Metabolomic Biomarker Candidates for Skeletal Muscle Loss in the Collagen-Induced Arthritis (CIA) Model
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Smolen, J.S.; Aletaha, D.; Barton, A.; Burmester, G.R.; Emery, P.; Firestein, G.S.; Kavanaugh, A.; McInnes, I.B.; Solomon, D.H.; Strand, V.; et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 2018, 4, 18001. [Google Scholar] [CrossRef]
- Navarro-Millan, I.; Singh, J.A.; Curtis, J.R. Systematic Review of Tocilizumab for Rheumatoid Arthritis: A New Biologic Agent Targeting the Interleukin-6 Receptor. Clin. Ther. 2012, 34, 788–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giles, J.T. Extra-articular Manifestations and Comorbidity in Rheumatoid Arthritis: Potential Impact of Pre-Rheumatoid Arthritis Prevention. Clin. Ther. 2019, 41, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Masuko, K. Rheumatoid cachexia revisited: A metabolic co-morbidity in rheumatoid arthritis. Front. Nutr. 2014, 1, 20. [Google Scholar] [CrossRef] [Green Version]
- Uutela, T.I.; Kautiainen, H.J.; Häkkinen, A.H. Decreasing muscle performance associated with increasing disease activity in patients with rheumatoid arthritis. PLoS ONE 2018, 13, e0194917. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Mochizuki, T.; Yano, K.; Ikari, K.; Okazaki, K. Sarcopenia-associated factors in Japanese patients with rheumatoid arthritis: A cross-sectional study. Geriatr. Gerontol. Int. 2019, 19, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Torii, M.; Hashimoto, M.; Hanai, A.; Fujii, T.; Furu, M.; Ito, H.; Uozumi, R.; Hamaguchi, M.; Terao, C.; Yamamoto, W.; et al. Prevalence and factors associated with sarcopenia in patients with rheumatoid arthritis. Mod. Rheumatol. 2019, 29, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Tada, M.; Mandai, K.; Hidaka, N.; Inui, K.; Nakamura, H. Glucocorticoid use is an independent risk factor for developing sarcopenia in patients with rheumatoid arthritis: From the CHIKARA study. Clin. Rheumatol. 2020, 39, 1757–1764. [Google Scholar] [CrossRef]
- Roubenoff, R. Rheumatoid cachexia: A complication of rheumatoid arthritis moves into the 21st century. Arthritis Res. Ther. 2009, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Evans, W.J.; Morley, J.E.; Argilés, J.; Bales, C.; Baracos, V.; Guttridge, D.; Jatoi, A.; Kalantar-Zadeh, K.; Lochs, H.; Mantovani, G.; et al. Cachexia: A new definition. Clin. Nutr. 2008, 27, 793–799. [Google Scholar] [CrossRef]
- Santo, R.C.; Fernandes, K.Z.; Lora, P.S.; Filippin, L.I.; Xavier, R.M. Prevalence of rheumatoid cachexia in rheumatoid arthritis: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2018, 9, 816–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuriyan, R. Body composition techniques. Indian J. Med. Res. 2018, 148, 648–658. [Google Scholar] [CrossRef]
- Ali, S.; Garcia, J.M. Sarcopenia, cachexia and aging: Diagnosis, mechanisms and therapeutic options—A mini-review. Gerontology 2014, 60, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, M.; Young, S.P. Metabolomics—a novel window into inflammatory disease. Swiss Med. Wkly. 2013, 143, w13743. [Google Scholar] [CrossRef] [PubMed]
- Semerano, L.; Romeo, P.-H.; Boissier, M.-C. Metabolomics for rheumatic diseases: Has the time come? Ann. Rheum. Dis. 2015, 74, 1325–1326. [Google Scholar] [CrossRef] [Green Version]
- Priori, R.; Scrivo, R.; Brandt, J.; Valerio, M.; Casadei, L.; Valesini, G.; Manetti, C. Metabolomics in rheumatic diseases: The potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmun. Rev. 2013, 12, 1022–1030. [Google Scholar] [CrossRef]
- Young, S.P.; Kapoor, S.R.; Viant, M.R.; Byrne, J.J.; Filer, A.; Buckley, C.D.; Kitas, G.D.; Raza, K. The Impact of Inflammation on Metabolomic Profiles in Patients with Arthritis. Arthritis Rheum. 2013, 65, 2015–2023. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, S.R.; Filer, A.; Fitzpatrick, M.A.; Fisher, B.A.; Taylor, P.C.; Buckley, C.D.; McInnes, I.B.; Raza, K.; Young, S.P. Metabolic Profiling Predicts Response to Anti-Tumor Necrosis Factor alpha Therapy in Patients With Rheumatoid Arthritis. Arthritis Rheum. 2013, 65, 1448–1456. [Google Scholar] [CrossRef]
- Alabarse, P.V.; Lora, P.; Silva, J.M.; Santo, R.C.; Freitas, E.C.; de Oliveira, M.S.; Almeida, A.S.; Immig, M.; Teixeira, V.O.; Filippin, L.I.; et al. Collagen-induced arthritis as an animal model of rheumatoid cachexia. J. Cachexia Sarcopenia Muscle 2018, 9, 603–612. [Google Scholar] [CrossRef]
- Oliveira, P.G.; Grespan, R.; Pinto, L.G.; Meurer, L.; Brenol, J.C.; Roesler, R.; Schwartsmann, G.; Cunha, F.Q.; Xavier, R.M. Protective effect of RC-3095, an antagonist of the gastrin-releasing peptide receptor, in experimental arthritis. Arthritis Rheum. 2011, 63, 2956–2965. [Google Scholar] [CrossRef] [PubMed]
- MetaboAnalyst. Available online: http://www.metaboanalyst.ca/ (accessed on 1 July 2021).
