PTGDR2 Expression in Peripheral Blood as a Potential Biomarker in Adult Patients with Asthma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Transcriptomic RNA Sequencing (RNAseq) and Data Analysis
2.3. Sequences Selection and Characterization
2.4. Quantitative PCR Expression Analysis
2.5. Clinical Measurements
2.6. Flow Cytometry
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Population of the Transcriptomic Assay
3.2. Transcriptomic Study
3.3. Characteristics of the Population in the Validation Study
3.4. qPCR Expression Analysis
3.5. Flow Cytometry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Initiative for Ashtma. Global Strategy for Asthma Management and Prevention, 2020. 2020. Available online: https://ginasthma.org/ (accessed on 20 March 2021).
- Soriano, J.B.; Abajobir, A.A.; Abate, K.H.; Abera, S.F.; Agrawal, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Alam, K.; et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017, 5, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Peters, M.C.; Wenzel, S.E. Intersection of biology and therapeutics: Type 2 targeted therapeutics for adult asthma. Lancet 2020, 395, 371–383. [Google Scholar] [CrossRef]
- Robinson, D.; Humbert, M.; Buhl, R.; Cruz, A.A.; Inoue, H.; Korom, S.; Hanania, N.A.; Nair, P. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: Current knowledge and therapeutic implications. Clin. Exp. Allergy 2017, 47, 161–175. [Google Scholar] [CrossRef]
- Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet 2018, 391, 783–800. [Google Scholar] [CrossRef]
- Isidoro-García, M.; Sánchez-Martín, A.; García-Sánchez, A.; Sanz, C.; García-Berrocal, B.; Dávila, I. Pharmacogenetics and the treatment of asthma. Pharmacogenomics 2017, 18, 1271–1280. [Google Scholar] [CrossRef]
- Taylor, D.R. Using biomarkers in the assessment of airways disease. J. Allergy Clin. Immunol. 2011, 128, 927–934. [Google Scholar] [CrossRef]
- Ober, C. Asthma Genetics in the Post-GWAS Era. Ann. Am. Thorac. Soc. 2016, 13 (Suppl. 1), S85–S90. [Google Scholar]
- Park, H.W.; Weiss, S.T. Understanding the Molecular Mechanisms of Asthma through Transcriptomics. Allergy Asthma Immunol. Res. 2020, 12, 399–411. [Google Scholar] [CrossRef]
- Croteau-Chonka, D.C.; Qiu, W.; Martinez, F.D.; Strunk, R.C.; Lemanske, R.F.; Liu, A.H.; Gilliland, F.D.; Millstein, J.; Gauderman, W.J.; Ober, C.; et al. Gene Expression Profiling in Blood Provides Reproducible Molecular Insights into Asthma Control. Am. J. Respir. Crit. Care Med. 2017, 195, 179–188. [Google Scholar] [CrossRef]
- Yeh, Y.-L.; Su, M.-W.; Chiang, B.-L.; Yang, Y.-H.; Tsai, C.-H.; Lee, Y.L. Genetic profiles of transcriptomic clusters of childhood asthma determine specific severe subtype. Clin. Exp. Allergy 2018, 48, 1164–1172. [Google Scholar] [CrossRef]
- Bigler, J.; Boedigheimer, M.; Schofield, J.P.R.; Skipp, P.J.; Corfield, J.; Rowe, A.; Sousa, A.R.; Timour, M.; Twehues, L.; Hu, X.; et al. A Severe Asthma Disease Signature from Gene Expression Profiling of Peripheral Blood from U-BIOPRED Cohorts. Am. J. Respir. Crit. Care Med. 2017, 195, 1311–1320. [Google Scholar] [CrossRef]
- Persson, H.; Kwon, A.T.; Ramilowski, J.A.; Silberberg, G.; Söderhäll, C.; Orsmark-Pietras, C.; Nordlund, B.; Konradsen, J.R.; de Hoon, M.J.L.; Melén, E.; et al. Transcriptome analysis of controlled and therapy-resistant childhood asthma reveals distinct gene expression profiles. J. Allergy Clin. Immunol. 2015, 136, 638–648. [Google Scholar] [CrossRef] [Green Version]
- Bjornsdottir, U.S.; Holgate, S.T.; Reddy, P.S.; Hill, A.A.; McKee, C.M.; Csimma, C.I.; Weaver, A.A.; Legault, H.M.; Small, C.G.; Ramsey, R.C.; et al. Pathways activated during human asthma exacerbation as revealed by gene expression patterns in blood. PLoS ONE 2011, 6, e21902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, M.; Matsuyama, M.; Arai, N.; Yamada, H.; Hyodo, K.; Nonaka, M.; Kitazawa, H.; Yoshida, K.; Shigemasa, R.; Morishima, Y.; et al. Identification of whole blood gene expressions correlated with responsiveness to benralizumab. J. Allergy Clin. Immunol. 2020. [Google Scholar] [CrossRef]
- San Segundo-Val, I.; García-Sánchez, A.; Sanz, C.; Cornejo-García, J.A.; Isidoro-García, M.; Dávila, I. Promoter genotyping and mRNA expression– based analysis of the PTGDR gene in allergy. J. Investig. Allergol. Clin. Immunol. 2020, 30, 117–126. [Google Scholar] [CrossRef] [Green Version]
- GEMA 4.4. Guia Española Para el Manejo del Asma. Available online: https://www.gemasma.com/ (accessed on 20 December 2019).
