Low Albumin, Low Bilirubin, and High Alfa-Fetoprotein Are Associated with a Rapid Renal Function Decline in a Large Population Follow-Up Study
Abstract
:1. Introduction
2. Methods
2.1. Data Source and Collection
2.2. Study Patients
2.3. Definition of Rapid Renal Function Decline
2.4. Ethics Statement
2.5. Statistical Analysis
3. Results
3.1. Comparisons of Baseline Characteristics between the Participants with an eGFR Decline of ≥25% and <25%
3.2. Determinants Associated with an eGFR Decline of ≥25% in All Study Participants
3.3. Determinants Associated with an eGFR Decline of ≥25% in the Male Participants with GPT ≤ 35 μ/L and Female Participants with GPT ≤ 25 μ/L
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, Y.-C.; Hsu, C.-Y.; Kao, C.-C.; Chen, T.-W.; Chen, H.-H.; Hsu, C.-C.; Wu, M.-S. Incidence and Prevalence of ESRD in Taiwan Renal Registry Data System (TWRDS): 2005–2012. Medicine 2014, 28, 65–68. [Google Scholar]
- Cozzolino, M.; Mangano, M.; Stucchi, A.; Ciceri, P.; Conte, F.; Galassi, A. Cardiovascular disease in dialysis patients. Nephrol. Dial. Transplant. 2018, 33 (Suppl. 3), iii28–iii34. [Google Scholar] [CrossRef]
- Shlipak, M.G.; Katz, R.; Kestenbaum, B.; Siscovick, D.; Fried, L.; Newman, A.; Rifkin, D.; Sarnak, M.J. Rapid decline of kidney function increases cardiovascular risk in the elderly. J. Am. Soc. Nephrol. 2009, 20, 2625–2630. [Google Scholar] [CrossRef]
- Khan, N.A.; Ma, I.; Thompson, C.R.; Humphries, K.; Salem, D.N.; Sarnak, M.J.; Levin, A. Kidney function and mortality among patients with left ventricular systolic dysfunction. J. Am. Soc. Nephrol. 2006, 17, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Wang, Y.; Li, Y.; Xie, D.; Tang, G.; Wang, B.; Wang, X.; Xu, X.; Xu, X.; Hou, F. Risk factors for renal function decline in adults with normal kidney function: A 7-year cohort study. J. Epidemiol. Community Health 2015, 69, 782. [Google Scholar] [CrossRef]
- Su, W.Y.; Wu, P.Y.; Huang, J.C.; Chen, S.C.; Chang, J.M. Increased Proteinuria is Associated with Increased Aortic Arch Calcification, Cardio-Thoracic Ratio, Rapid Renal Progression and Increased Overall and Cardiovascular Mortality in Chronic Kidney Disease. Int. J. Med. Sci. 2020, 17, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Taal, M.W.; Brenner, B.M. Predicting initiation and progression of chronic kidney disease: Developing renal risk scores. Kidney Int. 2006, 70, 1694–1705. [Google Scholar] [CrossRef] [Green Version]
- Simonetto, D.A.; Gines, P.; Kamath, P.S. Hepatorenal syndrome: Pathophysiology, diagnosis, and management. BMJ 2020, 370, m2687. [Google Scholar] [CrossRef]
- Ginès, A.; Escorsell, A.; Ginès, P.; Saló, J.; Jiménez, W.; Inglada, L.; Navasa, M.; Clària, J.; Rimola, A.; Arroyo, V.; et al. Incidence, predictive factors, and prognosis of the hepatorenal syndrome in cirrhosis with ascites. Gastroenterology 1993, 105, 229–236. [Google Scholar] [CrossRef]
- Janicko, M.; Veseliny, E.; Senajova, G.; Jarcuska, P. Predictors of hepatorenal syndrome in alcoholic liver cirrhosis. Biomed. Pap. 2015, 159, 661–665. [Google Scholar] [CrossRef] [Green Version]