- Gao, J.; Tarcea, V.G.; Karnovsky, A.; Mirel, B.R.; Weymouth, T.E.; Beecher, C.W.; Cavalcoli, J.D.; Athey, B.D.; Omenn, G.S.; Burant, C.F.; et al. Metscape: A Cytoscape plug-in for visualizing and interpreting metabolomic data in the context of human metabolic networks. Bioinformatics 2010, 26, 971–973. [Google Scholar] [CrossRef] [Green Version]
- Filippin, L.I.; Teixeira, V.N.; Viacava, P.R.; Lora, P.S.; Xavier, L.L.; Xavier, R.M. Temporal development of muscle atrophy in murine model of arthritis is related to disease severity. J. Cachexia Sarcopenia Muscle 2013, 4, 231–238. [Google Scholar] [CrossRef]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Mandal, R.; Sinelnikov, I.V.; Broadhurst, D.; Wishart, D.S. MetaboAnalyst 2.0—A comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012, 40, W127–W133. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [Google Scholar] [CrossRef] [Green Version]
- KEGG. Available online: www.genome.jp/kegg (accessed on 1 July 2021).
- PUBCHEM. Available online: pubchem.ncbi.nlm.nih.gov (accessed on 1 July 2021).
- HMDB. Available online: www.hmdb.ca (accessed on 1 July 2021).
- Romanick, M.; Thompson, L.V.; Brown-Borg, H.M. Murine models of atrophy, cachexia, and sarcopenia in skeletal muscle. Biochim. Et Biophys. Acta-Mol. Basis Dis. 2013, 1832, 1410–1420. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, C.; Hiraishi, T.; Oku, T.; Okuma, K.; Suzumura, K.; Hashimoto, M.; Ito, H.; Aramori, I.; Hirayama, Y. Metabolomic approach to the exploration of biomarkers associated with disease activity in rheumatoid arthritis. PLoS ONE 2019, 14, e0219400. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Chen, B.; Fang, Z.; Leng, Y.-F.; Wang, D.-W.; Chen, F.-Q.; Xu, X.; Sun, Z.-L. Metabolomics in the development and progression of rheumatoid arthritis: A systematic review. Jt. Bone Spine 2020, 87, 425–430. [Google Scholar] [CrossRef]
- He, M.; Harms, A.C.; Van Wijk, E.; Wang, M.; Berger, R.; Koval, S.; Hankemeier, T.; Van Der Greef, J. Role of amino acids in rheumatoid arthritis studied by metabolomics. Int. J. Rheum. Dis. 2019, 22, 38–46. [Google Scholar] [CrossRef] [PubMed]
- He, M.; van Wijk, E.; van Wietmarschen, H.; Wang, M.; Sun, M.; Koval, S.; van Wijk, R.; Hankemeier, T.; van der Greef, J. Spontaneous ultra-weak photon emission in correlation to inflammatory metabolism and oxidative stress in a mouse model of collagen-induced arthritis. J. Photochem. Photobiol. B: Biol. 2017, 168, 98–106. [Google Scholar] [CrossRef]
- Yun, X.; Dong, S.; Hu, Q.; Dai, Y.; Xia, Y. 1H NMR-based metabolomics approach to investigate the urine samples of collagen-induced arthritis rats and the intervention of tetrandrine. J. Pharm. Biomed. Anal. 2018, 154, 302–311. [Google Scholar] [CrossRef]
- Zabek, A.; Swierkot, J.; Malak, A.; Zawadzka, I.; Deja, S.; Bogunia-Kubik, K.; Mlynarz, P. Application of 1 H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis. J. Pharm. Biomed. Anal. 2016, 117, 544–550. [Google Scholar] [CrossRef] [Green Version]
