Determinants of Longitudinal Change of Glycated Hemoglobin in a Large Non-Diabetic Population
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Study Population
2.2. Definition of People without Diabetes
2.3. Statistical Analysis
3. Results
4. Discussion
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AbuRahma, A.F.; Adams, E.; AbuRahma, J.; Mata, L.A.; Dean, L.S.; Caron, C.; Sloan, J. Critical analysis and limitations of resting ankle-brachial index in the diagnosis of symptomatic peripheral arterial disease patients and the role of diabetes mellitus and chronic kidney disease. J. Vasc. Surg. 2020, 71, 937–945. [Google Scholar] [CrossRef]
- Cavero-Redondo, I.; Peleteiro, B.; Álvarez-Bueno, C.; Rodriguez-Artalejo, F.; Martínez-Vizcaíno, V. Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: A systematic review and meta-analysis. BMJ Open 2017, 7, e015949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsh, C.; Welsh, P.; Celis-Morales, C.A.; Mark, P.B.; Mackay, D.; Ghouri, N.; Ho, F.K.; Ferguson, L.D.; Brown, R.; Lewsey, J.; et al. Glycated Hemoglobin, Prediabetes, and the Links to Cardiovascular Disease: Data From UK Biobank. Diabetes Care 2020, 43, 440–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.W.; Wang, C.W.; Wu, D.W.; Lee, W.H.; Chen, Y.C.; Liu, Y.H.; Li, C.H.; Tsai, C.C.; Lin, W.Y.; Chen, S.C.; et al. Significant Association between Blood Lead (Pb) Level and Haemoglobin A1c in Non-diabetic Population. Diabetes Metab. 2021, 47, 101233. [Google Scholar] [CrossRef]
- Tanaka, H.; Imai, S.; Nakade, M.; Imai, E.; Takimoto, H. The physical examination content of the Japanese National Health and Nutrition Survey: Temporal changes. Asia Pac. J. Clin. Nutr. 2016, 25, 898–910. [Google Scholar]
- Pradhan, A.D.; Rifai, N.; Buring, J.E.; Ridker, P.M. Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic women. Am. J. Med. 2007, 120, 720–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewid, M.; Sherif, H.; Billah, S.M.B.; Saquib, N.; AlEnazy, W.; Ragab, O.; Enabi, S.; Rajab, T.; Awad, Z.; Abazid, R. Glycated hemoglobin predicts coronary artery disease in non-diabetic adults. BMC Cardiovasc. Disord. 2019, 19, 309. [Google Scholar] [CrossRef]
- Arbel, Y.; Zlotnik, M.; Halkin, A.; Havakuk, O.; Berliner, S.; Herz, I.; Rabinovich, I.; Keren, G.; Bazan, S.; Finkelstein, A.; et al. Admission glucose, fasting glucose, HbA1c levels and the SYNTAX score in non-diabetic patients undergoing coronary angiography. Clin. Res. Cardiol. 2014, 103, 223–227. [Google Scholar] [CrossRef]
- Ok, E.S.; Asci, G.; Toz, H.; Ritz, E.; Kircelli, F.; Sever, M.S.; Ozkahya, M.; Sipahi, S.; Dheir, H.; Bozkurt, D.; et al. Glycated hemoglobin predicts overall and cardiovascular mortality in non-diabetic hemodialysis patients. Clin. Nephrol. 2014, 82, 173–180. [Google Scholar] [CrossRef]
- Hansen, C.S.; Færch, K.; Jørgensen, M.E.; Malik, M.; Witte, D.R.; Brunner, E.J.; Tabák, A.G.; Kivimäki, M.; Vistisen, D. Heart Rate, Autonomic Function, and Future Changes in Glucose Metabolism in Individuals Without Diabetes: The Whitehall II Cohort Study. Diabetes Care 2019, 42, 867–874. [Google Scholar] [CrossRef] [Green Version]