- Valero, A.; Muñoz, R. Comments on the classification of allergic rhinitis according to the ARIA guidelines 2008. J. Investig. Allergol. Clin. Immunol. 2008, 18, 324–326. [Google Scholar]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochberg, Y.B.; Benjamini, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Primer 3.0. Available online: http://bioinfo.ut.ee/primer3-0.4.0/ (accessed on 20 January 2020).
- Beacon Desingner. Available online: www.premierbiosoft.com (accessed on 20 January 2020).
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Wacholder, S. Population Stratification in Epidemiologic Studies of Common Genetic Variants and Cancer: Quantification of Bias. J. Natl. Cancer Inst. 2000, 92, 1151–1158. [Google Scholar] [CrossRef]
- Dávila, I.; García-Sánchez, A.; Estravís, M.; Landeira-Viñuela, A.; Iribarren-López, A.; Moreno-Jiménez, E.; Martín-García, C.; Moreno, E.; Sanz, C.; Isidoro-García, M. Relationship between CRTH2 mRNA expression in peripheral blood and IgE and eosinophil levels in adult patients with asthma. In Proceedings of the Allergy and Immunology; European Respiratory Society: Lausanne, Switzerland, 2019; p. PA535. [Google Scholar]
- García-Sánchez, A.; Marcos-Vadillo, E.; Sanz, C.; Estravís, M.; Isidoro-García, M.; Dávila, I. PTGDR expression is upregulated through retinoic acid receptors (RAR) mechanism in allergy. PLoS ONE 2019, 14, e0215086. [Google Scholar] [CrossRef] [Green Version]
- Domingo, C.; Palomares, O.; Sandham, D.A.; Erpenbeck, V.J.; Altman, P. The prostaglandin D2 receptor 2 pathway in asthma: A key player in airway inflammation. Respir. Res. 2018, 19, 189. [Google Scholar] [CrossRef]
- Kupczyk, M.; Kuna, P. Targeting the PGD2/CRTH2/DP1 Signaling Pathway in Asthma and Allergic Disease: Current Status and Future Perspectives. Drugs 2017, 77, 1281–1294. [Google Scholar] [CrossRef] [Green Version]
- Poswar, F.d.O.; Farias, L.C.; Fraga, C.A.d.C.; Bambirra, W.; Brito-Júnior, M.; Sousa-Neto, M.D.; Santos, S.H.S.; de Paula, A.M.B.; D’Angelo, M.F.S.V.; Guimarães, A.L.S. Bioinformatics, Interaction Network Analysis, and Neural Networks to Characterize Gene Expression of Radicular Cyst and Periapical Granuloma. J. Endod. 2015, 41, 877–883. [Google Scholar] [CrossRef]
- STRING. Available online: https://string-db.org/ (accessed on 20 January 2020).
- Liu, W.; Min, J.; Jiang, H.; Mao, B. Chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonists in asthma: A systematic review and meta-analysis protocol. BMJ Open 2018, 8, e020882. [Google Scholar] [CrossRef] [Green Version]
- Marone, G.; Galdiero, M.R.; Pecoraro, A.; Pucino, V.; Criscuolo, G.; Triassi, M.; Varricchi, G. Prostaglandin D 2 receptor antagonists in allergic disorders: Safety, efficacy, and future perspectives. Expert Opin. Investig. Drugs 2019, 28, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Wendell, S.G.; Fan, H.; Zhang, C. G Protein–Coupled Receptors in Asthma Therapy: Pharmacology and Drug Action. Pharmacol. Rev. 2020, 72, 1–49. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Rastogi, D.; Seoighe, C.; Greally, J.M.; Suzuki, M. Insights from deconvolution of cell subtype proportions enhance the interpretation of functional genomic data. PLoS ONE 2019, 14, e0215987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, O.; Richards, L.B.; Vijverberg, S.J.; Neerincx, A.H.; Sinha, A.; Sterk, P.J.; Maitland-van der Zee, A.H. What did we learn from multiple omics studies in asthma? Allergy 2019, 74, 2129–2145. [Google Scholar] [CrossRef] [Green Version]
