Preliminary Pharmacogenetic Study to Explore Putative Dopaminergic Mechanisms of Antidepressant Action
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Characteristics
2.2. Genotyping
2.3. Selection of Genotypes
2.4. Statistical Analysis
3. Results
3.1. Patients
3.2. Response to Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stahl, S.M. Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical Applications, 4th ed.; Cambridge University Press: Cambridge, UK, 2013; pp. 284–369. [Google Scholar]
- Loonen, A.J.M.; Ivanova, S.A. Circuits Regulating Pleasure and Happiness-Mechanisms of Depression. Front. Hum. Neurosci. 2016, 10, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papakostas, G.I. Dopaminergic-based pharmacotherapies for depression. Eur. Neuropsychopharmacol. 2006, 16, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Dailly, E.; Chenu, F.; Renard, C.E.; Bourin, M. Dopamine, Depression and Antidepressants. Fundam. Clin. Pharm. 2004, 18, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Drago, A.; Fabbri, C.; Serretti, A. Mechanisms of antidepressant action: An integrated dopaminergic perspective. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 1532–1543. [Google Scholar] [CrossRef]
- Loonen, A.J.M.; Ivanova, S.A. Circuits regulating pleasure and happiness in major depression. Med. Hypotheses 2016, 87, 14–21. [Google Scholar] [CrossRef]
- Loonen, A.J.M.; Kupka, R.W.; Ivanova, S.A. Circuits Regulating Pleasure and Happiness in Bipolar Disorder. Front. Neural Circuits 2017, 11, 35. [Google Scholar] [CrossRef] [Green Version]
- Belujon, P.; Grace, A.A. Dopamine System Dysregulation in Major Depressive Disorders. Int. J. Neuropsychopharmacol. 2017, 20, 1036–1046. [Google Scholar] [CrossRef] [Green Version]
- Ng, T.H.; Alloy, L.B.; Smith, D.V. Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Transl. Psychiatry 2019, 9, 293. [Google Scholar] [CrossRef] [Green Version]
- IsHak, W.W.; Davis, M.; Jeffrey, J.; Balayan, K.; Pechnick, R.N.; Bagot, K.; Rapaport, M.H. The role of dopaminergic agents in improving quality of life in major depressive disorder. Curr. Psychiatry Rep. 2009, 11, 503–508. [Google Scholar] [CrossRef]
- Szmulewicz, A.G.; Angriman, F.; Samamé, C.; Ferraris, A.; Vigo, D.; Strejilevich, S.A. Dopaminergic agents in the treatment of bipolar depression: A systematic review and meta-analysis. Acta Psychiatr. Scand. 2017, 135, 527–538. [Google Scholar] [CrossRef]
- Romeo, B.; Blecha, L.; Locatelli, K.; Benyamina, A.; Martelli, C. Meta-analysis and review of dopamine agonists in acute episodes of mood disorder: Efficacy and safety. J. Psychopharmacol. 2018, 32, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Ragguett, R.M.; McIntyre, R.S. Cariprazine for the treatment of bipolar depression: A review. Expert Rev. Neurother. 2019, 19, 317–323. [Google Scholar] [CrossRef]
- Tundo, A.; de Filippis, R.; De Crescenzo, F. Pramipexole in the treatment of unipolar and bipolar depression. A systematic review and meta-analysis. Acta Psychiatr. Scand. 2019, 140, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Hamon, M.; Blier, P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 45, 54–63. [Google Scholar] [CrossRef]
- Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharm. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, M.H.; Bahar, I. Monoamine transporters: Structure, intrinsic dynamics and allosteric regulation. Nat. Struct. Mol. Biol. 2019, 26, 545–556. [Google Scholar] [CrossRef]
- Salatino-Oliveira, A.; Rohde, L.A.; Hutz, M.H. The dopamine transporter role in psychiatric phenotypes. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2018, 177, 211–231. [Google Scholar] [CrossRef]
- Shih, J.C. Monoamine oxidase isoenzymes: Genes, functions and targets for behavior and cancer therapy. J. Neural Transm. 2018, 125, 1553–1566. [Google Scholar] [CrossRef]
- Masellis, M.; Collinson, S.; Freeman, N.; Tampakeras, M.; Levy, J.; Tchelet, A.; Eyal, E.; Berkovich, E.; Eliaz, R.E.; Abler, V.; et al. Dopamine D2 Receptor Gene Variants and Response to Rasagiline in Early Parkinson’s Disease: A Pharmacogenetic Study. Brain 2016, 139, 2050–2062. [Google Scholar] [CrossRef] [Green Version]
- Osmanova, D.Z.; Freidin, M.B.; Fedorenko, O.Y.; Pozhidaev, I.V.; Boiko, A.S.; Vyalova, N.M.; Tiguntsev, V.V.; Kornetova, E.G.; Loonen, A.J.M.; Semke, A.V.; et al. A Pharmacogenetic Study of Patients with Schizophrenia from West Siberia Gets Insight into Dopaminergic Mechanisms of Antipsychotic-Induced Hyperprolactinemia. BMC Med. Genet. 2019, 20, 47. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Zhang, Y.Y.; Zhang, X.; Yu, T.; He, G.; Sun, X.L. TPH, SLC6A2, SLC6A3, DRD2 and DRD4 Polymorphisms and Neuroendocrine Factors Predict SSRIs Treatment Outcome in the Chinese Population with Major Depression. Pharmacopsychiatry 2015, 48, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.K.; Zai, C.C.; Sajeev, G.; Arenovich, T.; Müller, D.J.; Kennedy, J.L. Analysis of 34 candidate genes in bupropion and placebo remission. Int. J. Neuropsychopharmacol. 2013, 16, 771–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, B.; Fabbri, C.; Gressier, F.; Serretti, A.; Mitjans, M.; Gastó, C.; Catalán, R.; De Ronchi, D.; Fañanás, L. TPH1, MAOA, serotonin receptor 2A and 2C genes in citalopram response: Possible effect in melancholic and psychotic depression. Neuropsychobiology 2013, 67, 41–47. [Google Scholar] [CrossRef]
- Ochi, T.; Vyalova, N.M.; Losenkov, I.S.; Paderina, D.Z.; Pozhidaev, I.V.; Loonen, A.J.M.; Simutkin, G.G.; Bokhan, N.A.; Ivanova, S.A.; Wilffert, B. Limited Associations Between 5-HT Receptor Gene Polymorphisms and Treatment Response in Antidepressant Treatment-Free Patients with Depression. Front. Pharm. 2019, 10, 1462. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. International Statistical Classification of Diseases and Health Related Problems ICD-10; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Hamilton, M. A rating scale for depression. J. Neurol Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, J.B.W.; Link, M.J.; Rosenthal, N.E.; Amira, L.; Terman, M. Structured Interview Guide for the Hamilton Depression Rating Scale—Seasonal Affective Disorder Version (SIGH-SAD); New York State Psychiatric Institute: New York, NY, USA, 1992. [Google Scholar]