- Bauerová, K.; Poništ, S.; Mihalová, D.; Dráfi, F.; Kuncírová, V. Utilization of adjuvant arthritis model for evaluation of new approaches in rheumatoid arthritis therapy focused on regulation of immune processes and oxidative stress. Interdiscip. Toxicol. 2011, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drafi, F.; Bauerova, K.; Kuncirova, V.; Ponist, S.; Mihalova, D.; Fedorova, T.; Harmatha, J.; Nosál, R. Pharmacological influence on processes of adjuvant arthritis: Effect of the combination of an antioxidant active substance with methotrexate. Interdiscip. Toxicol. 2012, 5, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Ubhi, B.K.; Riley, J.H.; Shaw, P.A.; Lomas, D.A.; Tal-Singer, R.; MacNee, W.; Griffin, J.L.; Connor, S.C. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur. Respir. J. 2011, 40, 345–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M.; Suliman, M.E.; Qureshi, A.R.; Garcia-Lopez, E.; Barany, P.; Heimbürger, O.; Stenvinkel, P.; Lindholm, B. Consequences of low plasma histidine in chronic kidney disease patients: Associations with inflammation, oxidative stress, and mortality. Am. J. Clin. Nutr. 2008, 87, 1860–1866. [Google Scholar] [CrossRef]
- Arner, P.; Henjes, F.; Schwenk, J.M.; Darmanis, S.; Dahlman, I.; Iresjö, B.-M.; Naredi, P.; Agustsson, T.; Lundholm, K.; Nilsson, P.; et al. Circulating Carnosine Dipeptidase 1 Associates with Weight Loss and Poor Prognosis in Gastrointestinal Cancer. PLoS ONE 2015, 10, e0123566. [Google Scholar] [CrossRef]
- Carlson, A.K.; Rawle, R.A.; Wallace, C.W.; Adams, E.; Greenwood, M.C.; Bothner, B.; June, R.K. Global metabolomic profiling of human synovial fluid for rheumatoid arthritis biomarkers. Clin. Exp. Rheumatol. 2019, 37, 393–399. [Google Scholar]
- Li, J.; Che, N.; Xu, L.; Zhang, Q.; Wang, Q.; Tan, W.; Zhang, M. LC-MS-based serum metabolomics reveals a distinctive signature in patients with rheumatoid arthritis. Clin. Rheumatol. 2018, 37, 1493–1502. [Google Scholar] [CrossRef]
- Kelley, J.M.; Hughes, L.B.; Bridges, S.L., Jr. Does gamma-aminobutyric acid (GABA) influence the development of chronic inflammation in rheumatoid arthritis? J. Neuroinflamm. 2008, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Ham, D.J.; Caldow, M.K.; Lynch, G.; Koopman, R. Arginine protects muscle cells from wasting in vitro in an mTORC1-dependent and NO-independent manner. Amino Acids 2014, 46, 2643–2652. [Google Scholar] [CrossRef]
- Filippin, L.I.; Moreira, A.J.; Marroni, N.P.; Xavier, R.M. Nitric oxide and repair of skeletal muscle injury. Nitric Oxide Biol. Chem. 2009, 21, 157–163. [Google Scholar] [CrossRef]
- Filippin, L.I.; Cuevas, M.J.; Lima, E.; Marroni, N.P.; Gonzalez-Gallego, J.; Xavier, R.M. Nitric oxide regulates the repair of injured skeletal muscle. Nitric Oxide 2011, 24, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Filippin, L.I.; Cuevas, M.J.; Lima, E.; Marroni, N.P.; González-Gallego, J.; Xavier, R.M. The role of nitric oxide during healing of trauma to the skeletal muscle. Inflamm. Res. 2010, 60, 347–356. [Google Scholar] [CrossRef]