- Riphagen, I.J.; Deetman, P.E.; Bakker, S.J.; Navis, G.; Cooper, M.E.; Lewis, J.B.; de Zeeuw, D.; Lambers Heerspink, H.J. Bilirubin and progression of nephropathy in type 2 diabetes: A post hoc analysis of RENAAL with independent replication in IDNT. Diabetes 2014, 63, 2845–2853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakoh, T.; Nakayama, M.; Tanaka, S.; Yoshitomi, R.; Ura, Y.; Nishimoto, H.; Fukui, A.; Shikuwa, Y.; Tsuruya, K.; Kitazono, T. Association of serum total bilirubin with renal outcome in Japanese patients with stages 3–5 chronic kidney disease. Metabolism 2015, 64, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Majoni, S.W.; Barzi, F.; Hoy, W.; Macisaac, R.J.; Cass, A.; Maple-Brown, L.; Hughes, J.T. Baseline liver function tests and full blood count indices and their association with progression of chronic kidney disease and renal outcomes in Aboriginal and Torres Strait Islander people: The eGFR follow- up study. BMC Nephrol. 2020, 21, 523. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Kastritis, E.; Rosinol, L.; Bladé, J.; Ludwig, H. Pathogenesis and treatment of renal failure in multiple myeloma. Leukemia 2008, 22, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, B.D.; Soiffer, R.J.; Magee, C.C. Renal Failure Associated with Cancer and Its Treatment: An Update. J. Am. Soc. Nephrol. 2005, 16, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Stengel, B. Chronic kidney disease and cancer: A troubling connection. J. Nephrol. 2010, 23, 253–262. [Google Scholar]
- Bjerner, J.; Høgetveit, A.; Wold Akselberg, K.; Vangsnes, K.; Paus, E.; Bjøro, T.; Børmer, O.P.; Nustad, K. Reference intervals for carcinoembryonic antigen (CEA), CA125, MUC1, Alfa-foeto-protein (AFP), neuron-specific enolase (NSE) and CA19.9 from the NORIP study. Scand. J. Clin. Lab. Investig. 2008, 68, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Cases, A.; Filella, X.; Molina, R.; Ballesta, A.M.; Lopez-Pedret, J.; Revert, L. Tumor markers in chronic renal failure and hemodialysis patients. Nephron 1991, 57, 183–186. [Google Scholar] [CrossRef]
- Xiaofang, Y.; Yue, Z.; Xialian, X.; Zhibin, Y. Serum tumour markers in patients with chronic kidney disease. Scand. J. Clin. Lab. Investig. 2007, 67, 661–667. [Google Scholar] [CrossRef]
- Chen, C.H.; Yang, J.H.; Chiang, C.W.K.; Hsiung, C.N.; Wu, P.E.; Chang, L.C.; Chu, H.W.; Chang, J.; Song, I.W.; Yang, S.L.; et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum. Mol. Genet. 2016, 25, 5321–5331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, C.T.; Hung, T.H.; Yeh, C.K. Taiwan Regulation of Biobanks. J. Law. Med. Ethics 2015, 43, 816–826. [Google Scholar] [CrossRef]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Ford, M.L.; Tomlinson, L.A.; Chapman, T.P.; Rajkumar, C.; Holt, S.G. Aortic stiffness is independently associated with rate of renal function decline in chronic kidney disease stages 3 and 4. Hypertension 2010, 55, 1110–1115. [Google Scholar] [CrossRef] [Green Version]
- Terrault, N.A.; Lok, A.S.F.; McMahon, B.J.; Chang, K.M.; Hwang, J.P.; Jonas, M.M.; Brown, R.S., Jr.; Bzowej, N.H.; Wong, J.B. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018, 67, 1560–1599. [Google Scholar] [CrossRef]