- Janghorbani, M.; Amini, M. Comparison of systolic and diastolic blood pressure with pulse pressure and mean arterial pressure for prediction of type 2 diabetes: The Isfahan Diabetes Prevention Study. Endokrynol. Pol. 2011, 62, 324–330. [Google Scholar]
- He, X.; Mo, Y.; Ma, X.; Ying, L.; Zhu, W.; Wang, Y.; Bao, Y.; Zhou, J. Associations of body mass index with glycated albumin and glycated albumin/glycated hemoglobin A(1c) ratio in Chinese diabetic and non-diabetic populations. Clin. Chim. Acta 2018, 484, 117–121. [Google Scholar] [CrossRef]
- Wang, Y.; Chi, J.; Che, K.; Chen, Y.; Sun, X.; Wang, Y.; Wang, Z. Fasting plasma glucose and serum uric acid levels in a general Chinese population with normal glucose tolerance: A U-shaped curve. PLoS ONE 2017, 12, e0180111. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Eto, T.; Taniguchi, S.; Terauchi, Y. Risk of Future Diabetes in Japanese People with High-normal Fasting Plasma Glucose Levels: A 4-Year Follow-up Study. Intern. Med. 2016, 55, 2365–2371. [Google Scholar] [CrossRef] [Green Version]
- Kramer, C.K.; Retnakaran, R. Liver enzymes and type 2 diabetes: A complex two-way relationship. J. Diabetes Complicat. 2013, 27, 301–302. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Jung, D.J.; Choi, E.W.; Cho, K.H.; Park, J.W.; Do, J.Y. HbA1c Levels Are Associated with Chronic Kidney Disease in a Non-Diabetic Adult Population: A Nationwide Survey (KNHANES 2011–2013). PLoS ONE 2015, 10, e0145827. [Google Scholar] [CrossRef]
- Fan, C.T.; Lin, J.C.; Lee, C.H. Taiwan Biobank: A project aiming to aid Taiwan’s transition into a biomedical island. Pharmacogenomics 2008, 9, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C.; Fan, C.T.; Liao, C.C.; Chen, Y.S. Taiwan Biobank: Making cross-database convergence possible in the Big Data era. Gigascience 2018, 7, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, A.C.; Lee, S.H. Determinants of new-onset diabetes in older adults—Results of a national cohort study. Clin. Nutr. 2015, 34, 937–942. [Google Scholar] [CrossRef]
- Kim, G.; Lee, Y.H.; Jeon, J.Y.; Bang, H.; Lee, B.W.; Kang, E.S.; Lee, I.K.; Cha, B.S.; Kim, C.S. Increase in resting heart rate over 2 years predicts incidence of diabetes: A 10-year prospective study. Diabetes Metab. 2017, 43, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Maw, S.S.; Haga, C. Effect of a 2-hour interval between dinner and bedtime on glycated haemoglobin levels in middle-aged and elderly Japanese people: A longitudinal analysis of 3-year health check-up data. BMJ Nutr. Prev. Health 2019, 2, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.Y.; Ryoo, J.H.; Chung, P.W.; Oh, C.M.; Choi, J.M.; Park, S.K. Association of fasting glucose and glycated hemoglobin with the long-term risk of incident metabolic syndrome: Korean Genome and Epidemiology Study (KoGES). Acta Diabetol. 2019, 56, 551–559. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Wang, H.; Li, N. Correlation of Fasting Versus Postprandial Plasma Glucose with HbA1c in Chinese Type 2 Diabetic Patients Taking Different Hypoglycemic Agents. Clin. Lab. 2017, 63, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Ketema, E.B.; Kibret, K.T. Correlation of fasting and postprandial plasma glucose with HbA1c in assessing glycemic control; systematic review and meta-analysis. Arch. Public Health 2015, 73, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.; Nakagawa, T.; Honda, T.; Yamamoto, S.; Okazaki, H.; Yamamoto, M.; Miyamoto, T.; Eguchi, M.; Kochi, T.; Shimizu, M.; et al. Low serum creatinine and risk of diabetes: The Japan Epidemiology Collaboration on Occupational Health Study. J. Diabetes Investig. 2019, 10, 1209–1214. [Google Scholar] [CrossRef]
- Zierath, J.R.; Krook, A.; Wallberg-Henriksson, H. Insulin action and insulin resistance in human skeletal muscle. Diabetologia 2000, 43, 821–835. [Google Scholar] [CrossRef]
- Moon, S.S. Low skeletal muscle mass is associated with insulin resistance, diabetes, and metabolic syndrome in the Korean population: The Korea National Health and Nutrition Examination Survey (KNHANES) 2009–2010. Endocr. J. 2014, 61, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikanthan, P.; Hevener, A.L.; Karlamangla, A.S. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: Findings from the National Health and Nutrition Examination Survey III. PLoS ONE 2010, 5, e10805. [Google Scholar] [CrossRef] [PubMed]
- Bombelli, M.; Quarti-Trevano, F.; Tadic, M.; Facchetti, R.; Cuspidi, C.; Mancia, G.; Grassi, G. Uric acid and risk of new-onset metabolic syndrome, impaired fasting glucose and diabetes mellitus in a general Italian population: Data from the Pressioni Arteriose Monitorate E Loro Associazioni study. J. Hypertens. 2018, 36, 1492–1498. [Google Scholar] [CrossRef]
- Rütti, S.; Ehses, J.A.; Sibler, R.A.; Prazak, R.; Rohrer, L.; Georgopoulos, S.; Meier, D.T.; Niclauss, N.; Berney, T.; Donath, M.Y.; et al. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic beta-cells. Endocrinology 2009, 150, 4521–4530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skretteberg, P.T.; Grytten, A.N.; Gjertsen, K.; Grundvold, I.; Kjeldsen, S.E.; Erikssen, J.; Mellbin, L.; Liestøl, K.; Fraser, D.A.; Erikssen, G.; et al. Triglycerides-diabetes association in healthy middle-aged men: Modified by physical fitness? A long term follow-up of 1962 Norwegian men in the Oslo Ischemia Study. Diabetes Res. Clin. Pract. 2013, 101, 201–209. [Google Scholar] [CrossRef]
- Sakamoto, N.; Hu, H.; Nanri, A.; Mizoue, T.; Eguchi, M.; Kochi, T.; Nakagawa, T.; Honda, T.; Yamamoto, S.; Ogasawara, T.; et al. Associations of anemia and hemoglobin with hemoglobin A1c among non-diabetic workers in Japan. J. Diabetes Investig. 2020, 11, 719–725. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Madhu, S.; Liang, H.; Bray, C.L. Total hemoglobin count has significant impact on A1C—Data from National Health and Nutrition Examination Survey 1999–2014. Prim. Care Diabetes 2019, 13, 316–323. [Google Scholar] [CrossRef]
- Bae, J.C.; Suh, S.; Jin, S.M.; Kim, S.W.; Hur, K.Y.; Kim, J.H.; Min, Y.K.; Lee, M.S.; Lee, M.K.; Jeon, W.S.; et al. Hemoglobin A1c values are affected by hemoglobin level and gender in non-anemic Koreans. J. Diabetes Investig. 2014, 5, 60–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, E.S.; Cowie, C.C.; Li, C.; Handelsman, Y.; Bloomgarden, Z.T. Iron-deficiency anemia, non-iron-deficiency anemia and HbA1c among adults in the US. J. Diabetes 2011, 3, 67–73. [Google Scholar] [CrossRef]
