Feasibly of CD24/CD11b as a Screening Test for Hematological Malignancies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Isolation of Peripheral Blood Leukocytes
2.3. Flow Cytometry
2.4. Statistics
3. Results
3.1. Demographics and Population Characteristics
3.2. CD24 Levels in Healthy and Cancer Subjects
3.3. CD24 Levels in Blood Cancer Subjects
3.4. Sensitivity and Specificity of CD24 Screening Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leukemia and Lymphoma Society of Canada. Leukemia and Lymphoma Society of Canada Facts and Statistics; Leukemia and Lymphoma Society of Canada: New York, NY, USA, 2016. [Google Scholar]
- Blood Cancers. Visited 25-7-2021 WHO Guide to Cancer—Guide to Cancer Early Diagnosis; WHO: Geneva, Switzerland, 2017; ISBN 9789241511940. [Google Scholar]
- Ahlquist, D.A. Universal cancer screening: Revolutionary, rational, and realizable. NPJ Precis. Oncol. 2018, 2, 1–5. [Google Scholar] [CrossRef] [PubMed]
- González Llano, O. The complete blood count in the early diagnosis of acute leukemia in children. Med. Univ. 2016, 18, 216–218. [Google Scholar] [CrossRef]
- American Cancer Society. Cancer Facts & Figures 2019; American Cancer Society: Atlanta, GA, USA, 2019. [Google Scholar]
- Hussaini, M. Biomarkers in hematological malignancies: A review of molecular testing in hematopathology. Cancer Control 2015, 22, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.; Xiao, W.; Abdel-Wahab, O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood 2017, 130, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.F.; Majdic, O.; Knapp, W. Signal transduction in lymphocytic and myeloid cells via CD24, a new member of phosphoinositol-anchored membrane molecules. Why The JI? Submit online. • Rapid Reviews! 30 days * from submission to initial decision • No Triage! Every submission revie. J. Immunol. 1990, 144, 41–638. [Google Scholar]
- Benkerrou, M.; Jais, J.P.; Leblond, V.; Durandy, A.; Sutton, L.; Bordigoni, P.; Gamier, J.L.; Le Bidois, J.; Le Deist, F.; Blanche, S.; et al. Anti-B-cell monoclonal antibody treatment of severe posttransplant B-lymphoproliferative disorder: Prognostic factors and long-term outcome. Blood 1998, 92, 3137–3147. [Google Scholar] [CrossRef] [PubMed]
- Uckun, F.M.; Song, C.W. Lack of CD24 antigen expression in B-lineage acute lymphoblastic leukemia is associated with intrinsic radiation resistance of primary clonogenic blasts. Blood 1993, 81, 1323–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraus, S.; Shapira, S.; Kazanov, D.; Naumov, I.; Moshkowitz, M.; Santo, E.; Galazan, L.; Geva, R.; Shmueli, E.; Hallack, A.; et al. Predictive levels of CD24 in peripheral blood leukocytes for the early detection of colorectal adenomas and adenocarcinomas. Dis. Markers 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, R.A.; Andrews, K.S.; Brooks, D.; Fedewa, S.A.; Manassaram-Baptiste, D.; Saslow, D.; Wender, R.C. Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J. Clin. 2019, 69, 184–210. [Google Scholar] [CrossRef]
- Ogawa, M.; Yokoyama, K.; Imoto, S.; Tojo, A. Role of circulating tumor dna in hematological malignancy. Cancers 2021, 13, 2078. [Google Scholar] [CrossRef]
- Gao, M.; Bai, H.; Jethava, Y.; Wu, Y.; Zhu, Y.; Yang, Y.; Xia, J.; Cao, H.; Franqui-Machin, R.; Nadiminti, K.; et al. Identification and Characterization of Tumor-Initiating Cells in Multiple Myeloma. J. Natl. Cancer Inst. 2020, 112, 507–515. [Google Scholar] [CrossRef]
- Corces-Zimmerman, M.R.; Majeti, R. Pre-leukemic evolution of hematopoietic stem cells: The importance of early mutations in leukemogenesis. Leukemia 2014, 28, 2276–2282. [Google Scholar] [CrossRef]
- Sagiv, E.; Memeo, L.; Karin, A.; Kazanov, D.; Jacob-Hirsch, J.; Mansukhani, M.; Rechavi, G.; Hibshoosh, H.; Arber, N. CD24 Is a New Oncogene, Early at the Multistep Process of Colorectal Cancer Carcinogenesis. Gastroenterology 2006, 131, 630–639. [Google Scholar] [CrossRef]