- Merry, T.L.; Steinberg, G.R.; Lynch, G.S.; McConell, G.K. Skeletal muscle glucose uptake during contraction is regulated by nitric oxide and ROS independently of AMPK. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E577–E585. [Google Scholar] [CrossRef]
- Urbaniak, B.; Plewa, S.; Klupczynska, A.; Sikorska, D.; Samborski, W.; Kokot, Z.J. Serum free amino acid levels in rheumatoid arthritis according to therapy and physical disability. Cytokine 2018, 113, 332–339. [Google Scholar] [CrossRef]
- Patel, S.S.; Molnar, M.Z.; Tayek, J.A.; Ix, J.H.; Noori, N.; Benner, D.; Heymsfield, S.; Kopple, J.D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum creatinine as a marker of muscle mass in chronic kidney disease: Results of a cross-sectional study and review of literature. J. Cachexia Sarcopenia Muscle 2012, 4, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, T.J.; Lemmey, A.B.; Jones, J.G.; Sheikh, F.; Ahmad, Y.A.; Chitale, S.; Maddison, P.J.; O’Brien, T.D. Can Creatine Supplementation Improve Body Composition and Objective Physical Function in Rheumatoid Arthritis Patients? A Randomized Controlled Trial. Arthritis Care Res. 2016, 68, 729–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penet, M.-F.; Gadiya, M.M.; Krishnamachary, B.; Nimmagadda, S.; Pomper, M.G.; Artemov, D.; Bhujwalla, Z.M. Metabolic Signatures Imaged in Cancer-Induced Cachexia. Cancer Res. 2011, 71, 6948–6956. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Liu, X.; Wu, Y.; Zhang, N. The Intervention Effects of Acupuncture on Fatigue Induced by Exhaustive Physical Exercises: A Metabolomics Investigation. Evid. Based Complement. Altern. Med. 2015, 2015, 508302. [Google Scholar] [CrossRef]
- Biolo, G.; Cederholm, T.; Muscaritoli, M. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: From sarcopenic obesity to cachexia. Clin. Nutr. 2014, 33, 737–748. [Google Scholar] [CrossRef]
- Rennie, M.J.; Ahmed, A.; Khogali, S.E.; Low, S.Y.; Hundal, H.S.; Taylor, P.M. Glutamine metabolism and transport in skeletal muscle and heart and their clinical relevance. J. Nutr. 1996, 126 (Suppl. 4), 1142S–1149S. [Google Scholar] [CrossRef] [PubMed]
- Smith, H.J.; Greenberg, N.A.; Tisdale, M.J. Effect of eicosapentaenoic acid, protein and amino acids on protein synthesis and degradation in skeletal muscle of cachectic mice. Br. J. Cancer 2004, 91, 408–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevalier, S.; Winter, A. Do patients with advanced cancer have any potential for protein anabolism in response to amino acid therapy? Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 213–218. [Google Scholar] [CrossRef]
- Van Norren, K.; Peters, S.J.; Van Helvoort, A.; Kegler, D.; Argiles, J.M.; Luiking, Y.C.; Laviano, A.; Van Bergenhenegouwen, J.; Deutz, N.; Haagsman, H.P.; et al. Dose-dependent effects of leucine supplementation on preservation of muscle mass in cancer cachectic mice. Oncol. Rep. 2011, 26, 247–254. [Google Scholar] [CrossRef]
