Is Low Heart Rate Variability Associated with Emotional Dysregulation, Psychopathological Dimensions, and Prefrontal Dysfunctions? An Integrative View
Abstract
:1. Introduction
2. Emotional Dysegulation and Heart Rate Variability
3. The Importance of Emotional Regulation and Heart Rate Variability in General Psychopathology
4. Heart Rate Variability and Neuropsychological Functions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richter, M.; Wright, R.A. Autonomic Nervous System (ANS). In Encyclopedia of Behavioral Medicine; Gellman, M.D., Turner, J.R., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Gibbons, C.H. Basics of autonomic nervous system function. Handb. Clin. Neurol. 2019, 160, 407–418. [Google Scholar] [PubMed]
- Brook, R.D.; Julius, S. Autonomic imbalance, hypertension, and cardiovascular risk. Am. J. Hypertens. 2000, 13, 112S–122S. [Google Scholar] [CrossRef] [Green Version]
- Thayer, J.F.; Friedman, B.H. A Neurovisceral Integration Model of Health Disparities in Aging; National Academies Press: Washington, DC, USA, 2004; pp. 567–603. [Google Scholar]
- Bernard, C. Lectures on the Phenomena of Life Common to Animals and Plants; Hoff, H.E.; Guillemin, R.; Guillemin, L., Translators; Charles C Thomas: Springfield, IL, USA, 1974. [Google Scholar]
- Darwin, C. The Expression of Emotions in Man and Animals; Harper Collins: London, UK, 1999; pp. 71–72. [Google Scholar]
- Noble, D. Claude Bernard, the first systems biologist, and the future of physiology. Exp. Physiol. 2008, 93, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology 1995, 32, 301–318. [Google Scholar] [CrossRef]
- Tonhaizerova, I.; Mestanik, M.; Mestanikova, A.; Jurko, A. Respiratory sinus arrhythmia as a non-invasive index of ‘brain-heart’ interaction in stress. Indian J. Med. Res. 2016, 144, 815–822. [Google Scholar] [CrossRef]
- Servant, D.; Logier, R.; Mouster, Y.; Goudemand, M. La variabilité de la fréquence cardiaque. Intérêts en psychiatrie [Heart rate variability. Applications in psychiatry]. L’Encéph. Rev. Psychiatr. Clin. Biol. Thér. 2009, 35, 423–428. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Porges, S.W.; Furman, S.A. The early development of the autonomic nervous system provides a neural platform for social behaviour: A polyvagal perspective. Infant Child Dev. 2011, 20, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Beauchaine, T.P.; Thayer, J.F. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 2015, 98, 338–350. [Google Scholar] [CrossRef]
- Insel, T.; Cuthbert, B.; Garvey, M.; Heinssen, R.; Pine, D.S.; Quinn, K.; Sanislow, C.; Wang, P. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am. J. Psychiatry 2010, 167, 748–751. [Google Scholar] [CrossRef] [Green Version]
- Sanislow, C.A.; Pine, D.S.; Quinn, K.J.; Kozak, M.J.; Garvey, M.A.; Heinssen, R.K.; Wang, P.S.-E.; Cuthbert, B.N. Developing constructs for psychopathology research: Research domain criteria. J. Abnorm. Psychol. 2010, 119, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuthbert, B.N.; Kozak, M.J. Constructing constructs for psychopathology: The NIMH research domain criteria. J. Abnorm. Psychol. 2013, 122, 928–937. [Google Scholar] [CrossRef] [Green Version]
- Shankman, S.A.; Gorka, S.M. Psychopathology research in the RDoC era: Unanswered questions and the importance of the psychophysiological unit of analysis. Int. J. Psychophysiol. 2015, 98, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef]