- Corren, J. New Targeted Therapies for Uncontrolled Asthma. J. Allergy Clin. Immunol. Pract. 2019, 7, 1394–1403. [Google Scholar] [CrossRef]
- Thompson, M.D.; Takasaki, J.; Capra, V.; Rovati, G.E.; Siminovitch, K.A.; Burnham, W.M.; Hudson, T.J.; Bossé, Y.; Cole, D.E.C. G-Protein-Coupled Receptors and Asthma Endophenotypes. Mol. Diagn. Ther. 2006, 10, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Stevens, W.W.; Staudacher, A.G.; Hulse, K.E.; Carter, R.G.; Winter, D.R.; Kato, A.; Suh, L.; Norton, J.E.; Huang, J.H.; Peters, A.T.; et al. Activation of the 15-lipoxygenase pathway in aspirin-exacerbated respiratory disease. J. Allergy Clin. Immunol. 2020. [Google Scholar] [CrossRef]
- Liu, T.; Barrett, N.A.; Kanaoka, Y.; Yoshimoto, E.; Garofalo, D.; Cirka, H.; Feng, C.; Boyce, J.A. Type 2 Cysteinyl Leukotriene Receptors Drive IL-33–Dependent Type 2 Immunopathology and Aspirin Sensitivity. J. Immunol. 2018, 200, 915–927. [Google Scholar] [CrossRef]
- Liang, Z.; Yan, B.; Liu, C.; Tan, R.; Wang, C.; Zhang, L. Predictive significance of arachidonate 15-lipoxygenase for eosinophilic chronic rhinosinusitis with nasal polyps. Allergy, Asthma Clin. Immunol. 2020, 16, 82. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Shen, Y.; Tang, X.-Y.; Ke, X.; Yao, H.-B.; Hong, S.-L.; Kang, H.-Y. Genetic risk of FCRL3 and FCRL5 polymorphisms in children with asthma and allergic rhinitis in a Chinese Han population. Int. J. Pediatr. Otorhinolaryngol. 2019, 120, 58–63. [Google Scholar] [CrossRef]
- Bel, E.H.; Wenzel, S.E.; Thompson, P.J.; Prazma, C.M.; Keene, O.N.; Yancey, S.W.; Ortega, H.G.; Pavord, I.D. Oral Glucocorticoid-Sparing Effect of Mepolizumab in Eosinophilic Asthma. N. Engl. J. Med. 2014, 371, 1189–1197. [Google Scholar] [CrossRef]
- Sridhar, S.; Liu, H.; Pham, T.H.; Damera, G.; Newbold, P. Modulation of blood inflammatory markers by benralizumab in patients with eosinophilic airway diseases. Respir. Res. 2019, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Elena-Pérez, S.; Heredero-Jung, D.H.; García-Sánchez, A.; Estravís, M.; Martin, M.J.; Ramos-González, J.; Triviño, J.C.; Isidoro-García, M.; Sanz, C.; Dávila, I. Molecular Analysis of IL-5 Receptor Subunit Alpha as a Possible Pharmacogenetic Biomarker in Asthma. Front. Med. 2021, 7. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.C.; Ringel, L.; Dyjack, N.; Herrin, R.; Woodruff, P.G.; Rios, C.; O’Connor, B.; Fahy, J.V.; Seibold, M.A. A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Böhm, E.; Sturm, G.J.; Weiglhofer, I.; Sandig, H.; Shichijo, M.; McNamee, A.; Pease, J.E.; Kollroser, M.; Peskar, B.A.; Heinemann, A. 11-Dehydro-thromboxane B 2, a Stable Thromboxane Metabolite, Is a Full Agonist of Chemoattractant Receptor-homologous Molecule Expressed on TH2 Cells (CRTH2) in Human Eosinophils and Basophils. J. Biol. Chem. 2004, 279, 7663–7670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gervais, F.G.; Cruz, R.P.G.; Chateauneuf, A.; Gale, S.; Sawyer, N.; Nantel, F.; Metters, K.M.; O’Neill, G.P. Selective modulation of chemokinesis, degranulation, and apoptosis in eosinophils through the PGD2 receptors CRTH2 and DP. J. Allergy Clin. Immunol. 