M.; Tsay, A.T.; Bhasin, D.; Attaluri, V.; Sylla, P. Transanal total mesorectal excision (taTME) for rectal cancer: Beyond the learning curve. Surg. Endosc. 2020, 34, 4101–4109. [Google Scholar] [CrossRef]
- Jimenez-Rodriguez, R.M.; Diaz-Pavon, J.M.; de la Portilla de Juan, F.; Prendes-Sillero, E.; Dussort, H.C.; Padillo, J. Learning curve for robotic-assisted laparoscopic rectal cancer surgery. Int. J. Colorectal Dis. 2013, 28, 815–821. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kinugasa, Y.; Shiomi, A.; Sato, S.; Yamakawa, Y.; Kagawa, H.; Tomioka, H.; Mori, K. Learning curve for robotic-assisted surgery for rectal cancer: Use of the cumulative sum method. Surg. Endosc. 2015, 29, 1679–1685. [Google Scholar] [CrossRef]
- Sng, K.K.; Hara, M.; Shin, J.W.; Yoo, B.E.; Yang, K.S.; Kim, S.H. The multiphasic learning curve for robot-assisted rectal surgery. Surg. Endosc. 2013, 27, 3297–3307. [Google Scholar] [CrossRef] [PubMed]
- Mohd Azman, Z.A.; Kim, S.H. A review on robotic surgery in rectal cancer. Transl. Gastroenterol. Hepatol. 2016, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Gachabayov, M.; Kim, S.H.; Jimenez-Rodriguez, R.; Kuo, L.J.; Cianchi, F.; Tulina, I.; Tsarkov, P.; Bergamaschi, R. Impact of robotic learning curve on histopathology in rectal cancer: A pooled analysis. Surg. Oncol. 2020, 34, 121–125. [Google Scholar] [CrossRef]
Atallah (2013) | Atallah (2014) | Verheijen (2014) | Huscher (2015) | Gomez-Ruiz (2015) | Kuo (2016) | Monsellato (2019) | Hu (2020) | Ye (2020) | |
---|---|---|---|---|---|---|---|---|---|
Number of patients | 1 | 3 | 1 | 7 | 5 | 15 | 3 | 20 | 13 |
Abdominal approach | Laparoscopic | Laparoscopic | Laparoscopic | Laparoscopic | Robotic | Single port robotic + assistant port | Robotic 2, laparoscopic 1 | Laparoscopic | Robotic 9, Laparoscopic 4 |
Transanal platform | GelPoint Path (daVinci® Si) | GelPoint Path (daVinci® Si) | GelPoint Path (daVinci® Si) | GelPoint Path (daVinci® Si) | PAT * + GelPoint Path (daVinci® Si) | GelPoint Path (daVinci® Si) | GelPoint Path (daVinci® Si) | GelPoint Path (daVinci® Xi) | GelPoint Path (daVinci® Si) |
Two-team approach | No | No | No | No | No | No | 1/3 | 20/20 | 4/13 |
BL (mL) | 140 | 200 | 50 | n/a | 90 (25–120) | 33 (30–50) | n/a | 82 (30–500) | 60 (50–100) |
LOS (days) | No | 4.3 | 3 | 6 (5–7) | 12.2 (10–14) | 10 (7–15) | 8.8 (6–24) | 7 (6–10) | |
Conversion | No | No | No | No | No | 2/15 | No | No | No |
Hand-sewn anastomosis | 0/1 | 2/3 | 0/1 | 0/7 | 2/5 | 15/15 | 3/3 | 2/20 | 8/13 |
Defunctioning stoma | Terminal ileostomy | Yes | Yes | Yes | Yes | 5/15 | Yes | 14/18 | Yes |
Operative time (min) | 381 | 376 | 205 | 165.7 (85–220) | 398 (270–450) | 473 (335–569) | 550 (440–600) | 172.3 (135–215) | 240 (195–270) |
Complications | No | 1 Pulmonary embolism 1 Peristomal dermatitis/ dehydration | No | 1 anastomotic bleeding | 1 anastomotic leak | 1 mechanical bowel obstruction, 1 wound infection | 1 acute renal failure | 7/20 (no anastomotic leaks reported) | 1 post-op ileus 1 duodenal hemorrage 1 anastomotic leakage |
TME quality C/NC/I | 0/1/0 | 1/2/0 | 1/0/0 | 6/1/0 | 5/0/0 | 15/0/0 | 3/0/0 | 18/2/0 | 8/5/0 |
CRM involvement | No | No | No | No | No | No | No | 3/20 | No |
Distal margin involvement | No | No | No | No | No | No | No | No | No |
Samalavicius (2020) | Atallah (2019) | Carmicheal (2019) | Ribeiro (2021) | Kneist (2020) | |
---|---|---|---|---|---|
Number of cases | 1 patient | 1 fresh human cadaver | 6 fresh human cadavers | 2 fresh cadavers | 1 fresh human cadaver |
Robotic platform | Senhance Transenterix | Versius | Flex® System | daVinci® SP | daVinci® SP |
Abdominal approach | Robotic | Robotic with Versius | n/a | n/a | Robotic with daVinci® SP |
Transanal platform | n/a | GelPoint Path | n/a | GelPoint Path | GelPoint Path |
Two-team approach | n/a | Yes | n/a | n/a | No |
Hand-sewn anastomosis | Yes | n/a | n/a | n/a | n/a |
Operative time (min) | n/a | 195 | n/a | n/a | 232 |
Complications | No | n/a | n/a | n/a | n/a |
TME quality | n/a | Near complete | Complete 4 Incomplete 2 | Complete 3 | Good |
CRM involvement | No | n/a | n/a | n/a | n/a |
Distal margin involvement | No | n/a | n/a | n/a | n/a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rondelli, F.; Sanguinetti, A.; Polistena, A.; Avenia, S.; Marcacci, C.; Ceccarelli, G.; Bugiantella, W.; De Rosa, M. Robotic Transanal Total Mesorectal Excision (RTaTME): State of the Art. J. Pers. Med. 2021, 11, 584. https://doi.org/10.3390/jpm11060584
Rondelli F, Sanguinetti A, Polistena A, Avenia S, Marcacci C, Ceccarelli G, Bugiantella W, De Rosa M. Robotic Transanal Total Mesorectal Excision (RTaTME): State of the Art. Journal of Personalized Medicine. 2021; 11(6):584. https://doi.org/10.3390/jpm11060584
Chicago/Turabian StyleRondelli, Fabio, Alessandro Sanguinetti, Andrea Polistena, Stefano Avenia, Claudio Marcacci, Graziano Ceccarelli, Walter Bugiantella, and Michele De Rosa. 2021. "Robotic Transanal Total Mesorectal Excision (RTaTME): State of the Art" Journal of Personalized Medicine 11, no. 6: 584. https://doi.org/10.3390/jpm11060584
APA StyleRondelli, F., Sanguinetti, A., Polistena, A., Avenia, S., Marcacci, C., Ceccarelli, G., Bugiantella, W., & De Rosa, M. (2021). Robotic Transanal Total Mesorectal Excision (RTaTME): State of the Art. Journal of Personalized Medicine, 11(6), 584. https://doi.org/10.3390/jpm11060584