- Porges, S.W. The polyvagal theory: New insights into adaptive reactions of the autonomic nervous system. Clevel. Clin. J. Med. 2009, 76 (Suppl. 2), S86–S90. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef]
- Benarroch, E.E. The central autonomic network: Functional organization, dysfunction, and perspective. In Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 1993; Volume 68, pp. 988–1001. [Google Scholar] [CrossRef]
- Thayer, J.F.; Hansen, A.L.; Saus-Rose, E.; Johnsen, B.H. Heart rate variability, prefrontal neural function, and cognitive performance: The neurovisceral integration perspective on self-regulation, adaptation, and health. Ann. Behav. Med. 2009, 37, 141–153. [Google Scholar] [CrossRef]
- Hansen, A.L.; Johnsen, B.H.; Thayer, J.F. Vagal influence on working memory and attention. Int. J. Psychophysiol. 2003, 48, 263–274. [Google Scholar] [CrossRef]
- Luft, C.D.B.; Takase, E.; Darby, D. Heart rate variability and cognitive function: Effects of physical effort. Biol. Psychol. 2009, 82, 186–191. [Google Scholar] [CrossRef]
- Hansen, A.L.; Johnsen, B.H.; Thayer, J.F. Relationship between heart rate variability and cognitive function during threat of shock. Anxiety Stress Coping 2009, 22, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Brosschot, J.F. Psychosomatics and psychopathology: Looking up and down from the brain. Psychoneuroendocrinology 2005, 30, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Luque-Casado, A.; Perales, J.C.; Cárdenas, D.; Sanabria, D. Heart rate variability and cognitive processing: The autonomic response to task demands. Biol. Psychol. 2016, 113, 83–90. [Google Scholar] [CrossRef]
- Porges, S.W. Autonomic regulation and attention. In Attention and Information Processing in Infants and Adults: Perspectives from Human and Animal Research; Campbell, B.A., Hayne, H., Richardson, R., Eds.; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1992; pp. 201–223. [Google Scholar]
- Appelhans, B.M.; Luecken, L.J. Heart rate variability as an index of regulated emotional responding. Rev. Gen. Psychol. 2006, 10, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Park, G.; Thayer, J.F. From the heart to the mind: Cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Front. Psychol. 2014, 5, 278. [Google Scholar] [CrossRef] [Green Version]
- Melzig, C.A.; Weike, A.I.; Hamm, A.O.; Thayer, J.F. Individual differences in fear-potentiated startle as a function of resting heart rate variability: Implications for panic disorder. Int. J. Psychophysiol. 2009, 71, 109–117. [Google Scholar] [CrossRef]
- Ruiz-Padial, E.; Sollers, J.J., III; Vila, J.; Thayer, J.F. The rhythm of the heart in the blink of an eye: Emotion-modulated startle magnitude covaries with heart rate variability. Psychophysiology 2003, 40, 306–313. [Google Scholar] [CrossRef]
- Geisler, F.C.; Vennewald, N.; Kubiak, T.; Weber, H. The impact of heart rate variability on subjective well-being is mediated by emotion regulation. Personal. Individ. Differ. 2010, 49, 723–728. [Google Scholar] [CrossRef]
- Ingjaldsson, J.T.; Laberg, J.C.; Thayer, J.F. Reduced heart rate variability in chronic alcohol abuse: Relationship with negative mood, chronic thought suppression, and compulsive drinking. Biol. Psychiatry 2003, 54, 1427–1436. [Google Scholar] [CrossRef]