- Grossman, A.; Gafter-Gvili, A.; Schmilovitz-Weiss, H.; Koren-Morag, N.; Beloosesky, Y.; Weiss, A. Association of glycated hemoglobin with hemoglobin levels in elderly nondiabetic subjects. Eur. J. Intern. Med. 2016, 36, 32–35. [Google Scholar] [CrossRef]
- Wheeler, E.; Leong, A.; Liu, C.T.; Hivert, M.F.; Strawbridge, R.J.; Podmore, C.; Li, M.; Yao, J.; Sim, X.; Hong, J.; et al. Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Med. 2017, 14, e1002383. [Google Scholar] [CrossRef] [Green Version]
- Hanley, A.J.; Williams, K.; Festa, A.; Wagenknecht, L.E.; D’Agostino, R.B., Jr.; Kempf, J.; Zinman, B.; Haffner, S.M. Elevations in markers of liver injury and risk of type 2 diabetes: The insulin resistance atherosclerosis study. Diabetes 2004, 53, 2623–2632. [Google Scholar] [CrossRef] [Green Version]
- Fraser, A.; Harris, R.; Sattar, N.; Ebrahim, S.; Davey Smith, G.; Lawlor, D.A. Alanine aminotransferase, gamma-glutamyltransferase, and incident diabetes: The British Women’s Heart and Health Study and meta-analysis. Diabetes Care 2009, 32, 741–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo, C.; Hanley, A.J.; Rewers, M.J.; Haffner, S.M. The association of alanine aminotransferase within the normal and mildly elevated range with lipoproteins and apolipoproteins: The Insulin Resistance Atherosclerosis Study. Diabetologia 2013, 56, 746–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, D.C.; Xu, X.; Ferrante, A.W., Jr.; Krakoff, J. Reduced plasma albumin predicts type 2 diabetes and is associated with greater adipose tissue macrophage content and activation. Diabetol. Metab. Syndr. 2019, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
Parameters | Baseline | Follow-Up | p Value | Longitudinal Change |
---|---|---|---|---|
Age (year) | 50.3 ± 10.4 | 54.2 ± 10.3 | <0.001 | 3.8 ± 1.2 |
Hypertension (%) | 10 | 14 | <0.001 | 4 |
Systolic blood pressure (mmHg) | 116 ± 17 | 123 ± 19 | <0.001 | 7 ± 14 |
Diastolic blood pressure (mmHg) | 72 ± 11 | 74 ± 11 | <0.001 | 2 ± 9 |
Heart rate (beat/min) | 69 ± 9 | 70 ± 9 | <0.001 | 1.2 ± 9.0 |
Body mass index (kg/m2) | 23.8 ± 3.4 | 24.1 ± 3.5 | <0.001 | 0.30 ± 1.27 |
Fasting glucose (g/dL) | 91.7 ± 7.3 | 92.3 ± 7.7 | <0.001 | 0.60 ± 6.74 |
HbA1c (%) | 5.55 ± 0.33 | 5.67 ± 0.33 | <0.001 | 0.10 ± 0.27 |
Creatinine (mg/dL) | 0.71 ± 0.25 | 0.72 ± 0.31 | <0.001 | 0.01 ± 1.16 |
Uric acid (mg/dL) | 5.42 ± 1.41 | 5.37 ± 1.39 | <0.001 | −0.04 ± 0.92 |
Total cholesterol (mg/dL) | 196 ± 35 | 198 ± 35 | <0.001 | 2.2 ± 28.7 |
Triglyceride (mg/dL) | 107 ± 73 | 114 ± 79 | <0.001 | 6.5 ± 68.3 |
Red blood cell (*106/μL) | 4.72 ± 0.50 | 4.70 ± 0.51 | <0.001 | −0.01 ± 0.26 |
Hemoglobin (g/dL) | 13.68 ± 1.55 | 13.67 ± 1.55 | 0.085 | −0.01 ± 1.01 |
Hematocrit (%) | 43.00 ± 4.46 | 40.96 ± 3.95 | <0.001 | −2.05 ± 3.27 |
GOT (μ/L) | 24.1 ± 11.0 | 25.6 ± 11.3 | <0.001 | 1.5 ± 12.8 |
GPT (μ/L) | 22.4 ± 18.0 | 22.9 ± 19.5 | 0.002 | 0.45 ± 21.6 |
Albumin (g/dL) | 4.55 ± 0.23 | 4.47 ± 0.22 | <0.001 | −0.08 ± 0.21 |
Baseline Parameters | Baseline HbA1c | |||
---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | |||
β | p | β | p | |