- Liu, M.; Alimov, A.; Wang, H.; Frank, J.; Katz, W.; Xu, M.; Ke, Z.-J.; Luo, J. Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK. Neuroscience 2014, 267, 102–113. [Google Scholar] [CrossRef] [Green Version]
Group | Calibration | Cross Validated | ||
---|---|---|---|---|
CO vs. CIA Same Time Point | Sensitivity | Specificity | Sensitivity | Specificity |
CO 18 and CIA 18 | 1.00 | 1.00 | 0.92 | 0.67 |
CO 25 and CIA 25 | 0.90 | 0.83 | 0.90 | 0.67 |
CO 35 and CIA 35 | 1.00 | 0.90 | 0.75 | 0.70 |
CO 45 and CIA 45 | 0.82 | 0.78 | 0.73 | 0.56 |
CO 55 and CIA 55 | 1.00 | 1.00 | 0.55 | 0.33 |
CO 65 and CIA 65 | 1 | 1 | 0.444 | 0.636 |
Pair analysis | ||||
0 and CIA 18 | 1 | 1 | 0.792 | 0.727 |
CIA 18 and CIA 25 | 0.727 | 0.9 | 0.636 | 0.8 |
CIA 25 and CIA 35 | 1 | 1 | 0.9 | 0.917 |
CIA 35 and CIA 45 | 1 | 1 | 0.667 | 0.727 |
CIA 45 and CIA 55 | 0.727 | 0.727 | 0.273 | 0.091 |
CIA 55 and CIA 65 | 1 | 1 | 0.545 | 0.25 |
ALL GROUPS | ||||
T 0 | 0.88 | 0.80 | 0.79 | 0.77 |
CIA 18 | 0.83 | 0.66 | 0.75 | 0.66 |
CIA 25 | 0.70 | 0.57 | 0.60 | 0.62 |
CIA 35 | 0.83 | 0.62 | 0.83 | 0.64 |
CIA 45 | 1.00 | 0.56 | 0.82 | 0.55 |
CIA 55 | 0.909 | 0.439 | 0.636 | 0.485 |
CIA 65 | 0.667 | 0.403 | 0.667 | 0.425 |
CO 18 | 0.444 | 0.784 | 0.333 | 0.776 |
CO 25 | 0.833 | 0.788 | 0.667 | 0.781 |
CO 35 | 0.9 | 0.752 | 0.8 | 0.789 |
CO 45 | 0.667 | 0.664 | 0.556 | 0.657 |
CO 55 | 0.778 | 0.381 | 0.667 | 0.373 |
CO 65 | 0.909 | 0.523 | 0.636 | 0.53 |
CIA ONLY | ||||
CIA 18 | 0.92 | 0.93 | 0.67 | 0.89 |
CIA 25 | 0.60 | 0.73 | 0.50 | 0.75 |
CIA 35 | 0.92 | 0.76 | 0.75 | 0.70 |
CIA 45 | 0.91 | 0.52 | 0.73 | 0.56 |
CIA 55 | 0.82 | 0.54 | 0.64 | 0.52 |
CIA 65 | 0.667 | 0.55 | 0.56 | 0.54 |
Metabolite | Statistics Comparison Origin (NMR or BML) a | Variable Importance in Projection Score |
---|---|---|
3-Methylhistidine | CIA pair analysis 45 × 55 (NMR) | 1.0 × 101 |
CIA vs. CO at 18, 25, 45, 55, and 65 (BML) | 6.6 × 10°, 4.8 × 10°, 2.7 × 10°, 1.9 × 10°, 2.0 × 10° | |
CIA pair analysis 25 × 35, 35 × 45 (BML) | 2.0 × 10°, 1.3 × 10° | |
4-Aminobutyrate | CIA vs. CO at 18, 25, 35, 45, and 55 days (BML) | 1.3 × 10°, 3.6 × 101, 1.7 × 101, 1.4 × 10°, 1.5 × 10° |
CIA pair analysis 18 × 25, 25 × 35, 35 × 45 (BML) | 1.8 × 10°, 3.5 × 10°, 4.9 × 10° | |
Acetylcholine | CIA vs. CO at 45, and 65 days (BML) | 1.6 × 10°, 1.4 × 10° |
CIA pair analysis 35 × 45, and 45 × 55 (NMR) | 4.9 × 101, 3.8 × 101 | |
Arginine | CIA vs. CO at 18, 35, and 65 days (BML) | 1.9 × 10°, 2.4 × 10°, 1.8 × 10° |
Aspartate | CIA vs. CO at 18 days (BML) | 2.0 × 10° |
Carnosine | CIA vs. CO at 65 days (NMR) | 2.8 × 102 |
CIA pair analysis 25 × 35 (NMR) | 3.6 × 10° | |
CIA vs. CO at 18, 25, 35, 45, 55, and 65 days (BML) | 2.1 × 10°, 1.7 × 101, 4.6 × 101, 1.2 × 101, 2.9 × 101, 5.0 × 10° | |
CIA pair analysis 25 × 35, 35 × 45, 45 × 55, 55 × 65 (BML) | 5.9 × 10°, 1.6 × 101, 3.1 × 10°, 4.4 × 101 | |