- Smith, T.W.; Cribbet, M.R.; Nealey-Moore, J.B.; Uchino, B.N.; Williams, P.G.; MacKenzie, J.; Thayer, J.F. Matters of the variable heart: Respiratory sinus arrhythmia response to marital interaction and associations with marital quality. J. Personal. Soc. Psychol. 2011, 100, 103–119. [Google Scholar] [CrossRef]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Butler, E.A.; Gross, J.J.; Barnard, K. Testing the effects of suppression and reappraisal on emotional concordance using a multivariate multilevel model. Biol. Psychol. 2014, 98, 6–18. [Google Scholar] [CrossRef]
- Lane, R.D.; McRae, K.; Reiman, E.M.; Chen, K.; Ahern, G.L.; Thayer, J.F. Neural correlates of heart rate variability during emotion. Neuroimage 2009, 44, 213–222. [Google Scholar] [CrossRef]
- McCraty, R.; Shaffer, F. Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Appelhans, B.M.; Luecken, L.J. Heart rate variability and pain: Associations of two interrelated homeostatic processes. Biol. Psychol. 2008, 77, 174–182. [Google Scholar] [CrossRef]
- Visted, E.; Sørensen, L.; Osnes, B.; Svendsen, J.L.; Binder, P.E.; Schanche, E. The association between self-reported difficulties in emotion regulation and heart rate variability: The salient role of not accepting negative emotions. Front. Psychol. 2017, 8, 328. [Google Scholar] [CrossRef] [Green Version]
- Gratz, K.L.; Roemer, L. Multidimensional Assessment of Emotion Regulation and Dysregulation: Development, Factor Structure, and Initial Validation of the Difficulties in Emotion Regulation Scale. J. Psychopathol. Behav. Assess. 2004, 26, 41–54. [Google Scholar] [CrossRef]
- Williams, D.P.; Cash, C.; Rankin, C.; Bernardi, A.; Koenig, J.; Thayer, J.F. Resting heart rate variability predicts self-reported difficulties in emotion regulation: A focus on different facets of emotion regulation. Front. Psychol. 2015, 6, 261. [Google Scholar] [CrossRef] [Green Version]
- Xiu, L.; Zhou, R.; Jiang, Y. Working memory training improves emotion regulation ability: Evidence from HRV. Physiol. Behav. 2016, 155, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Nuss, P. Anxiety disorders and GABA neurotransmission: A disturbance of modulation. Neuropsychiatr. Dis. Treat. 2015, 11, 165. [Google Scholar] [CrossRef] [Green Version]
- Salomons, T.V.; Nusslock, R.; Detloff, A.; Johnstone, T.; Davidson, R.J. Neural emotion regulation circuitry underlying anxiolytic effects of perceived control over pain. J. Cogn. Neurosci. 2014, 27, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Sripada, R.K.; Marx, C.E.; King, A.P.; Rampton, J.C.; Ho, S.S.; Liberzon, I. Allopregnanolone elevations following pregnenolone administration are associated with enhanced activation of emotion regulation neurocircuits. Biol. Psychiatry 2013, 73, 1045–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen-Armon, M.; Schreiber, G.; Sokolovsky, M. Interaction of the antiarrhythmic drug amiodarone with the muscarinic receptor in rat heart and brain. J. Cardiovasc. Pharmacol. 1984, 6, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Kotoda, M.; Ino, H.; Kumakura, Y.; Iijima, T.; Ishiyama, T.; Matsukawa, T. Analgesic effects of amiodarone in mouse models of pain. J. Pain Res. 2019, 12, 1825. [Google Scholar] [CrossRef] [Green Version]
- Jayasuriya, G.M.; Elmslie, G.; Burstein, E.S.; Ellis, J. Dronedarone Modulates M1 and M3 Muscarinic Receptors with Subtype Selectivity, Functional Selectivity, and Probe Dependence. Pharmacology 2017, 99, 128–138. [Google Scholar] [CrossRef]
- Lavalle, C.; Magnocavallo, M.; Straito, M.; Santini, L.; Forleo, G.B.; Grimaldi, M.; Badagliacca, R.; Lanata, L.; Ricci, R.P. Flecainide How and When: A Practical Guide in Supraventricular Arrhythmias. J. Clin. Med. 2021, 10, 1456. [Google Scholar] [CrossRef]