2001, 108, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Sandig, H.; Andrew, D.; Barnes, A.A.; Sabroe, I.; Pease, J. 9α,11β-PGF 2 and its stereoisomer PGF 2α are novel agonists of the chemoattractant receptor, CRTH2. FEBS Lett. 2006, 580, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Nantel, F.; Fong, C.; Lamontagne, S.; Wright, D.H.; Giaid, A.; Desrosiers, M.; Metters, K.M.; O’Neill, G.P.; Gervais, F.G. Expression of prostaglandin D synthase and the prostaglandin D2 receptors DP and CRTH2 in human nasal mucosa. Prostaglandins Other Lipid Mediat. 2004, 73, 87–101. [Google Scholar] [CrossRef]
- Iwasaki, M.; Nagata, K.; Takano, S.; Takahashi, K.; Ishii, N.; Ikezawa, Z. Association of a New-Type Prostaglandin D2 Receptor CRTH2 with Circulating T Helper 2 Cells in Patients with Atopic Dermatitis. J. Investig. Dermatol. 2002, 119, 609–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palikhe, N.S.; Laratta, C.; Nahirney, D.; Vethanayagam, D.; Bhutani, M.; Vliagoftis, H.; Cameron, L. Elevated levels of circulating CD4+CRTh2+ T cells characterize severe asthma. Clin. Exp. Allergy 2016, 46, 825–836. [Google Scholar] [CrossRef]
- Fajt, M.L.; Gelhaus, S.L.; Freeman, B.; Uvalle, C.E.; Trudeau, J.B.; Holguin, F.; Wenzel, S.E. Prostaglandin D2 pathway upregulation: Relation to asthma severity, control, and TH2 inflammation. J. Allergy Clin. Immunol. 2013, 131, 1504–1512.e12. [Google Scholar] [CrossRef] [Green Version]
- White, A.A.; Stevenson, D.D. Aspirin-exacerbated respiratory disease. N. Engl. J. Med. 2018, 379, 1060–1070. [Google Scholar] [CrossRef]
- Lee, K.; Lee, S.H.; Kim, T.H. The Biology of Prostaglandins and Their Role as a Target for Allergic Airway Disease Therapy. Int. J. Mol. Sci. 2020, 21, 1851. [Google Scholar] [CrossRef] [Green Version]
- Bateman, E.D.; Guerreros, A.G.; Brockhaus, F.; Holzhauer, B.; Pethe, A.; Kay, R.A.; Townley, R.G. Fevipiprant, an oral prostaglandin DP 2 receptor (CRTh2) antagonist, in allergic asthma uncontrolled on low-dose inhaled corticosteroids. Eur. Respir. J. 2017, 50, 1700670. [Google Scholar] [CrossRef] [Green Version]
- Gonem, S.; Berair, R.; Singapuri, A.; Hartley, R.; Laurencin, M.F.M.; Bacher, G.; Holzhauer, B.; Bourne, M.; Mistry, V.; Pavord, I.D.; et al. Fevipiprant, a prostaglandin D 2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: A single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir. Med. 2016, 4, 699–707. [Google Scholar] [CrossRef] [Green Version]
- Erpenbeck, V.J.; Popov, T.A.; Miller, D.; Weinstein, S.F.; Spector, S.; Magnusson, B.; Osuntokun, W.; Goldsmith, P.; Weiss, M.; Beier, J. The oral CRTh2 antagonist QAW039 (fevipiprant): A phase II study in uncontrolled allergic asthma. Pulm. Pharmacol. Ther. 2016, 39, 54–63. [Google Scholar] [CrossRef]
- Brightling, C.E.; Gaga, M.; Inoue, H.; Li, J.; Maspero, J.; Wenzel, S.; Maitra, S.; Lawrence, D.; Brockhaus, F.; Lehmann, T.; et al. Effectiveness of fevipiprant in reducing exacerbations in patients with severe asthma (LUSTER-1 and LUSTER-2): Two phase 3 randomised controlled trials. Lancet Respir. Med. 2020. [Google Scholar] [CrossRef]
- Novartis. Novartis Provides Update on LUSTER Phase III Studies in Patients with Uncontrolled GINA 4/5 Asthma. Available online: https://www.novartis.com/news/media-releases/novartis-provides-update-luster-phase-iii-studies-patients-uncontrolled-gina-45-asthma (accessed on 20 December 2020).