Age (per 1 year) | 0.322 | <0.001 | 0.207 | <0.001 |
Sex (male vs. female) | 0.034 | <0.001 | −0.043 | <0.001 |
Hypertension | 0.109 | <0.001 | 0.001 | 0.887 |
Systolic blood pressure (per 1 mmHg) | 0.195 | <0.001 | −0.019 | 0.060 |
Diastolic blood pressure (per 1 mmHg) | 0.143 | <0.001 | 0.013 | 0.180 |
Heart rate (per 1 beat/min) | 0.002 | 0.712 | - | - |
Body mass index (per 1 kg/m2) | 0.194 | <0.001 | 0.096 | <0.001 |
Fasting glucose (per 1 g/dL) | 0.378 | <0.001 | 0.288 | <0.001 |
Creatinine (per 1 mg/dL) | 0.025 | <0.001 | −0.030 | <0.001 |
Uric acid (per 1 mg/dL) | 0.128 | <0.001 | 0.027 | <0.001 |
Total cholesterol (per 1 mg/dL) | 0.225 | <0.001 | 0.128 | <0.001 |
Triglyceride (per 1 mg/dL) | 0.153 | <0.001 | 0.031 | <0.001 |
Hemoglobin (per 1 g/dL) | 0.092 | <0.001 | −0.007 | 0.366 |
GOT (per 1 U/L) | 0.093 | <0.001 | −0.036 | <0.001 |
GPT (per 1 U/L) | 0.099 | <0.001 | 0.068 | <0.001 |
Albumin (per 1 g/dL) | −0.043 | <0.001 | −0.044 | <0.001 |
Longitudinal Changes of Parameters (△Parameters) | HbA1c Longitudinal Change (△HbA1c) | |||
---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | |||
β | p | β | p | |
△Age (per 1 year) | 0.022 | 0.001 | −0.010 | 0.132 |
New-onset hypertension | 0.013 | 0.048 | 0.014 | 0.028 |
△Systolic blood pressure (per 1 mmHg) | −0.009 | 0.166 | - | - |
△Diastolic blood pressure (per 1 mmHg) | 0.046 | <0.001 | 0.001 | 0.846 |
△Heart rate (per 1 beat/min) | 0.037 | <0.001 | 0.020 | 0.002 |
△Body mass index (per 1 kg/m2) | 0.204 | <0.001 | 0.171 | <0.001 |
△Fasting glucose (per 1 g/dL) | 0.135 | <0.001 | 0.107 | <0.001 |
△Creatinine (per 1 mg/dL) | −0.042 | <0.001 | −0.042 | <0.001 |
△Uric acid (per 1 mg/dL) | 0.041 | <0.001 | 0.005 | 0.493 |
△Total cholesterol (per 1 mg/dL) | 0.072 | <0.001 | 0.040 | <0.001 |
△Triglyceride (per 1 mg/dL) | 0.058 | <0.001 | −0.002 | 0.846 |
△Hemoglobin (per 1 g/dL) | 0.079 | <0.001 | 0.062 | <0.001 |
△GOT (per 1 U/L) | 0.045 | <0.001 | −0.012 | 0.304 |
△GPT (per 1 U/L) | 0.066 | <0.001 | 0.041 | 0.001 |
△Albumin (per 1 g/dL) | −0.042 | <0.001 | −0.070 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, H.-M.; Lee, W.-H.; Chen, Y.-C.; Liu, Y.-H.; Huang, J.-C.; Wu, P.-Y.; Chen, S.-C. Determinants of Longitudinal Change of Glycated Hemoglobin in a Large Non-Diabetic Population. J. Pers. Med. 2021, 11, 648. https://doi.org/10.3390/jpm11070648
Su H-M, Lee W-H, Chen Y-C, Liu Y-H, Huang J-C, Wu P-Y, Chen S-C. Determinants of Longitudinal Change of Glycated Hemoglobin in a Large Non-Diabetic Population. Journal of Personalized Medicine. 2021; 11(7):648. https://doi.org/10.3390/jpm11070648
Chicago/Turabian StyleSu, Ho-Ming, Wen-Hsien Lee, Ying-Chih Chen, Yi-Hsueh Liu, Jiun-Chi Huang, Pei-Yu Wu, and Szu-Chia Chen. 2021. "Determinants of Longitudinal Change of Glycated Hemoglobin in a Large Non-Diabetic Population" Journal of Personalized Medicine 11, no. 7: 648. https://doi.org/10.3390/jpm11070648
APA StyleSu, H. -M., Lee, W. -H., Chen, Y. -C., Liu, Y. -H., Huang, J. -C., Wu, P. -Y., & Chen, S. -C. (2021). Determinants of Longitudinal Change of Glycated Hemoglobin in a Large Non-Diabetic Population. Journal of Personalized Medicine, 11(7), 648. https://doi.org/10.3390/jpm11070648