- Mo, W.; Michel, M.C.; Lee, X.W.; Kaumann, A.J.; Molenaar, P. The β3-adrenoceptor agonist mirabegron increases human atrial force through β1-adrenoceptors: An indirect mechanism? Br. J. Pharmacol. 2017, 174, 2706–2715. [Google Scholar] [CrossRef] [Green Version]
- Massie, B.M.; Fisher, S.G.; Deedwania, P.C.; Singh, B.N.; Fletcher, R.D.; Singh, S.N. Effect of amiodarone on clinical status and left ventricular function in patients with congestive heart failure. Circulation 1996, 93, 2128–2134. [Google Scholar] [CrossRef]
- Michel, M.C.; Bond, R.A.; Summers, R.J. Adrenoceptors-New roles for old players. Br. J. Pharmacol. 2019, 176, 2339–2342. [Google Scholar] [CrossRef] [Green Version]
- Fauchier, L.; Babuty, D.; Autret, M.L.; Poret, P.; Cosnay, P.; Fauchier, J.P. Effect of flecainide on heart rate variability in subjects without coronary artery disease or congestive heart failure. Cardiovasc. Drugs Ther. 1998, 12, 483–486. [Google Scholar] [CrossRef]
- Guo, Z.B.; Fu, J.G.; Zhao, Y. Therapeutic efficacy of oxymatrine on arrhythmia and heart rate variability in patients with coronary heart disease. Zhongguo Zhongxiyi jiehe zazhi Chin. J. Integr. Tradit. West. Med. 2006, 26, 311–315. [Google Scholar]
- Hallstrom, A.L.; Pratt, C.M.; Leon Greene, H.; Huther, M.; Gottlieb, S.; DeMaria, A.; Young, J.B.; Cardiac Arrhythmia Suppression Trial Investigators. Relations between heart failure, ejection fraction, arrhythmia suppression and mortality: Analysis of the Cardiac Arrhythmia Suppression Trial. J. Am. Coll. Cardiol. 1995, 25, 1250–1257. [Google Scholar] [CrossRef] [Green Version]
- Frijda, N.H. The laws of emotion. Am. Psychol. 1988, 43, 349–358. [Google Scholar] [CrossRef]
- Zahn, D.; Adams, J.; Krohn, J.; Wenzel, M.; Mann, C.G.; Gomille, L.K.; Jacobi-Scherbening, V.; Kubiak, T. Heart rate variability and self-control—A meta-analysis. Biol. Psychol. 2016, 115, 9–26. [Google Scholar] [CrossRef] [PubMed]
- De Ridder, D.T.; Lensvelt-Mulders, G.; Finkenauer, C.; Stok, F.M.; Baumeister, R.F. Taking stock of self-control: A meta-analysis of how trait self-control relates to a wide range of behaviors. Personal. Soc. Psychol. Rev. 2012, 16, 76–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, B.H.; Thayer, J.F. Autonomic balance revisited: Panic anxiety and heart rate variability. J. Psychosom. Res. 1998, 44, 133–151. [Google Scholar] [CrossRef]
- Friedman, B.H. An autonomic flexibility–neurovisceral integration model of anxiety and cardiac vagal tone. Biol. Psychol. 2007, 74, 185–199. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, B.; Qiu, J.; Zhang, L.; Zou, Z. Heart rate variability changes in patients with panic disorder. J. Affect. Disord. 2020, 267, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Thayer, J.F.; Treiber, F.; Snieder, H. Ethnic differences and heritability of heart rate variability in African-and European American youth. Am. J. Cardiol. 2005, 96, 1166–1172. [Google Scholar] [CrossRef]
- Snieder, H.; Van Doornen, L.J.; Boomsma, D.I.; Thayer, J.F. Sex differences and heritability of two indices of heart rate dynamics: A twin study. Twin Res. Hum. Genet. 2007, 10, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thayer, J.F.; Merritt, M.M.; Sollers, J.J., III; Zonderman, A.B.; Evans, M.K.; Yie, S.; Abernethy, D.R. Effect of angiotensin-converting enzyme insertion/deletion polymorphism DD genotype on high-frequency heart rate variability in African Americans. Am. J. Cardiol. 2003, 92, 1487–1490. [Google Scholar] [CrossRef] [PubMed]