Creatine | CIA pair analysis 35 × 45, 45 × 55 (NMR) | 2.3 × 10°, 8.4 × 101 |
CIA vs. CO at 18, 35, 55, and 65 days (BML) | 1.8 × 10°, 1.4 × 10°, 3.3 × 10°, 1.4 × 10° | |
Creatinine | CIA vs. CO at 45 days (NMR) | 3.4 × 101 |
CIA pair analysis 35 × 45 (NMR) | 3.1 × 101 | |
CIA vs. CO at 25, 35, 45, and 65 days (BML) | 3.3 × 10°, 9.2 × 10°, 1.6 × 10°, 4.0 × 10°, | |
CIA pair analysis 25 × 35 | 3.7 × 10° | |
Glutamine | CIA vs. CO at 18, 25, 45, 55, and 65 (BML) | 3.1 × 10°, 1.8 × 10°, 3.2 × 10°, 3.4 × 10°, 2.4 × 10° |
CIA pair analysis 25 × 35, 45 × 55 (BML) | 5.7 × 10°, 1.2 × 10° | |
Histamine | CIA vs. CO at 35, 45, 55, and 65 days (NMR) | 2.8 × 101, 3.7 × 101, 6.2 × 101, 5.2 × 101 |
CIA pair analysis 0 × 18, 18 × 25, 25 × 35, 35 × 45, 45 × 55, 55 × 65 (NMR) | 8.7 × 10°, 8.5 × 10°, 4.9 × 10°, 1.3 × 101, 1.9 × 101, 1.1 × 102 | |
CIA vs. CO at 35, 45, and 65 days (BML) | 3.9 × 10°, 3.7 × 10°, 4.9 × 10° | |
CIA pair analysis 25 × 35 (BML) | 4.2 × 10° | |
Histidine | CIA vs. CO at 18 days (NMR) | 2.6 × 101 |
CIA pair analysis 55 × 65 (NMR) | 1.2 × 102 | |
CIA vs. CO at 35, 55, and 65 days (BML) | 2.5 × 10°, 1.2 × 10°, 2.5 × 10° | |
Isoleucine | CIA vs. CO at 45 days (NMR) | 2.1 × 101 |
CIA vs. CO at 18, 25, 35, 45, and 65 days (BML) | 5.3 × 10°, 1.1 × 10°, 1.5 × 10°, 1.7 × 10°, 1.7 × 10°, | |
Leucine | CIA vs. CO at 18, 25, 35, 45, 55, and 65 days (BML) | 1.0 × 10°, 2.7 × 10°, 3.5 × 10°, 1.1 × 10°, 1.5 × 10°, 2.2 × 10° |
CIA pair analysis 25 × 35, 35 × 45 (BML) | 1.8 × 10°, 1.6 × 10° | |
L-Methionine | CIA vs. CO at 18 days (NMR) | 5.4 × 101 |
CIA pair analysis 0 × 18, 18 × 25 (NMR) | 1.1 × 102, 2.1 × 10° | |
CIA vs. CO at 25, and 55 days (BML) | 1.2 × 10°, 5.1 × 10° | |
Lysine | CIA pair analysis 0 × 18, 25 × 35, 45 × 55, 55 × 65 (NMR) | 2.8 × 101, 5.3 × 10°, 3.1 × 10°, 6.1 × 10°, 2.5 × 10° |
CIA vs. CO at 18, and 45 days (BML) | 5.4 × 10°, 3.2 × 10° | |
myo-Inositol | CIA vs. CO at 18, 35, 45, 55, and 65 days (BML) | 1.7 × 10°, 4.9 × 10°, 1.1 × 10°, 1.6 × 10°, 1.2 × 10° |
CIA pair analysis 25 × 35 (BML) | 2.1 × 101 | |
N,N-Dimethylglycine | CIA vs. CO at 18, 25, 55, and 65 days (BML) | 3.5 × 10°, 2.4 × 10°, 2.6 × 10°, 1.3 × 10° |
CIA pair analysis 25 × 35 (BML) | 4.1 × 10° | |
N-Acetylalanine | CIA vs. CO at 18, 25, 45, and 55 days (BML) | 1.5 × 10°, 2.8 × 10°, 1.7 × 10°, 5.4 × 10° |
N-Acetylmethionine | CIA vs. CO at 18, 25, and 65 days (BML) | 3.1 × 10°, 8.7 × 10°, 3.4 × 10° |
Pantothenate | CIA vs. CO at 35 days (NMR) | 2.1 × 101 |
CIA pair analysis 35 × 45, 45 × 55, 55 × 65 (NMR) | 1.4 × 101, 3.3 × 101, 8.8 × 10° | |
CIA vs. CO at 18, 25, 35, and 55 days (BML) | 2.7 × 10°, 1.8 × 10°, 1.0 × 10°, 1.8 × 10° | |
Phenylalanine | CIA vs. CO at 18 days (BML) | 1.8 × 10° |
Phosphocholine | CIA vs. CO at 25, 35, and 55 days (BML) | 4.3 × 10°, 1.6 × 10°, 1.7 × 10° |
Phosphocreatine | CIA vs. CO at 45 days (NMR) | 3.4 × 101 |
CIA pair analysis 35 × 45, 45 × 55 (NMR) | 3.1 × 101, 8.4 × 101 | |