- Flood-Page, P.; Swenson, C.; Faiferman, I.; Matthews, J.; Williams, M.; Brannick, L.; Robinson, D.; Wenzel, S.; Busse, W.; Hansel, T.T.; et al. A Study to Evaluate Safety and Efficacy of Mepolizumab in Patients with Moderate Persistent Asthma. Am. J. Respir. Crit. Care Med. 2007, 176, 1062–1071. [Google Scholar] [CrossRef]
- Kerstjens, H.A.M.; Gosens, R. Prostaglandin D2: The end of a story or just the beginning? Lancet Respir. Med. 2021, 9, 2–3. [Google Scholar] [CrossRef]
Characteristic | Patients | Controls | p§ |
---|---|---|---|
Subjects | 30 | 30 | |
Sex (%) | |||
Female | 43.3 | 46.7 | |
Male | 56.7 | 53.3 | |
Mean ± SD Age (y) | 29.9 ± 12.6 | 56.5 ± 17.1 | <0.001 |
Mean ± SD IgE (kU/L) | 264.5 ± 258.3 | 76.5± 92.5 | <0.001 |
Mean ± SD EO (/µL) | 436.7 ± 243.7 | 186.3 ± 122.7 | <0.001 |
Upregulated Genes | ||||
Ensemble ID | External ID Gene | Fold Difference | p Value | p adj |
ENSG00000161905 | ALOX15 | 2.454698669 | 3.91 × 105 | 0.003497494 |
ENSG00000091181 | IL5RA | 2.224932237 | 8.63 × 108 | 6.33 × 105 |
ENSG00000103056 | SMPD3 | 2.166999266 | 1.44 × 107 | 940 × 105 |
ENSG00000105205 | CLC | 2.046574167 | 4.6 3 × 106 | 0.001025892 |
ENSG00000183134 | PTGDR2 | 1.98857257 | 2.64 × 106 | 0.000743526 |
ENSG00000134489 | HRH4 | 1.929424839 | 7.21 × 107 | 0.000293744 |
ENSG00000152207 | CYSLTR2 | 1.842833578 | 1.15 × 109 | 2.64 × 106 |
ENSG00000171659 | GPR34 | 1.83179816 | 1.27 × 108 | 1.94 × 105 |
ENSG00000198502 | FCRL5 | 1.754373528 | 3.18 × 105 | 0.003189346 |
ENSG00000143297 | RAB44 | 1.737180256 | 8.10 × 106 | 0.001025892 |
Downregulated Genes | ||||
Ensemble ID | External ID Gene | Fold Difference | p Value | p adj |
ENSG00000118113 | MMP8 | −2.7537698 | 0.0003 | 0.012689748 |
ENSG00000012223 | LTF | −2.3543486 | 0.0005 | 0.015835504 |
ENSG00000124469 | CEACAM8 | −2.1934698 | 0.0025 | 0.038985829 |
ENSG00000123689 | G0S2 | −2.0234872 | 0.0050 | 0.058344874 |
ENSG00000118520 | ARG1 | −1.9991881 | 4.51 × 105 | 0.003737597 |
ENSG00000168209 | DDIT4 | −1.9110235 | 0.0004 | 0.014644995 |
ENSG00000179094 | PER1 | −1.8569679 | 0.0007 | 0.019560866 |
ENSG00000235169 | SMIM1 | −1.8507311 | 0.0485 | 0.207401788 |
ENSG00000255823 | MTRNR2L8 | −1.793644 | 0.0371 | 0.179397531 |
ENSG00000096006 | CRISP3 | −1.7836259 | 0.0020 | 0.034730148 |
Term ID | Description | FDR | Genes |
---|---|---|---|
GO:0002252 | Immune effector process | 0.00060 | LTF, MMP8, CEACAM8, CXCL5, DDIT4, ARG1, CRISP3, RAB44 |
GO:0002376 | Immune system process | 0.00060 | SMPD3, LTF, MMP8, CEACAM8, CYSLTR2, CXCL5, DDIT4, PTGDR2, ARG1, CRISP3, IL5RA, RAB44 |
GO:0006955 | Immune response | 0.00060 | LTF, MMP8, CEACAM8, CYSLTR2, PTGDR2, ARG1, CRISP3, IL5RA, RAB44 |
GO:0043312 | Neutrophil degranulation | 0.0013 | LTF, MMP8, CEACAM8, ARG1, CRISP3, RAB44 |
GO:0006952 | Defense response | 0.0018 | LTF, HRH4, DDIT4, ARG1, CRISP3, IL5RA, ALOX15 |
GO:0032940 | Secretion by cell | 0.0025 | SMPD3, LTF, MMP8, CEACAM8, ARG1, CRISP3, RAB44 |
GO:0001817 | Regulation of cytokine production | 0.0185 | CLC, LTF, PER1, ARG1, IL5RA |
GO:0002376 | Regulation of T cell cytokine production | 0.0198 | CLC, ARG1 |
GO:0071549 | Cellular response to dexamethasone stimulus | 0.0198 | DDIT4, ARG1 |
GO:0002819 | Regulation of adaptive immune response | 0.0206 | CLC, ARG1, ALOX15 |
GO:0009966 | Regulation of signal transduction | 0.0206 | LTF, HRH4, CYSLTR2, DDIT4, PER1, PTGDR2, ARG1, G0S2, ALOX15 |