- Lang, J.; Katz, R.; Ix, J.H.; Gutierrez, O.M.; Peralta, C.A.; Parikh, C.R.; Satterfield, S.; Petrovic, S.; Devarajan, P.; Bennett, M.; et al. Association of serum albumin levels with kidney function decline and incident chronic kidney disease in elders. Nephrol. Dial. Transplant. 2018, 33, 986–992. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, R.; Wang, Y.; Li, H.; Han, Q.; Wu, Y.; Wang, T.; Liu, F. The Level of Serum Albumin Is Associated with Renal Prognosis in Patients with Diabetic Nephropathy. J. Diabetes Res. 2019, 2019, 7825804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amdur, R.L.; Feldman, H.I.; Gupta, J.; Yang, W.; Kanetsky, P.; Shlipak, M.; Rahman, M.; Lash, J.P.; Townsend, R.R.; Ojo, A.; et al. Inflammation and Progression of CKD: The CRIC Study. Clin. J. Am. Soc. Nephrol. 2016, 11, 1546–1556. [Google Scholar] [CrossRef] [Green Version]
- Franch-Arcas, G. The meaning of hypoalbuminaemia in clinical practice. Clin. Nutr. 2001, 20, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Moshage, H.J.; Janssen, J.A.; Franssen, J.H.; Hafkenscheid, J.C.; Yap, S.H. Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation. J. Clin. Investig. 1987, 79, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.P.; Wolmarans, M.R.; Park, G.R. The role of albumin in critical illness. Br. J. Anaesth. 2000, 85, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Lei, C.T.; Zhang, C. Interleukin-6 Signaling Pathway and Its Role in Kidney Disease: An Update. Front. Immunol. 2017, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Kanwar, Y.S. Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int. 2015, 88, 662–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Targher, G.; Bosworth, C.; Kendrick, J.; Smits, G.; Lippi, G.; Chonchol, M. Relationship of serum bilirubin concentrations to kidney function and albuminuria in the United States adult population. Findings from the National Health and Nutrition Examination Survey 2001–2006. Clin. Chem. Lab. Med. 2009, 47, 1055–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.-H.; Wu, C.-Y.; Cheng, C.-Y.; Tsai, S.-F. Severe hyperbilirubinemia is associated with higher risk of contrast-related acute kidney injury following contrast-enhanced computed tomography. PLoS ONE 2020, 15, e0231264. [Google Scholar] [CrossRef] [Green Version]
- Vítek, L.; Schwertner, H.A. The heme catabolic pathway and its protective effects on oxidative stress-mediated diseases. Adv. Clin. Chem. 2007, 43, 1–57. [Google Scholar]
- Kwak, J.Y.; Takeshige, K.; Cheung, B.S.; Minakami, S. Bilirubin inhibits the activation of superoxide-producing NADPH oxidase in a neutrophil cell-free system. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1991, 1076, 369–373. [Google Scholar] [CrossRef]
- Daenen, K.; Andries, A.; Mekahli, D.; Van Schepdael, A.; Jouret, F.; Bammens, B. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 2019, 34, 975–991. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Park, S.C. Physiological antioxidative network of the bilirubin system in aging and age-related diseases. Front. Pharmacol. 2012, 3, 45. [Google Scholar] [CrossRef] [Green Version]
- Coppolino, G.; Bolignano, D.; Rivoli, L.; Mazza, G.; Presta, P.; Fuiano, G. Tumour markers and kidney function: A systematic review. Biomed. Res. Int. 2014, 2014, 647541. [Google Scholar] [CrossRef] [Green Version]