- Van Tol, H.H.; Bunzow, J.R.; Guan, H.C.; Sunahara, R.K.; Seeman, P.; Niznik, H.B.; Civelli, O. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991, 350, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Rondou, P.; Haegeman, G.; Van Craenenbroeck, K. The dopamine D4 receptor: Biochemical and signalling properties. Cell Mol. Life Sci. 2010, 67, 1971–1986. [Google Scholar] [CrossRef]
- Primus, R.J.; Thurkauf, A.; Xu, J.; Yevich, E.; McInerney, S.; Shaw, K.; Tallman, J.F.; Gallagher, D.W., II. Localization and characterization of dopamine D4 binding sites in rat and human brain by use of the novel, D4 receptor-selective ligand [3H]NGD 94-1. J. Pharm. Exp. Ther. 1997, 282, 1020–1027. [Google Scholar]
- Pérez-Fernández, J.; Megías, M.; Pombal, M.A. Expression of a Novel D4 Dopamine Receptor in the Lamprey Brain. Evolutionary Considerations about Dopamine Receptors. Front. Neuroanat. 2016, 9, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loonen, A.J.M.; Ivanova, S.A. Circuits Regulating Pleasure and Happiness: The Evolution of the Amygdalar-Hippocampal-Habenular Connectivity in Vertebrates. Front. Neurosci. 2016, 10, 539. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Szebeni, K.; Szebeni, A.; Klimek, V.; Stockmeier, C.A.; Karolewicz, B.; Kalbfleisch, J.; Ordway, G.A. Dopamine receptor gene expression in human amygdaloid nuclei: Elevated D4 receptor mRNA in major depression. Brain Res. 2008, 1207, 214–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Ciano, P.; Grandy, D.K.; Le Foll, B. Dopamine D4 receptors in psychostimulant addiction. Adv. Pharm. 2014, 69, 301–321. [Google Scholar] [CrossRef] [Green Version]
- Loonen, A.J.M.; Schellekens, A.F.A.; Ivanova, S.A. Circuits regulating pleasure and happiness: A focus on addiction, beyond the ventral striatum. In Recent Advances in Drug Addiction Research and Clinical Applications; Meil, W.M., Ruby, C.L., Eds.; Intech: Rijeka, Croatia, 2016; pp. 1–20. [Google Scholar] [CrossRef] [Green Version]
- Root, D.H.; Hoffman, A.F.; Good, C.H.; Zhang, S.; Gigante, E.; Lupica, C.R.; Morales, M. Norepinephrine activates dopamine D4 receptors in the rat lateral habenula. J. Neurosci. 2015, 35, 3460–3469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Depressed Cohort (n = 163) |
---|---|
Total Number of Patients (%) | |
Male | 22 (13.5%) |
Female | 141 (86.5%) |
Age in Years (Mean ± S.D.) | 49.5 ± 10.9 |
Male | 49.3 ± 9.3 |
Female | 49.5 ± 11.1 |
HAMD 17 score (Mean ± S.D.) | |
At entry | 24.1 ± 4.9 |
At 2 weeks | 12.9 ± 5.0 |
At 4 weeks | 5.1 ± 3.9 |
Type of Depressive Episode (%) | |
Single | 92 (56.4%) |
Recurrent | 71 (43.6%) |
Baseline Predictors | B | 95% CI | p-Value | Baseline Predictors | B | 95% CI | p-Value |
---|---|---|---|---|---|---|---|
(Constant) | 17.57 | 9.33, 25.82 | |||||
Age | −0.44 | −2.72, 1.85 | 0.71 | ||||