GO:0046006 | Regulation of activated T cell proliferation | 0.0276 | CLC, ARG1 |
GO:0050896 | Response to stimulus | 0.0280 | LTF, MMP8, CEACAM8, HRH4, CYSLTR2, DDIT4, PER1, PTGDR2, ARG1, G0S2, GPR34, CRISP3, IL5RA, ALOX15, RAB44 |
GO:0048583 | Regulation of response to stimulus | 0.0287 | CLC, LTF, HRH4, CYSLTR2, DDIT4, PER1, PTGDR2, ARG1, G0S2, ALOX15 |
GO:0002820 | Negative regulation of adaptive immune response | 0.0293 | ARG1, ALOX15 |
GO:0016192 | Vesicle-mediated transport | 0.0407 | LTF, MMP8, CEACAM8, ARG1, CRISP3, ALOX15, RAB44 |
GO:0043901 | Negative regulation of multi-organism process | 0.0407 | LTF, PTGDR2, ARG1 |
GO:0006954 | Inflammatory response | 0.0422 | HRH4, CXCL5, IL5RA, ALOX15 |
GO:0032963 | Collagen metabolic process | 0.0422 | MMP8, ARG1 |
N | Sex † | Age, Year | IgE, kU/L | p § | |
---|---|---|---|---|---|
Controls | 94 | 69.1 | 59.2 ± 17.9 | 62.3 ± 98.5 | |
Patients | 267 | 51.3 | 42.6 ± 19.0 | 285.2 ± 422.9 | <0.001 |
Allergic Rhinitis | 52 | 55.8 | 29.8 ± 10.8 | 210.4 ± 348.2 | <0.001 |
Asthma | 187 | 52.9 | 44.9 ± 18.9 | 328.7 ± 458.7 | <0.001 |
Atopic | 124 | 47.6 | 37.6 ± 16.4 | 409.7 ± 521.5 | <0.001 |
Non-atopic | 63 | 63.5 | 59.1 ± 15.1 | 161.1 ± 207.6 | <0.001 |
A w/CRSwNP | 82 | 46.3 | 54.4 ± 16.4 | 310.2 ± 416.7 | <0.001 |
Atopic | 43 | 41.9 | 46.0 ± 15.8 | 417.9 ± 508.0 | <0.001 |
Non-atopic | 39 | 51.3 | 62.6 ± 12.7 | 184.7 ± 222.9 | <0.001 |
A w/o CRSwNP | 105 | 58.1 | 37.8 ± 17.7 | 342.7 ± 489.6 | <0.001 |
Atopic | 81 | 50.6 | 33.2 ± 15.0 | 405.5 ± 531.6 | <0.001 |
Non-atopic | 24 | 83.3 | 53.5 ± 17.3 | 124.1 ± 179.7 | 0.05 |
AERD ** | 24 | 45.8 | 57.2 ± 13.0 | 304.7 ± 354.8 | <0.001 |
CRSwNP w/o A | 28 | 32.1 | 50.9 ± 20.7 | 140.7 ± 208.3 | <0.05 |
Atopic | 14 | 14.3 | 46.1 ± 18.1 | 200.2 ± 238.5 | <0.001 |
Non-atopic | 14 | 50.0 | 55.6 ± 22.6 | 81.2 ± 160.1 | NS |
EO, Cells/µL | p § | FeNO, ppb | PTGDR2 | p § | p ¶ | r | |
---|---|---|---|---|---|---|---|
Controls | 118.9 ± 75.2 | n/a | 4.4 ± 2.7 | 0.390 | |||
Patients | 329.3 ± 287.3 | <0.001 | 44.3 ± 46.8 | 8.2 ± 8.3 | <0.001 | 0.004 | 0.518 |
Allergic Rhinitis | 188.4 ± 139.3 | <.01 | n/a | 7.7 ± 11.3 | NS | NS | 0.585 |
Asthma | 360.7 ± 316.5 | <0.01 | 45.4 ± 47.0 | 8.7 ± 7.8 | <0.001 | 0.006 | 0.587 |
Atopic | 355.7 ± 279.4 | <0.001 | 47.8 ± 48.1 | 8.6 ± 8.4 | <0.001 | 0.008 | 0.566 |
Non-atopic | 370.0 ± 378.6 | <0.001 | 40.1 ± 44.7 | 8.6 ± 7.4 | <0.001 | 0.026 | 0.648 |
A w/ CRSwNP | 483.2 ± 386.2 | <0.001 | 62.7 ± 68.5 | 10.8 ± 9.4 | <0.001 | 0.013 | 0.530 |
Atopic | 483.9 ± 357.5 | <0.001 | 69.3 ± 79.2 | 11.1 ± 10.8 | <0.001 | 0.013 | 0.526 |
Non-atopic | 482.4 ± 419.1 | <0.001 | 55.3 ± 55.6 | 10.6 ± 7.8 | <0.001 | 0.011 | 0.574 |
A w/o CRSwNP | 252.7 ± 187.6 | <0.001 | 34.8 ± 23.5 | 7.0 ± 5.8 | 0.001 | 0.031 | 0.612 |
Atopic | 273.4 ± 183.2 | <0.001 | 38.1 ± 23.6 | 7.3 ± 5.8 | <0.001 | 0.005 | 0.541 |
Non-atopic | 187.6 ± 190.6 | NS | 24.0 ± 20.5 | 5.8 ± 5.9 | NS | NS | 0.836 |
AERD ** | 482.3 ± 295.8 | <0.001 | 30.4 ± 22.5 | 11.7 ± 11.9 | <0.001 | NS | 0.301 |
CRSwNP w/o A | 328.9 ± 177.7 | <0.001 | n/a | 5.9 ± 3.1 | 0.028 | NS | 0.312 |
Atopic | 291.8 ± 183.2 | <0.001 | n/a | 4.8 ± 2.7 | NS | NS | −0.112 |
Non-atopic | 360.4 ± 173.8 | <0.001 | n/a | 7.0 ± 3.2 | 0.005 | NS | 0.617 |
N | PTGDR2 | p† | FeNO | EO | p† | |
---|---|---|---|---|---|---|