CIA vs. CO 25, 35, 55, and 65 days (BML) | 1.9 × 10°, 2.9 × 10°, 6.2 × 10°, 3.3 × 10° | |
Pyridoxine | CIA vs. CO at 35, and 55 days (NMR) | 4.6 × 101, 5.2 × 101 |
Sarcosine | CIA vs. CO at 25, 35, 45, and 65 days (BML) | 1.0 × 10°, 3.3 × 10°, 2.3 × 10°, 1.9 × 10° |
Succinylacetone | CIA vs. CO at 18, 25, 55, and 65 days (NMR) | 7.0 × 101, 4.7 × 101, 6.8 × 101, 3.7 × 101, 1.0 × 102 |
CIA pair analysis 55 × 65 (NMR) | 5.2 × 101 | |
Thiamine | CIA pair analysis 25 × 35 (BML) | 2.8 × 10° |
Urocanate | CIA pair analysis 55 × 65 (NMR) | 5.0 × 10° |
BML | Alanine, Aspartate, and Glutamate Metabolism | Arginine and Proline Metabolism | Ascorbate and Aldarate Metabolism | B Vitamin Complex | Butanoate Metabolism | Glycerophospholipid Metabolism | Glycine, Serine, and Threonine Metabolism | Histidine Metabolism | Lysine Metabolism | Nitrogen Metabolism | Pantothenate and CoA Biosynthesis | Valine, Leucine, and Isoleucine Degradation |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CIA pair analysis 0 × 18 | 22 (0.002) | 0 (0.066) | ||||||||||
CIA pair analysis 18 × 25 | 14 (0.040) | 3 (0.326) | 22 (0.027) | |||||||||
CIA pair analysis 25 × 35 | 26 (0.070) | 28 (p < 0.001) | 0 (0.154) | 3 (0.337) | 3 (0.109) | 22 (0.029) | 0 (0.154) | 33 (0.185) | ||||
CIA pair analysis 35 × 45 | 22 (0.007) | 3 (0.337) | 11 (0.103) | 2 (0.109) | 0 (0.244) | 33 (0.185 | ||||||
CIA pair analysis 45 × 55 | 15 (0.074) | 21 (0.001) | 11 (0.110) | 0 (0.453) | 22 (0.032) | 0 (0.074) | 0 (0.159) | |||||
CIA pair analysis 55 ×65 | 0 (0.002) | |||||||||||
NMR | ||||||||||||
CIA pair analysis 0 × 18 | 22 (0.166) | 0 (0.030) | ||||||||||
CIA pair analysis 18 × 25 | 22 (0.130) | |||||||||||
CIA pair analysis 25 × 35 | 0 (0.284) | 22 (0.010) | 0 (0.023) | 2 (0.336) | ||||||||
CIA pair analysis 35 × 45 | 1 (0.487) | 0 (0.364) | 0 (0.374) | 22 (0.202) | 2 (0.202) | 2 (0.437) | ||||||
CIA pair analysis 45 × 55 | 1 (0.503) | 0 (0.378) | 22 (0.210) | 0 (0.001) | 2 (0.021) | |||||||
CIA pair analysis 55 × 65 | 61 (0.001) | 0 (0.001) | 2 (0.184) | |||||||||
CIA vs. CO at 18 days | 6 (0.113) | 0 (0.104) | 0 (0.144) | 24 (0.072) | 0 (0.020) | 0 (0.044) | ||||||
CIA vs. CO at 25 days | 0 (0.113) | 0 (0.104) | 0 (0.009) | 0 (0.053) | ||||||||
CIA vs. CO at 35 days | 0 (0.010) | 0 (0.199) | 22 (0.101) | 2 (0.101) | 0 (0.075) | |||||||
CIA vs. CO at 45 days | 0 (0.227) | 0 (0.378) | 0 (0.021) | 0 (0.284) | 22 (0.148) | 0 (0.042) | 0 (0.111) | |||||
CIA vs. CO at 55 days | 0 (0.157) | 8 (0.062) | 0 (0.145) | 4 (0.193) | 0 (0.199) | 22 (0.101) | 0 (0.075) | |||||
CIA vs. CO at 65 days | 0 (0.144) | 22 (0.002) | 2 (0.174) |
Strength | Fatigue | Locomotion | Score | Edema | Intake | Weight | |
---|---|---|---|---|---|---|---|
3-Methylhistidine | 0.044 | −0.033 | −0.020 | −0.020 | −0.051 | 0.130 | −0.048 |
4-Aminobutyate | −0.073 | −0.071 | −0.016 | 0.056 | 0.097 | 0.022 | 0.001 |
Acetylcholine | 0.063 | 0.015 | 0.015 | −0.024 | −0.036 | 0.068 | −0.018 |
