Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Study Design
2.2. Data Information
2.3. Machine Learning Algorithm
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Burden of Disease Stroke Expert Group. Global, regional, and country-specific lifetime risks of stroke, 1990 and 2016. N. Engl. J. Med. 2018, 379, 2429–2437. [Google Scholar] [CrossRef]
- Krishnamurthi, R.V.; Barker-Collo, S.; Parag, V.; Parmar, P.; Witt, E.; Jones, A.; Mahon, S.; Anderson, C.S.; Barber, P.A.; Feigin, V.L. Stroke incidence by major pathological type and ischemic subtypes in the Auckland regional community stroke studies: Changes between 2002 and 2011. Stroke 2018, 49, 3–10. [Google Scholar] [CrossRef]
- Álvarez-Sabín, J.; Maisterra, O.; Santamarina, E.; Kase, C.S. Factors influencing haemorrhagic transformation in ischaemic stroke. Lancet Neurol. 2013, 12, 689–705. [Google Scholar] [CrossRef]
- Fagan, S.C.; Lapchak, P.A.; Liebeskind, D.S.; Ishrat, T.; Ergul, A. Recommendations for preclinical research in hemorrhagic transformation. Transl. Stroke Res. 2013, 4, 322–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaghi, S.; Willey, J.Z.; Cucchiara, B.; Goldstein, J.N.; Gonzales, N.R.; Khatri, P.; Kim, L.J.; Mayer, S.A.; Sheth, K.N.; Schwamm, L.H. Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2017, 48, e343–e361. [Google Scholar] [CrossRef] [PubMed]
- Dzialowski, I.; Pexman, J.W.; Barber, P.A.; Demchuk, A.M.; Buchan, A.M.; Hill, M.D. Asymptomatic hemorrhage after thrombolysis may not be benign: Prognosis by hemorrhage type in the Canadian alteplase for stroke effectiveness study registry. Stroke 2007, 38, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Ko, Y.; Kim, W.-J.; Jang, M.; Yang, M.; Han, M.-K.; Oh, C.-W.; Park, S.; Lee, J.; Lee, J. Is asymptomatic hemorrhagic transformation really innocuous? Neurology 2012, 78, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, Y.; Jin, Y.; Guo, W.; Song, Q.; Wei, C.; Li, J.; Zhang, S.; Liu, M. Prediction of Hemorrhagic Transformation After Ischemic Stroke: Development and Validation Study of a Novel Multi-biomarker Model. Front. Aging Neurosci. 2021, 13, 257. [Google Scholar] [CrossRef] [PubMed]
- Zihni, E.; Madai, V.I.; Livne, M.; Galinovic, I.; Khalil, A.A.; Fiebach, J.B.; Frey, D. Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome. PLoS ONE 2020, 15, e0231166. [Google Scholar] [CrossRef] [Green Version]
- Strohm, L.; Hehakaya, C.; Ranschaert, E.R.; Boon, W.P.; Moors, E.H. Implementation of artificial intelligence (AI) applications in radiology: Hindering and facilitating factors. Eur. Radiol. 2020, 30, 5525–5532. [Google Scholar] [CrossRef]
- Wang, F.; Huang, Y.; Xia, Y.; Zhang, W.; Fang, K.; Zhou, X.; Yu, X.; Cheng, X.; Li, G.; Wang, X. Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420902358. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Reps, J.M.; Kostka, K.F.; Ryan, P.B.; Zou, Y.; Voss, E.A.; Rijnbeek, P.R.; Chen, R.; Rao, G.A.; Morgan Stewart, H. Development and validation of a prognostic model predicting symptomatic hemorrhagic transformation in acute ischemic stroke at scale in the OHDSI network. PLoS ONE 2020, 15, e0226718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadi, H.; Dowling, R.; Yan, B.; Mitchell, P. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS ONE 2014, 9, e88225. [Google Scholar] [CrossRef] [Green Version]