Control | 94 | 4.4 ± 2.7 | n/a | 118.9 ± 75.2 | ||
Intermittent | 47 | 8.2 ± 9.8 | 0.11 | 33.3 ± 25.0 | 307.2 ± 293.4 | 0.001 |
Mild Persistent | 29 | 7.3 ± 5.0 | NS | 57.3 ± 76.4 | 341.5 ± 237.9 | <0.001 |
Moderate Persistent | 77 | 8.0 ± 5.3 | 0.004 | 46.0 ± 41.4 | 355.9 ± 302.1 | <0.001 |
Severe Persistent | 26 | 12.1 ± 11.2 | 0.011 | 48.4 ± 50.2 | 406.5 ± 417.6 | <0.001 |
Patients | AUC (95% CI) | |
---|---|---|
PTGDR2 | Eosinophils | |
Asthma vs. non asthma | 0.612 (0.533–0.691) | 0.587 (0.511–0.663) |
CRSwNP: Asthma vs. non asthma | 0.672 (0.566–0.778) | 0.597 (0.486–0.707) |
CRSwNP + Ashtma: AERD vs. non AERD | 0.503 (0.365–0.641) | 0.379 (0.245–0.514) |
Q1 (EO < 250 Cells/µL; PTGDR2 < 9.3-Fold Difference) | |||||||
N | Sex † | Age, Year | IgE, kU/L | FeNO | EO | PTGDR2 | |
Controls | 81 | 69.1 | 60.9 ± 17.0 | 53.7 ± 85.0 | n/a | 105.4 ± 59.4 | 4.1 ± 2.5 |
Allergic Rhinitis | 23 | 60.9 | 31.4 ± 10.3 | 204.9 ± 393.6 | n/a | 104.8 ± 50.0 | 2.8 ± 1.4 |
Asthma | 77 | 58.4 | 44.2 ± 18.4 | 200.5 ± 190.0 | 31.5 ± 26.0 | 135.5 ± 64.6 | 4.5 ± 2.2 |
Atopic | 46 | 54.3 | 34.8 ± 13.2 | 253.1 ± 200.48 | 36.9 ± 29.7 | 141.1 ± 59.9 | 4.6 ± 2.1 |
Non-atopic | 31 | 64.5 | 57.9 ± 16.3 | 119.0 ± 140.2 | 22.2 ± 14.1 | 127.2 ± 71.3 | 4.4 ± 2.3 |
A w/CRSwNP | 18 | 33.3 | 57.8 ± 12.9 | 152.7 ± 148.0 | 51.8 ± 47.4 | 132.9 ± 77.2 | 4.6 ± 2.5 |
A w/o CRSwNP | 59 | 66.1 | 40.3 ± 18.0 | 214.8 ± 199.7 | 26.8 ± 15.1 | 136.2 ± 61.0 | 4.5 ± 2.1 |
CRSwNP w/o A | 3 | 0.0 | 47.0 ± 5.0 | 60.5 ± 50.7 | n/a | 150.0 ± 75.56 | 3.2 ± 0.1 |
AERD ‡ | 7 | 14.3 | 60.4 ± 10.7 | 73.5 ± 55.8 | 33.5 ± 27.1 | 130.4 ± 76.1 | 5.1 ± 2.9 |
Q2 (EO < 250 Cells/µL; PTGDR2 ≥ 9.3-Fold Difference) | |||||||
N | Sex † | Age, Year | IgE, kU/L | FeNO | EO | PTGDR2 | |
Controls | 3 | 66.7 | 68.0 ± 4.0 | 179.4 ± 257.3 | n/a | 86.7 ± 5.7 | 10.2 ± 0.8 |
Allergic Rhinitis | 4 | 25.0 | 27.7 ± 14.6 | 477.7 ± 609.6 | n/a | 120.0 ± 74.4 | 19.0 ± 16.6 |
Asthma | 6 | 50.0 | 48.3 ± 24.8 | 376.9 ± 528.6 | 38.3 ± 31.7 | 143.3 ± 77.4 | 17.9 ± 9.7 |
Atopic | 5 | 40.0 | 42.4 ± 22.4 | 450.2 ± 555.9 | 40.2 ± 35.1 | 132.0 ± 80.7 | 18.4 ± 10.8 |
Non-atopic | 1 | 100.0 | 78.0 | 10.6 | 29.0 | 200.0 | 15.3 |
A w/CRSwNP | 3 | 33.3 | 63.0 ± 13.7 | 290.5 ± 452.1 | 19.0 ± 15.6 | 106.7 ± 95.0 | 23.9 ± 11.3 |
A w/o CRSwNP | 3 | 66.7 | 33.7 ± 26.5 | 463.3 ± 686.9 | 57.7 ± 33.8 | 180.0 ± 43.6 | 11.9 ± 0.8 |
CRSwNP w/o A | 1 | 0.0 | 25.0 | 40.0 | n/a | 40.0 | 12.6 |
AERD ‡ | 1 | 0.0 | 60.0 ± 0.0 | 812.0 ± 0.0 | n/a | 10.0 ± 0.0 | 36.7 ± 0.0 |
Q3 (EO ≥ 250 Cells/µL; PTGDR2 ≥ 9.3-Fold Difference) | |||||||
N | Sex † | Age, Year | IgE, kU/L | FeNO | EO | PTGDR2 | |
Controls | 1 | 100 | 77 | 57.1 | n/a | 330 | 9.3 |
Allergic Rhinitis | 6 | 83.3 | 25.8 ± 8.2 | 190.8 ± 168.8 | n/a | 394.2 ± 156.4 | 25.3 ± 21.1 |
Asthma | 48 | 45.8 | 45.1 ± 20.6 | 559.2 ± 735.2 | 62.5 ± 65.0 | 673.5 ± 363.0 | 17.9 ± 8.9 |
Atopic | 30 | 33.3 | 35.9 ± 17.6 | 743.5 ± 837.2 | 67.0 ± 75.1 | 662.3 ± 316.9 | 17.9 ± 9.7 |
Non-atopic | 18 | 66.7 | 60.6 ± 15.5 | 225.3 ± 304.5 | 53.9 ± 41.5 | 962.2 ± 438.8 | 18.0 ± 7.4 |
A w/CRSwNP | 31 | 45.2 | 52.4 ± 18.8 | 386.9 ± 535.6 | 70.3 ± 82.6 | 752.9 ± 413.0 | 18.4 ± 9.6 |
A w/o CRSwNP | 17 | 47.1 | 31.9 ± 17.1 | 843.1 ± 930.0 | 51.4 ± 24.0 | 582.8 ± 181.4 | 17.0 ± 7.4 |
CRSwNP w/o A | 3 | 66.7 | 71.3 ± 13.2 | 222.7 ± 352.3 | n/a | 606.7 ± 55.1 | 11.1 ± 09 |