Arginine | 0.083 | −0.004 | 0.031 | −0.093 | −0.035 | 0.004 | 0.029 |
Carnosine | −0.039 | 0.039 | 0.031 | 0.093 | 0.125 | −0.051 | −0.026 |
Creatine | −0.063 | −0.014 | −0.051 | 0.050 | 0.026 | −0.177 | −0.039 |
Creatinine | −0.056 | −0.061 | −0.062 | 0.153 | 0.107 | 0.142 | 0.058 |
Glutamine | −0.019 | 0.024 | 0.003 | 0.058 | 0.066 | 0.066 | 0.024 |
Histamine | −0.029 | −0.035 | −0.007 | 0.001 | 0.036 | −0.004 | 0.019 |
Histidine | −0.048 | −0.040 | 0.022 | 0.033 | 0.059 | 0.036 | −0.050 |
Isoleucine | −0.046 | −0.028 | −0.018 | 0.052 | 0.049 | 0.000 | −0.030 |
L-Methionine | −0.082 | 0.003 | −0.006 | 0.109 | 0.048 | −0.020 | 0.024 |
Leucine | −0.101 | −0.069 | −0.028 | 0.083 | 0.121 | 0.041 | −0.022 |
Lysine | 0.020 | −0.006 | −0.020 | −0.033 | −0.070 | −0.180 | −0.080 |
myo-Inositol | −0.011 | −0.026 | −0.044 | 0.039 | 0.008 | 0.050 | −0.012 |
N-Acetylalanine | 0.028 | 0.093 | 0.063 | 0.031 | −0.008 | 0.214 | 0.032 |
N-Acetylmethionine | 0.014 | 0.056 | 0.021 | −0.060 | −0.001 | 0.035 | 0.014 |
N,N-Dimethylglycine | 0.107 | −0.022 | −0.014 | −0.044 | −0.070 | −0.006 | −0.020 |
Phosphocholine | 0.016 | 0.041 | 0.005 | 0.022 | −0.025 | 0.022 | 0.000 |
Phosphocreatine | 0.033 | 0.023 | −0.010 | 0.037 | 0.060 | 0.000 | −0.007 |
Sarcosine | 0.037 | 0.066 | 0.053 | −0.017 | −0.023 | 0.083 | 0.028 |
Thiamine | 0.084 | 0.012 | 0.126 | −0.047 | −0.156 | 0.025 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabarse, P.V.G.; Silva, J.M.S.; Santo, R.C.E.; Oliveira, M.S.; Almeida, A.S.; de Oliveira, M.S.; Immig, M.L.; Freitas, E.C.; Teixeira, V.O.N.; Bathurst, C.L.; et al. Metabolomic Biomarker Candidates for Skeletal Muscle Loss in the Collagen-Induced Arthritis (CIA) Model. J. Pers. Med. 2021, 11, 837. https://doi.org/10.3390/jpm11090837
Alabarse PVG, Silva JMS, Santo RCE, Oliveira MS, Almeida AS, de Oliveira MS, Immig ML, Freitas EC, Teixeira VON, Bathurst CL, et al. Metabolomic Biomarker Candidates for Skeletal Muscle Loss in the Collagen-Induced Arthritis (CIA) Model. Journal of Personalized Medicine. 2021; 11(9):837. https://doi.org/10.3390/jpm11090837
Chicago/Turabian StyleAlabarse, Paulo V. G., Jordana M. S. Silva, Rafaela C. E. Santo, Marianne S. Oliveira, Andrelise S. Almeida, Mayara S. de Oliveira, Mônica L. Immig, Eduarda C. Freitas, Vivian O. N. Teixeira, Camilla L. Bathurst, and et al. 2021. "Metabolomic Biomarker Candidates for Skeletal Muscle Loss in the Collagen-Induced Arthritis (CIA) Model" Journal of Personalized Medicine 11, no. 9: 837. https://doi.org/10.3390/jpm11090837
APA StyleAlabarse, P. V. G., Silva, J. M. S., Santo, R. C. E., Oliveira, M. S., Almeida, A. S., de Oliveira, M. S., Immig, M. L., Freitas, E. C., Teixeira, V. O. N., Bathurst, C. L., Brenol, C. V., Filippin, L. I., Young, S. P., Lora, P. S., & Xavier, R. M. (2021). Metabolomic Biomarker Candidates for Skeletal Muscle Loss in the Collagen-Induced Arthritis (CIA) Model. Journal of Personalized Medicine, 11(9), 837. https://doi.org/10.3390/jpm11090837