- Scalzo, F.; Alger, J.R.; Hu, X.; Saver, J.L.; Dani, K.A.; Muir, K.W.; Demchuk, A.M.; Coutts, S.B.; Luby, M.; Warach, S. Multi-center prediction of hemorrhagic transformation in acute ischemic stroke using permeability imaging features. Magn. Reson. Imaging 2013, 31, 961–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Guo, D.; Lou, M.; Liebeskind, D.; Scalzo, F. Prediction of hemorrhagic transformation severity in acute stroke from source perfusion MRI. IEEE Trans. Biomed. Eng. 2017, 65, 2058–2065. [Google Scholar] [CrossRef] [PubMed]
- Kent, D.M.; Hinchey, J.; Price, L.L.; Levine, S.R.; Selker, H.P. In acute ischemic stroke, are asymptomatic intracranial hemorrhages clinically innocuous? Stroke 2004, 35, 1141–1146. [Google Scholar] [CrossRef] [Green Version]
- Schlegel, D.J.; Tanne, D.; Demchuk, A.M.; Levine, S.R.; Kasner, S.E. Prediction of hospital disposition after thrombolysis for acute ischemic stroke using the National Institutes of Health Stroke Scale. Arch. Neurol. 2004, 61, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-T.; Heo, S.-H.; Park, M.-S.; Chang, J.; Choi, K.-H.; Cho, K.-H. Use of antithrombotics after hemorrhagic transformation in acute ischemic stroke. PLoS ONE 2014, 9, e89798. [Google Scholar] [CrossRef]
- Kim, T.J.; Lee, J.S.; Oh, M.-S.; Kim, J.-W.; Yoon, J.S.; Lim, J.-S.; Lee, C.-H.; Mo, H.; Jeong, H.-Y.; Kim, Y. Predicting functional outcome based on linked data after acute ischemic stroke: S-SMART Score. Transl. Stroke Res. 2020, 11, 1296–1305. [Google Scholar] [CrossRef]
- Hacke, W.; Kaste, M.; Fieschi, C.; Von Kummer, R.; Davalos, A.; Meier, D.; Larrue, V.; Bluhmki, E.; Davis, S.; Donnan, G. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Lancet 1998, 352, 1245–1251. [Google Scholar] [CrossRef]
- Patro, S.; Sahu, K.K. Normalization: A preprocessing stage. arXiv 2015, arXiv:1503.06462. [Google Scholar] [CrossRef]
- Dhahri, H.; Al Maghayreh, E.; Mahmood, A.; Elkilani, W.; Faisal Nagi, M. Automated breast cancer diagnosis based on machine learning algorithms. J. Healthc. Eng. 2019, 2019, 4253641. [Google Scholar] [CrossRef]
- Paciaroni, M.; Bandini, F.; Agnelli, G.; Tsivgoulis, G.; Yaghi, S.; Furie, K.L.; Tadi, P.; Becattini, C.; Zedde, M.; Abdul-Rahim, A.H. Hemorrhagic transformation in patients with acute ischemic stroke and atrial fibrillation: Time to initiation of oral anticoagulant therapy and outcomes. J. Am. Heart Assoc. 2018, 7, e010133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pande, S.; Win, M.; Khine, A.; Zaw, E.; Manoharraj, N.; Lolong, L.; Tin, A. Haemorrhagic transformation following ischaemic stroke: A retrospective study. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaillard, A.; Cornu, C.; Durieux, A.; Moulin, T.; Boutitie, F.; Lees, K.R.; Hommel, M. Hemorrhagic transformation in acute ischemic stroke: The MAST-E study. Stroke 1999, 30, 1326–1332. [Google Scholar] [CrossRef]