AERD ‡ | 9 | 55.6 | 52.8 ± 16.6 | 452.8 ± 431.1 | 33.2 ± 27.2 | 571.1 ± 259.6 | 18.8 ± 13.8 |
Q4 (EO ≥ 250 Cells/µL; PTGDR2 < 9.3-Fold Difference) | |||||||
N | Sex † | Age, Year | IgE, kU/L | FeNO | EO | PTGDR2 | |
Controls | 6 | 83.3 | 41.7 ± 17.5 | 81.6 ± 110.6 | n/a | 281.7 ± 32.5 | 5.1 ± 2.2 |
Allergic Rhinitis | 8 | 37.5 | 36.6 ± 13.9 | 205.2 ± 351.4 | n/a | 308.5 ± 69.7 | 4.7 ± 1.9 |
Asthma | 47 | 55.3 | 46.5 ± 17.8 | 336.6 ± 362.7 | 59.9 ± 53.6 | 438.0 ± 209.7 | 5.4 ± 2.2 |
Atopic | 35 | 54.3 | 42.3 ± 17.4 | 386.2 ± 395.0 | 51.5 ± 37.8 | 407.0 ± 132.8 | 5.3 ± 2.2 |
Non-atopic | 12 | 58.3 | 58.8 ± 12.5 | 191.6 ± 192.3 | 91.2 ± 94.3 | 528.3 ± 342.6 | 5.9 ± 2.2 |
A w/CRSwNP | 28 | 57.1 | 54.2 ± 15.2 | 340.9 ± 393.2 | 77.0 ± 67.3 | 450.0 ± 245.7 | 5.7 ± 2.2 |
A w/o CRSwNP | 19 | 52.6 | 35.2 ± 15.2 | 330.1 ± 322.9 | 49.9 ± 43.9 | 420.4 ± 145.9 | 5.2 ± 2.3 |
CRSwNP w/o A | 19 | 36.8 | 51.6 ± 21.5 | 119.7 ± 159.1 | n/a | 339.2 ± 107.2 | 5.1 ± 2.1 |
AERD ‡ | 7 | 71.4 | 59.4 ± 11.9 | 261.2 ± 305.6 | 32.3 ± 10.2 | 431.4 ± 270.5 | 5.4 ± 2.0 |
Group | Quadrant | p * | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||||||||
N | % | N | % | N | % | N | % | N | % | ||
Control | 81 | 89.0 | 3 | 3.3 | 1 | 1.1 | 6 | 6.6 | <0.05 | 91 | 100 |
AR | 23 | 56.1 | 4 | 9.8 | 6 | 14.6 | 8 | 19.5 | <0.05 | 41 | 100 |
Asthma | 77 | 43.3 | 6 | 3.4 | 48 | 27.0 | 47 | 26.4 | <0.05 | 178 | 100 |
AA | 46 | 39.7 | 5 | 4.3 | 30 | 25.9 | 35 | 30.2 | <0.05 | 116 | 100 |
NAA | 31 | 50.0 | 1 | 1.6 | 18 | 29.0 | 12 | 19.4 | <0.05 | 62 | 100 |
A w/CRSwNP | 18 | 22.5 | 3 | 3.8 | 31 | 38.8 | 28 | 35.0 | <0.05 | 80 | 100 |
A w/o CRSwNP | 59 | 60.2 | 3 | 3.1 | 17 | 17.3 | 19 | 19.4 | <0.05 | 98 | 100 |
AERD | 7 | 29.2 | 1 | 4.2 | 9 | 37.5 | 7 | 29.2 | <0.05 | 24 | 100 |
CRSwNP w/o A | 3 | 11.5 | 1 | 3.8 | 3 | 11.5 | 19 | 73.1 | <0.05 | 26 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Sánchez, A.; Estravís, M.; Martin, M.J.; Pérez-Pazos, J.; Martín-García, C.; Gil-Melcón, M.; Ramos-González, J.; Eguiluz-Gracia, I.; Triviño, J.C.; Isidoro-García, M.; et al. PTGDR2 Expression in Peripheral Blood as a Potential Biomarker in Adult Patients with Asthma. J. Pers. Med. 2021, 11, 827. https://doi.org/10.3390/jpm11090827
García-Sánchez A, Estravís M, Martin MJ, Pérez-Pazos J, Martín-García C, Gil-Melcón M, Ramos-González J, Eguiluz-Gracia I, Triviño JC, Isidoro-García M, et al. PTGDR2 Expression in Peripheral Blood as a Potential Biomarker in Adult Patients with Asthma. Journal of Personalized Medicine. 2021; 11(9):827. https://doi.org/10.3390/jpm11090827
Chicago/Turabian StyleGarcía-Sánchez, Asunción, Miguel Estravís, Maria J. Martin, Jacqueline Pérez-Pazos, Cristina Martín-García, María Gil-Melcón, Jacinto Ramos-González, Ibon Eguiluz-Gracia, Juan Carlos Triviño, María Isidoro-García, and et al. 2021. "PTGDR2 Expression in Peripheral Blood as a Potential Biomarker in Adult Patients with Asthma" Journal of Personalized Medicine 11, no. 9: 827. https://doi.org/10.3390/jpm11090827
APA StyleGarcía-Sánchez, A., Estravís, M., Martin, M. J., Pérez-Pazos, J., Martín-García, C., Gil-Melcón, M., Ramos-González, J., Eguiluz-Gracia, I., Triviño, J. C., Isidoro-García, M., Dávila, I., & Sanz, C. (2021). PTGDR2 Expression in Peripheral Blood as a Potential Biomarker in Adult Patients with Asthma. Journal of Personalized Medicine, 11(9), 827. https://doi.org/10.3390/jpm11090827