- Amiri, F.S. Serum tumor markers in chronic kidney disease: As clinical tool in diagnosis, treatment and prognosis of cancers. Ren. Fail. 2016, 38, 530–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.-Y.; Lin, C.-J.; Lin, C.-S.; Sun, F.-J.; Pan, C.-F.; Chen, H.-H.; Wu, C.-J. The prevalence and association of chronic kidney disease and diabetes in liver cirrhosis using different estimated glomerular filtration rate equation. Oncotarget 2017, 9, 2236–2248. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-C.; Su, Y.-C.; Li, C.-Y.; Hung, S.-K. 13-year nationwide cohort study of chronic kidney disease risk among treatment-naïve patients with chronic hepatitis B in Taiwan. BMC Nephrol. 2015, 16, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.C.; Su, Y.C.; Li, C.Y.; Wu, C.P.; Lee, M.S. A nationwide cohort study suggests chronic hepatitis B virus infection increases the risk of end-stage renal disease among patients in Taiwan. Kidney Int. 2015, 87, 1030–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolloch, R.; Legler, U.F.; Champion, A.; Cooper-Dehoff, R.M.; Handberg, E.; Zhou, Q.; Pepine, C.J. Impact of resting heart rate on outcomes in hypertensive patients with coronary artery disease: Findings from the INternational VErapamil-SR/trandolapril STudy (INVEST). Eur. Heart J. 2008, 29, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Fox, K.; Ford, I.; Steg, P.G.; Tendera, M.; Robertson, M.; Ferrari, R. Heart rate as a prognostic risk factor in patients with coronary artery disease and left-ventricular systolic dysfunction (BEAUTIFUL): A subgroup analysis of a randomised controlled trial. Lancet 2008, 372, 817–821. [Google Scholar] [CrossRef]
- Hillis, G.S.; Hata, J.; Woodward, M.; Perkovic, V.; Arima, H.; Chow, C.K.; Zoungas, S.; Patel, A.; Poulter, N.R.; Mancia, G.; et al. Resting heart rate and the risk of microvascular complications in patients with type 2 diabetes mellitus. J. Am. Heart Assoc. 2012, 1, e002832. [Google Scholar] [CrossRef] [Green Version]
- Böhm, M.; Schumacher, H.; Schmieder, R.E.; Mann, J.F.; Teo, K.; Lonn, E.; Sleight, P.; Mancia, G.; Linz, D.; Mahfoud, F.; et al. Resting heart rate is associated with renal disease outcomes in patients with vascular disease: Results of the ONTARGET and TRANSCEND studies. J. Intern. Med. 2015, 278, 38–49. [Google Scholar] [CrossRef]
- Böhm, M.; Reil, J.C.; Danchin, N.; Thoenes, M.; Bramlage, P.; Volpe, M. Association of heart rate with microalbuminuria in cardiovascular risk patients: Data from I-SEARCH. J. Hypertens. 2008, 26, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Ceconi, C.; Guardigli, G.; Rizzo, P.; Francolini, G.; Ferrari, R. The heart rate story. Eur. Heart J. Suppl. 2011, 13 (Suppl. C), C4–C13. [Google Scholar] [CrossRef] [Green Version]
- Valdivielso, J.M.; Rodríguez-Puyol, D.; Pascual, J.; Barrios, C.; Bermúdez-López, M.; Sánchez-Niño, M.D.; Pérez-Fernández, M.; Ortiz, A. Atherosclerosis in Chronic Kidney Disease. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1938–1966. [Google Scholar] [CrossRef] [PubMed]
Characteristics | eGFR Decline ≥ 25% (n = 1280) | eGFR Decline < 25% (n = 25,836) | p | All (n = 27,116) |
---|---|---|---|---|
Age (year) | 52 ± 11 | 51 ± 10 | <0.001 | 51 ± 10 |
Male gender (%) | 27.0 | 35.8 | <0.001 | 35.4 |
Hypertension (%) | 23.8 | 12.6 | <0.001 | 13.1 |
Diabetes mellitus (%) | 13.9 | 4.9 | <0.001 | 5.3 |