- Sun, J.; Meng, D.; Liu, Z.; Hua, X.; Xu, Z.; Zhu, J.; Qian, Z.; Xu, X. Neutrophil to Lymphocyte Ratio Is a Therapeutic Biomarker for Spontaneous Hemorrhagic Transformation. Neurotox. Res. 2020, 38, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Suh, C.H.; Jung, S.C.; Cho, S.J.; Woo, D.-C.; Oh, W.Y.; Lee, J.G.; Kim, K.W. MRI for prediction of hemorrhagic transformation in acute ischemic stroke: A systematic review and meta-analysis. Acta Radiol. 2020, 61, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Bang, O.Y.; Buck, B.H.; Saver, J.L.; Alger, J.R.; Yoon, S.R.; Starkman, S.; Ovbiagele, B.; Kim, D.; Ali, L.K.; Sanossian, N. Prediction of hemorrhagic transformation after recanalization therapy using T2*-permeability magnetic resonance imaging. Ann. Neurol. 2007, 62, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Seiffge, D.J.; Paciaroni, M.; Wilson, D.; Koga, M.; Macha, K.; Cappellari, M.; Schaedelin, S.; Shakeshaft, C.; Takagi, M.; Tsivgoulis, G. Direct oral anticoagulants versus vitamin K antagonists after recent ischemic stroke in patients with atrial fibrillation. Ann. Neurol. 2019, 85, 823–834. [Google Scholar] [CrossRef]
- Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load. Mech. Syst. Signal Process. 2018, 100, 439–453. [Google Scholar] [CrossRef]
- Qian, Z.; Wu, C.; Chen, H.; Chen, M. Diabetic Retinopathy Grading Using Attention based Convolution Neural Network. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 March 2021; pp. 2652–2655. [Google Scholar]
- Jha, D.; Gupta, V.; Ward, L.; Yang, Z.; Wolverton, C.; Foster, I.; Liao, W.-k.; Choudhary, A.; Agrawal, A. Enabling deeper learning on big data for materials informatics applications. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Zhang, D.; Yin, C.; Zeng, J.; Yuan, X.; Zhang, P. Combining structured and unstructured data for predictive models: A deep learning approach. BMC Med. Inform. Decis. Mak. 2020, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, G.; Andersson, P.; Jakobsson, A.; Frigyesi, A. Artificial neural networks improve and simplify intensive care mortality prognostication: A national cohort study of 217,289 first-time intensive care unit admissions. J. Intensive Care 2019, 7, 1–8. [Google Scholar] [CrossRef]
- Livingstone, D.J.; Manallack, D.T.; Tetko, I.V. Data modelling with neural networks: Advantages and limitations. J. Comput.-Aided Mol. Des. 1997, 11, 135–142. [Google Scholar] [CrossRef]
- Li, P.; Stuart, E.A.; Allison, D.B. Multiple imputation: A flexible tool for handling missing data. JAMA 2015, 314, 1966–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, C.A.; Montaner, J.; Abilleira, S.; Ibarra, B.; Romero, F.; Arenillas, J.F.; Alvarez-Sabín, J. Timing of spontaneous recanalization and risk of hemorrhagic transformation in acute cardioembolic stroke. Stroke 2001, 32, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Shanker, M.; Hu, M.Y.; Hung, M.S. Effect of data standardization on neural network training. Omega 1996, 24, 385–397. [Google Scholar] [CrossRef]