Gender | −0.02 | −0.09, 0.05 | 0.58 | ||||
Diagnosis | −0.80 | −2.31, 0.71 | 0.295 | ||||
DRD1 SNPs | DRD4 SNPs | ||||||
rs4532 CT | 1.38 | −3.52, 0.6 | 0.20 | rs3758653 TC | 0.55 | −3.16, 3.37 | 0.54 |
s4532 TT | 1.46 | −0.71, 3.47 | 0.18 | rs3758653 CC | −9.22 | −1.21, 2.32 | 0.004 * |
rs11246226 CA | −2.54 | −15.53, −2.92 | 0.007 * | ||||
DRD2 SNPs | rs11246226 AC | −1.46 | −4.39, −0.69 | 0.16 | |||
rs6275 TC | 0.61 | −1.04, 4.48 | 0.52 | ||||
rs6275 CC | 1.19 | −1.28, 2.5 | 0.20 | MAOB Receptor SNPs | |||
rs1801028 CG | −1.67 | −0.62, 3 | 0.27 | rs1799836 GA | 0.09 | −0.7, 3.63 | 0.92 |
rs6277 CT | 0.46 | −4.63, 1.3 | 0.66 | rs1799836 AC | 0.25 | −1.82, 2.01 | 0.80 |
rs6277 TC | −0.67 | −1.59, 2.51 | 0.61 | ||||
rs1076560 CA | −1.32 | −3.27, 1.93 | 0.21 | SLC6A3 Receptor SNPs | |||
rs1076560 AA | 0.76 | −3.39, 0.75 | 0.78 | rs464049 CT | 0.12 | −1.72, 2.21 | 0.90 |
rs464049 TT | −0.08 | −1.66, 1.9 | 0.94 | ||||
DRD3 SNPs | rs40184 GA | −0.59 | −2.16, 2 | 0.49 | |||
rs3773678 CT | 0.46 | −4.67, 6.19 | 0.77 | rs40184 AA | −2.01 | −2.3, 1.12 | 0.08 |
rs3773678 TT | 0.35 | −2.68, 3.61 | 0.92 | ||||
rs324035 CA | −2.09 | −6.33, 7.03 | 0.41 | Treatment (compared to SSRIs) | |||
rs324035 AA | −6.78 | −7.09, 2.91 | 0.10 | TCAs | 2.70 | 0.62, 4.79 | 0.012 * |
rs167771 GA | −3.86 | −14.96, 1.4 | 0.36 | SNRIs | 0.41 | −2.16, 2.98 | 0.75 |
rs167771 AA | −4.08 | −12.1, 4.38 | 0.31 | NaSSAs | 1.08 | −1.92, 4.09 | 0.48 |
rs6280 CT | 0.51 | −11.94, 3.77 | 0.62 | Agomelatine | 1.72 | −1.04, 4.48 | 0.22 |
rs6280 CC | 0.11 | −1.5, 2.53 | 0.95 | ||||
R-squared | |||||||
0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochi, T.; Vyalova, N.M.; Losenkov, I.S.; Paderina, D.Z.; Pozhidaev, I.V.; Loonen, A.J.M.; Simutkin, G.G.; Bokhan, N.A.; Wilffert, B.; Ivanova, S.A. Preliminary Pharmacogenetic Study to Explore Putative Dopaminergic Mechanisms of Antidepressant Action. J. Pers. Med. 2021, 11, 731. https://doi.org/10.3390/jpm11080731
Ochi T, Vyalova NM, Losenkov IS, Paderina DZ, Pozhidaev IV, Loonen AJM, Simutkin GG, Bokhan NA, Wilffert B, Ivanova SA. Preliminary Pharmacogenetic Study to Explore Putative Dopaminergic Mechanisms of Antidepressant Action. Journal of Personalized Medicine. 2021; 11(8):731. https://doi.org/10.3390/jpm11080731
Chicago/Turabian StyleOchi, Taichi, Natalya M. Vyalova, Innokentiy S. Losenkov, Diana Z. Paderina, Ivan V. Pozhidaev, Anton J. M. Loonen, German G. Simutkin, Nikolay A. Bokhan, Bob Wilffert, and Svetlana A. Ivanova. 2021. "Preliminary Pharmacogenetic Study to Explore Putative Dopaminergic Mechanisms of Antidepressant Action" Journal of Personalized Medicine 11, no. 8: 731. https://doi.org/10.3390/jpm11080731
APA StyleOchi, T., Vyalova, N. M., Losenkov, I. S., Paderina, D. Z., Pozhidaev, I. V., Loonen, A. J. M., Simutkin, G. G., Bokhan, N. A., Wilffert, B., & Ivanova, S. A. (2021). Preliminary Pharmacogenetic Study to Explore Putative Dopaminergic Mechanisms of Antidepressant Action. Journal of Personalized Medicine, 11(8), 731. https://doi.org/10.3390/jpm11080731