Systolic blood pressure (mmHg) | 122 ± 20 | 117 ± 18 | <0.001 | 118 ± 18 |
Diastolic blood pressure (mmHg) | 73 ± 11 | 72 ± 11 | 0.012 | 73 ± 11 |
Heart rate (beat/min) | 71 ± 10 | 69 ± 9 | <0.001 | 69 ± 9 |
Body mass index (kg/m2) | 24.5 ± 4.0 | 24.1 ± 3.5 | <0.001 | 24.1 ± 3.6 |
Fasting glucose (g/dL) | 103 ± 35 | 96 ± 19 | <0.001 | 96 ± 20 |
Uric acid (mg/dL) | 5.3 ± 1.5 | 5.5 ± 1.4 | <0.001 | 5.5 ± 1.4 |
Total cholesterol (mg/dL) | 193 ± 37 | 196 ± 35 | 0.003 | 195 ± 35 |
Triglyceride (mg/dL) | 122 ± 86 | 114 ± 83 | 0.001 | 114 ± 83 |
Hemoglobin (g/dL) | 13.4 ± 1.5 | 13.8 ± 1.6 | <0.001 | 13.7 ± 1.6 |
eGFR (mL/min/1.73 m2, baseline) | 128.5 ± 40.3 | 108.3 ± 24.3 | <0.001 | 109.2 ± 25.6 |
eGFR (mL/min/1.73 m2, follow-up) | 86.7 ± 29.0 | 107.6 ± 25.3 | <0.001 | 106.6 ± 25.8 |
Liver related parameters | ||||
GOT (μ/L) | 25.5 ± 15.6 | 24.7 ± 11.6 | 0.022 | 24.7 ± 11.8 |
GPT (μ/L) | 24.0 ± 19.5 | 23.8 ± 19.4 | 0.645 | 23.8 ± 19.4 |
Albumin (g/dL) | 4.43 ± 0.26 | 4.56 ± 0.23 | <0.001 | 4.55 ± 0.23 |
AFP (ng/mL) | 7.0 ± 29.0 | 3.6 ± 5.2 | <0.001 | 3.79 ± 8.01 |
Total bilirubin (mg/dL) | 0.61 ± 0.29 | 0.68 ± 0.28 | <0.001 | 0.66 ± 0.28 |
γ-GT (μ/L) | 27 ± 45 | 24 ± 28 | 0.003 | 24 ± 29 |
HBsAg positive (%) | 10.1 | 11.8 | 0.080 | 11.7 |
Anti-HCV antibody positive (%) | 2.8 | 2.9 | 0.948 | 2.8 |
Parameters | Odds Ratio (95% CI) | p |
---|---|---|
Age (per 1 year) | 1.010 (1.005–1.016) | <0.001 |
Male (vs. female) | 0.664 (0.585–0.753) | <0.001 |
Hypertension | 2.167 (1.895–2.477) | <0.001 |
Diabetes mellitus | 3.145 (2.659–3.721) | <0.001 |
Systolic blood pressure (per 1 mmHg) | 1.013 (1.010–1.016) | <0.001 |
Diastolic blood pressure (per 1 mmHg) | 1.007 (1.001–1.012) | 0.012 |
Heart rate (per 1 beat/min) | 1.017 (1.011–1.023) | <0.001 |
Body mass index (per 1 kg/m2) | 1.036 (1.021–1.052) | <0.001 |
Fasting glucose (per 1 g/dL) | 1.010 (1.008–1.012) | <0.001 |
Uric acid (per 1 mg/dL) | 0.890 (0.854–0.928) | <0.001 |
Total cholesterol (per 1 mg/dL) | 0.998 (0.996–0.999) | 0.003 |
Triglyceride (per 1 mg/dL) | 1.001 (1.000–1.001) | 0.001 |
Hemoglobin (per 1 g/dL) | 0.853 (0.824–0.883) | <0.001 |
Baseline eGFR (per 1 mL/min/1.73 m2) | 1.025 (1.023–1.027) | <0.001 |
Liver related parameters | ||
GOT (per 1 μ/L) | 1.004 (1.001–1.008) | 0.023 |
GPT (per 1 μ/L) | 1.001 (0.998–1.003) | 0.645 |
Albumin (per 1 g/dL) | 0.102 (0.081–0.130) | <0.001 |
AFP (per 1 ng/mL) | 1.018 (1.013–1.024) | <0.001 |
Total bilirubin (per 1 mg/dL) | 0.412 (0.324–0.515) | <0.001 |
γ-GT (per 1 μ/L) | 1.002 (1.001–1.003) | 0.004 |
HBsAg positive | 0.847 (0.702–1.020) | 0.080 |
Anti-HCV antibody positive | 0.989 (0.704–1.388) | 0.948 |
Parameters | Odds Ratio (95% CI) | p |
---|---|---|
Age (per 1 year) | 1.009 (1.001–1.018) | 0.035 |
Male (vs. female) | 0.840 (0.687–1.027) | 0.089 |
Hypertension | 1.901 (1.578–2.290) | <0.001 |
Diabetes mellitus | 1.965 (1.519–2.543) | <0.001 |
Systolic blood pressure (per 1 mmHg) | 1.011 (1.005–1.017) | 0.001 |
Diastolic blood pressure (per 1 mmHg) | 1.000 (0.990–1.010) | 0.930 |
Heart rate (per 1 beat/min) | 1.005 (0.998–1.012) | 0.166 |
Body mass index (per 1 kg/m2) | 0.995 (0.975–1.016) | 0.647 |
Fasting glucose (per 1 g/dL) | 1.004 (1.002–1.007) | 0.001 |
Uric acid (per 1 mg/dL) | 1.075 (1.009–1.144) | 0.025 |