- Chung, C.-C.; Chan, L.; Bamodu, O.A.; Hong, C.-T.; Chiu, H.-W. Artificial neural network based prediction of postthrombolysis intracerebral hemorrhage and death. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Ahsan, M.M.; Mahmud, M.; Saha, P.K.; Gupta, K.D.; Siddique, Z. Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance. Technologies 2021, 9, 52. [Google Scholar] [CrossRef]
- Saposnik, G.; Guzik, A.K.; Reeves, M.; Ovbiagele, B.; Johnston, S.C. Stroke prognostication using age and NIH stroke scale: SPAN-100. Neurology 2013, 80, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, W.-Q.; Chen, J.; Pan, H.; Chen, F.; Zhou, C.-Y. Analysis of risk factors increased hemorrhagic transformation after acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2018, 27, 3587–3590. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.B.C.d.; Mohr, J.P.; Lima, F.O.; Barros, L.C.M.; Nepomuceno, C.R.; Portela, L.B.; Silva, G.S. Predictors of hemorrhagic transformation after acute ischemic stroke based on the experts’ opinion. Arq. Neuro-Psiquiatr. 2020, 78, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Butcher, K.; Christensen, S.; Parsons, M.; De Silva, D.A.; Ebinger, M.; Levi, C.; Jeerakathil, T.; Campbell, B.C.; Barber, P.A.; Bladin, C. Postthrombolysis blood pressure elevation is associated with hemorrhagic transformation. Stroke 2010, 41, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ding, Y.; Ji, X.; Yin, X.; Meng, R. Advance of antithrombotic treatment in patients with cerebral microbleed. J. Thromb. Thrombolysis 2021, 51, 530–535. [Google Scholar] [CrossRef] [PubMed]
Variables | Training (n = 1419) | Test (n = 609) | Whole Dataset (n = 2028) | p Value |
---|---|---|---|---|
Male | 815 (57.4%) | 368 (60.4%) | 1183 (58.3%) | 0.229 |
Age, year | 69.7 ± 12.9 | 69.3 ± 12.4 | 69.6 ± 12.8 | 0.451 |
Onset to arrival time, hours | 29.1 ± 44.5 | 32.2 ± 45.8 | 30.6 ± 48.2 | 0.183 |
BMI, kg/m2 | 24.1 ± 3.6 | 24.1 ± 3.4 | 24.1 ± 3.6 | 0.606 |
Initial NIHSS, score | 5.1 ± 5.7 | 4.9 ± 5.6 | 5.0 ± 5.6 | 0.562 |
Stroke subtype | 0.313 | |||
LAA | 491 (34.6%) | 222 (36.5%) | 713 (35.2%) | |
SVO | 410 (28.9%) | 185 (30.4%) | 595 (29.3%) | |
CE | 270 (19.0%) | 111 (18.2%) | 381 (18.8%) | |
SOE | 51 (3.6%) | 12 (2.0%) | 63 (3.1%) | |
SUE | 197 (13.9%) | 79 (13.0%) | 276 (13.6%) | |
Past medical history | ||||
Prior stroke | 359 (25.3%) | 146 (24.0%) | 505 (24.9%) | 0.564 |
Hypertension | 921 (64.9%) | 398 (65.4%) | 1319 (65.0%) | 0.834 |
Diabetes | 250 (17.6%) | 118 (18.3%) | 368 (18.1%) | 0.167 |
Dyslipidemia | 495 (34.9%) | 208 (34.2%) | 703 (34.7%) | 0.979 |
Current smoking | 319 (22.5%) | 140 (23.0%) | 459 (22.6%) | 0.847 |
Atrial fibrillation | 273 (19.2%) | 105 (17.2%) | 378 (18.6) | 0.319 |
Prior antithrombotics treatment | 529 (37.3%) | 222 (36.5%) | 751 (37.0%) | 0.762 |
Thrombolysis | 188 (13.2%) | 76 (12.5%) | 264 (13.0%) | 0.689 |
Laboratory parameter | ||||
WBC, 103/μL | 7.8 ± 2.9 | 7.9 ± 3.0 | 7.8 ± 2.9 | 0.414 |
Hemoglobin, g/dL | 13.6 ± 2.0 | 13.8 ± 1.8 | 13.7 ± 2.0 | 0.140 |
Platelet count, 103/μL | 233.6 ± 74.9 | 234.5 ± 80.9 | 233.9 ± 76.8 | 0.820 |
Total cholesterol, g/dL | 168.1 ± 63.7 | 168.2 ± 41.5 | 168.2 ± 57.9 | 0.994 |
TG, mg/dL | 128.8 ± 85.5 | 133.1 ± 81.3 | 130.1 ± 84.3 | 0.288 |