- Duex, J.E.; Owens, C.; Chauca-Diaz, A.; Dancik, G.M.; Vanderlinden, L.A.; Ghosh, D.; Leivo, M.Z.; Hansel, D.E.; Theodorescu, D. Nuclear CD24 drives tumor growth and is predictive of poor patient prognosis. Cancer Res. 2017, 77, 4858–4867. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Zhou, T.C.; Lei, X.X.; Wang, C.; Yan, M.; Wang, Z.F.; Liu, W.; Wang, J.; Ming, K.H.; Wang, B.C.; et al. Inhibition of sonic hedgehog signaling pathway by Thiazole Antibiotic Thiostrepton Attenuates the CD44+/CD24-stem-like population and sphere-forming capacity in triple-negative breast cancer. Cell. Physiol. Biochem. 2016, 38, 1157–1170. [Google Scholar] [CrossRef] [Green Version]
- Sagiv, E.; Arber, N. The novel oncogene CD24 and its arising role in the carcinogenesis of the GI tract: From research to therapy. Expert Rev. Gastroenterol. Hepatol. 2008, 2, 125–133. [Google Scholar] [CrossRef]
- Sagiv, E.; Kazanov, D.; Arber, N. CD24 plays an important role in the carcinogenesis process of the pancreas. Biomed. Pharmacother. 2006, 60, 280–284. [Google Scholar] [CrossRef]
- Theodorescu, D. Metastasis Based on a Requirement for Lung Colonization. Cancer Res. 2015, 71, 3802–3811. [Google Scholar] [CrossRef]
- Baumann, P.; Cremers, N.; Kroese, F.; Orend, G.; Chiquet-Ehrismann, R.; Uede, T.; Yagita, H.; Sleeman, J.P. CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res. 2005, 65, 10783–10793. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Song, D.; Li, H.; Liang, L.; Zhao, N.; Liu, T. Reduction in peripheral CD19 + CD24 h CD27 + B cell frequency predicts favourable clinical course in XELOX-treated patients with advanced gastric cancer. Cell. Physiol. Biochem. 2017, 41, 2045–2052. [Google Scholar] [CrossRef] [Green Version]
- Lancaster-shorts, K. CD24 Expression in Follicular Lymphoma: An Alternative B-Cell Marker in Therapy Selected, Recurrent Lymphoma. Grad. Med. Educ. Res. J. 2020, 2, 65. [Google Scholar] [CrossRef]
- Qiao, L.Y.; Li, H.B.; Zhang, Y.; Shen, D.; Liu, P.; Che, Y.Q. Cd24 contributes to treatment effect in abc-dlbcl patients with r-chop resistance. Pharmgenomics. Pers. Med. 2021, 14, 591–599. [Google Scholar] [CrossRef]
- Gilad, N.; Gatt, M.; Pick, M.; Bar-tana, Y. The role of CD24 in multiple myeloma tumorigenicity and the effect of the microenvironment on CD24 expression. Exp. Hematol. 2016, 44, S75. [Google Scholar] [CrossRef]
- Mishra, A.; Verma, M. Cancer biomarkers: Are we ready for the prime time? Cancers 2010, 2, 190–208. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Cancer (N = 122) | Healthy (N = 366) | |
---|---|---|---|
N (%) or Mean (SD) | N (%) or Mean (SD) | ||
Female | Gender | 48 (39.3%) | 141 (38.5) NS |
Male | 74 (60.7%) | 225 (61.5%) | |
Age | 65.7 (15.1) | 54.6 (10.9) * | |
No treatment (virgin cancer) | Cancer Treatments | 39 (32.0%) | |
Had treatment | 83 (68%) | ||
CLL | Cancer Type | 47 (38.5) | |
Non-Hodgkin’s lymphoma | 33 (27.0) | ||
Multiple myeloma | 21 (17.2) | ||
Hematological malignancies—other | 21 (17.2) |
% (n/N) | 95% CI | |
---|---|---|
Accuracy | 79.83% (376/471) | [79.8%;79.9%] |
Sensitivity | 78.5% (84/156) | [70.7%;86.3%] |
Specificity | 80.2% (292/364) | [76.1%;84.3%] |
PPV | 53.8% (84/156) | [46.0%;61.7%] |
NPV | 92.7% (292/315) | [89.8%;95.6%] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapira, S.; Kazanov, D.; Mdah, F.; Yaakobi, H.; Herishanu, Y.; Perry, C.; Avivi, I.; Itchaki, G.; Shacham-Abulafia, A.; Raanani, P.; et al. Feasibly of CD24/CD11b as a Screening Test for Hematological Malignancies. J. Pers. Med. 2021, 11, 724. https://doi.org/10.3390/jpm11080724
Shapira S, Kazanov D, Mdah F, Yaakobi H, Herishanu Y, Perry C, Avivi I, Itchaki G, Shacham-Abulafia A, Raanani P, et al. Feasibly of CD24/CD11b as a Screening Test for Hematological Malignancies. Journal of Personalized Medicine. 2021; 11(8):724. https://doi.org/10.3390/jpm11080724
Chicago/Turabian StyleShapira, Shiran, Dina Kazanov, Fatin Mdah, Hadas Yaakobi, Yair Herishanu, Chava Perry, Irit Avivi, Gilad Itchaki, Adi Shacham-Abulafia, Pia Raanani, and et al. 2021. "Feasibly of CD24/CD11b as a Screening Test for Hematological Malignancies" Journal of Personalized Medicine 11, no. 8: 724. https://doi.org/10.3390/jpm11080724
APA StyleShapira, S., Kazanov, D., Mdah, F., Yaakobi, H., Herishanu, Y., Perry, C., Avivi, I., Itchaki, G., Shacham-Abulafia, A., Raanani, P., Hay-Levy, M., Aiger, G., Mashiah, J., Lev-Ari, S., & Arber, N. (2021). Feasibly of CD24/CD11b as a Screening Test for Hematological Malignancies. Journal of Personalized Medicine, 11(8), 724. https://doi.org/10.3390/jpm11080724