Total cholesterol (per 1 mg/dL) | 1.001 (0.999–1.003) | 0.472 |
Triglyceride (per 1 mg/dL) | 1.001 (1.000–1.001) | 0.055 |
Hemoglobin (per 1 g/dL) | 0.884 (0.836–0.935) | <0.001 |
Baseline eGFR (per 1 mL/min/1.73 m2) | 1.025 (1.022–1.028) | <0.001 |
Liver related parameters | ||
GOT (per 1 μ/L) | 1.002 (0.997–1.006) | 0.524 |
GPT (per 1 μ/L) | - | - |
Albumin (per 1 g/dL) | 0.173 (0.127–0.236) | <0.001 |
AFP (per 1 ng/mL) | 1.006 (1.001–1.011) | 0.010 |
Total bilirubin (per 1 mg/dL) | 0.588 (0.439–0.786) | <0.001 |
γ-GT (per 1 μ/L) | 1.001 (0.999–1.003) | 0.360 |
HBsAg positive | - | - |
Anti-HCV antibody positive | - | - |
Parameters | Odds Ratio (95% CI) | p |
---|---|---|
Age (per 1 year) | 1.009 (0.998–1.019) | 0.100 |
Male (vs. female) | 1.157 (0.915–1.463) | 0.224 |
Hypertension | 1.897 (1.518–2.372) | <0.001 |
Diabetes mellitus | 1.745 (1.266–2.405) | 0.001 |
Systolic blood pressure (per 1 mmHg) | 1.010 (1.003–1.017) | 0.006 |
Diastolic blood pressure (per 1 mmHg) | 0.999 (0.987–1.010) | 0.844 |
Heart rate (per 1 beat/min) | 1.009 (1.000–1.017) | 0.006 |
Body mass index (per 1 kg/m2) | 0.996 (0.971–1.022) | 0.770 |
Fasting glucose (per 1 g/dL) | 1.006 (1.003–1.009) | <0.001 |
Uric acid (per 1 mg/dL) | 1.075 (0.997–1.158) | 0.059 |
Total cholesterol (per 1 mg/dL) | 1.001 (0.998–1.003) | 0.548 |
Triglyceride (per 1 mg/dL) | 1.000 (0.999–1.001) | 0.476 |
Hemoglobin (per 1 g/dL) | 0.886 (0.832–0.943) | <0.001 |
Baseline eGFR (per 1 mL/min/1.73 m2) | 1.025 (1.022–1.028) | <0.001 |
Liver related parameters | ||
GOT (per 1 μ/L) | 1.005 (0.988–1.023) | 0.574 |
GPT (per 1 μ/L) | - | - |
Albumin (per 1 g/dL) | 0.189 (0.130–0.274) | <0.001 |
AFP (per 1 ng/mL) | 1.007 (1.002–1.012) | 0.011 |
Total bilirubin (per 1 mg/dL) | 0.569 (0.405–0.801) | 0.001 |
γ-GT (per 1 μ/L) | 1.004 (1.000–1.008) | 0.076 |
HBsAg positive | - | - |
Anti-HCV antibody positive | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, W.-Y.; Chu, N.-S.; Huang, J.-C.; Wu, P.-Y.; Lee, W.-H.; Liu, Y.-H.; Chen, S.-C.; Su, H.-M. Low Albumin, Low Bilirubin, and High Alfa-Fetoprotein Are Associated with a Rapid Renal Function Decline in a Large Population Follow-Up Study. J. Pers. Med. 2021, 11, 781. https://doi.org/10.3390/jpm11080781
Su W-Y, Chu N-S, Huang J-C, Wu P-Y, Lee W-H, Liu Y-H, Chen S-C, Su H-M. Low Albumin, Low Bilirubin, and High Alfa-Fetoprotein Are Associated with a Rapid Renal Function Decline in a Large Population Follow-Up Study. Journal of Personalized Medicine. 2021; 11(8):781. https://doi.org/10.3390/jpm11080781
Chicago/Turabian StyleSu, Wei-Yu, Neng-Sheng Chu, Jiun-Chi Huang, Pei-Yu Wu, Wen-Hsien Lee, Yi-Hsueh Liu, Szu-Chia Chen, and Ho-Ming Su. 2021. "Low Albumin, Low Bilirubin, and High Alfa-Fetoprotein Are Associated with a Rapid Renal Function Decline in a Large Population Follow-Up Study" Journal of Personalized Medicine 11, no. 8: 781. https://doi.org/10.3390/jpm11080781
APA StyleSu, W. -Y., Chu, N. -S., Huang, J. -C., Wu, P. -Y., Lee, W. -H., Liu, Y. -H., Chen, S. -C., & Su, H. -M. (2021). Low Albumin, Low Bilirubin, and High Alfa-Fetoprotein Are Associated with a Rapid Renal Function Decline in a Large Population Follow-Up Study. Journal of Personalized Medicine, 11(8), 781. https://doi.org/10.3390/jpm11080781