HDL, mg/dL | 45.7 ± 11.5 | 44.9 ± 10.6 | 45.5 ± 11.3 | 0.158 |
LDL, mg/dL | 100.3 ± 35.4 | 102.4 ± 34.9 | 100.9 ± 35.2 | 0.225 |
BUN, mg/dL | 17.7 ± 9.4 | 17.6 ± 9.3 | 17.7 ± 9.4 | 0.860 |
Creatinine, mg/dL | 1.0 ± 0.8 | 1.0 ± 0.7 | 1.0 ± 0.7 | 0.956 |
FBS, mg/dL | 126.7 ± 52.8 | 126.0 ± 49.0 | 126.5 ± 51.6 | 0.759 |
A1c, % | 6.3 ± 1.4 | 6.3 ± 1.4 | 6.3 ± 1.4 | 0.848 |
INR | 1.1 ± 0.4 | 1.0 ± 0.2 | 1.1 ± 0.3 | 0.235 |
SBP, mmHg | 146.0 ± 26.5 | 145.6 ± 26.4 | 145.9 ± 26.5 | 0.768 |
DBP, mmHg | 84.0 ± 13.9 | 83.9 ± 14.1 | 84.0 ± 13.9 | 0.522 |
Hemorrhagic transformation | 221 (15.6%) | 97 (15.9%) | 318 (15.7%) | 0.893 |
TP | FP | FN | TN | Total | Precision | Recall | Accuracy | F1-Score | |
---|---|---|---|---|---|---|---|---|---|
BLR | 486 | 28 | 71 | 24 | 609 | 87.3 | 94.6 | 83.7 | 90.8 |
SVM | 504 | 10 | 78 | 17 | 609 | 86.6 | 98.1 | 85.6 | 92.0 |
XGB | 486 | 28 | 73 | 22 | 609 | 86.9 | 94.6 | 83.4 | 90.6 |
ANN_crude | 506 | 17 | 57 | 29 | 609 | 89.9 | 96.7 | 87.8 | 93.2 |
No | Variable | BLR | SVM | XGB | ANN |
---|---|---|---|---|---|
1 | Age | 3rd | 7th | 1st | |
2 | Male | 1st | 5th | 8th | |
3 | Onset to arrival time | ||||
4 | BMI | ||||
5 | NIHSS | 1st | 3rd | 1st | |
6 | Previous mRS | 7th | |||
7 | TOAST_1 | ||||
8 | TOAST_2 | 2nd | |||
9 | TOAST_3 | 2nd | 5th | ||
10 | TOAST_4 | 8th | 9th | 2nd | |
11 | TOAST_5 | 8th | |||
12 | Previous stroke | 10th | |||
13 | Hypertension | ||||
14 | Diabetes | 4th | |||
15 | Dyslipidemia | 6th | 9th | ||
16 | Current smoking | ||||
17 | Atrial fibrillation | 7th | |||
18 | Prior antithrombotic usage | 2nd | 4th | ||
19 | Thrombolysis | 9th | 10th | ||
20 | WBC | 3rd | 6th | ||
21 | Hemoglobin | 5th | 10th | ||
22 | Platelet count | 8th | 9th | ||
23 | Total cholesterol | ||||
24 | Triglycerides | ||||
25 | High density lipoprotein | 6th | |||
26 | Low density lipoprotein | 5th | |||
27 | Blood urea nitrogen | 4th | |||
28 | Creatinine | ||||
29 | Fasting blood sugar | 3rd | |||
30 | Glycated hemoglobin | 7th | |||
31 | INR | ||||
32 | BPsys | 10th | 4th | ||
33 | BPdia | 6th |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-M.; Seo, S.-Y.; Kim, P.-J.; Kim, Y.-S.; Lee, S.-H.; Sohn, J.-H.; Kim, D.-K.; Lee, J.-J.; Kim, C. Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning. J. Pers. Med. 2021, 11, 863. https://doi.org/10.3390/jpm11090863
Choi J-M, Seo S-Y, Kim P-J, Kim Y-S, Lee S-H, Sohn J-H, Kim D-K, Lee J-J, Kim C. Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning. Journal of Personalized Medicine. 2021; 11(9):863. https://doi.org/10.3390/jpm11090863
Chicago/Turabian StyleChoi, Jeong-Myeong, Soo-Young Seo, Pum-Jun Kim, Yu-Seop Kim, Sang-Hwa Lee, Jong-Hee Sohn, Dong-Kyu Kim, Jae-Jun Lee, and Chulho Kim. 2021. "Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning" Journal of Personalized Medicine 11, no. 9: 863. https://doi.org/10.3390/jpm11090863
APA StyleChoi, J. -M., Seo, S. -Y., Kim, P. -J., Kim, Y. -S., Lee, S. -H., Sohn, J. -H., Kim, D. -K., Lee, J. -J., & Kim, C. (2021). Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning. Journal of Personalized Medicine, 11(9), 863. https://doi.org/10.3390/jpm11090863