- Friedman, B.H.; Thayer, J.F. Anxiety and autonomic flexibility: A cardiovascular approach. Biol. Psychol. 1998, 47, 243–263. [Google Scholar] [CrossRef]
- Friedman, B.H.; Thayer, J.F.; Borkovec, T.D.; Tyrell, R.A.; Johnson, B.H.; Columbo, R. Autonomic characteristics of nonclinical panic and blood phobia. Biol. Psychiatry 1993, 34, 298–310. [Google Scholar] [CrossRef]
- Srinivasan, K.; Ashok, M.V.; Vaz, M.; Yeragani, V.K. Decreased chaos of heart rate time series in children of patients with panic disorder. Depress. Anxiety 2002, 15, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Lotufo, P.A.; Valiengo, L.; Benseñor, I.M.; Brunoni, A.R. A systematic review and meta-analysis of heart rate variability in epilepsy and antiepileptic drugs. Epilepsia 2012, 53, 272–282. [Google Scholar] [CrossRef]
- Clamor, A.; Koenig, J.; Thayer, J.F.; Lincoln, T.M. A randomized-controlled trial of heart rate variability biofeedback for psychotic symptoms. Behav. Res. Ther. 2016, 87, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.W.; Tzeng, N.S.; Yeh, C.B.; Kuo, T.B.; Huang, S.Y.; Chang, C.C.; Chang, H.A. Reduced cardiac autonomic response to deep breathing: A heritable vulnerability trait in patients with schizophrenia and their healthy first-degree relatives. Psychiatry Res. 2016, 243, 335–341. [Google Scholar] [CrossRef]
- Guccione, C.; di Scalea, G.L.; Ambrosecchia, M.; Terrone, G.; Di Cesare, G.; Ducci, G.; Schimmenti, A.; Caretti, V. Early signs of schizophrenia and autonomic nervous system dysregulation: A literature review. Clin. Neuropsychiatry J. Treat. Eval. 2019, 16, 86–97. [Google Scholar]
- Castro, M.N.; Vigo, D.E.; Weidema, H.; Fahrer, R.D.; Chu, E.M.; De Achaval, D.; Nogués, M.; Leiguarda, R.C.; Cardinali, D.P.; Guinjoan, S.M. Heart rate variability response to mental arithmetic stress in patients with schizophrenia: Autonomic response to stress in schizophrenia. Schizophr. Res. 2008, 99, 294–303. [Google Scholar] [CrossRef]
- Meyer, P.W.; Müller, L.E.; Zastrow, A.; Schmidinger, I.; Bohus, M.; Herpertz, S.C.; Bertsch, K. Heart rate variability in patients with post-traumatic stress disorder or borderline personality disorder: Relationship to early life maltreatment. J. Neural Transm. 2016, 123, 1107–1118. [Google Scholar] [CrossRef]
- Dixon-Gordon, K.L.; Turner, B.J.; Rosenthal, M.Z.; Chapman, A.L. Emotion regulation in borderline personality disorder: An experimental investigation of the effects of instructed acceptance and suppression. Behav. Ther. 2017, 48, 750–764. [Google Scholar] [CrossRef] [PubMed]
- Rukmani, M.R.; Seshadri, S.P.; Thennarasu, K.; Raju, T.R.; Sathyaprabha, T.N. Heart rate variability in children with attention-deficit/hyperactivity disorder: A pilot study. Ann. Neurosci. 2016, 23, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franquillo, A.C.; Guccione, C.; Angelini, G.; Carpentieri, R.; Ducci, G.; Caretti, V. The role of personality in schizophrenia and psychosis: A systematic review. Clin. Neuropsychiatry 2021, 18, 28–40. [Google Scholar] [CrossRef]
- Di Simplicio, M.; Costoloni, G.; Western, D.; Hanson, B.; Taggart, P.; Harmer, C.J. Decreased heart rate variability during emotion regulation in subjects at risk for psychopathology. Psychol. Med. 2012, 42, 1775–1783. [Google Scholar] [CrossRef]
- Koch, C.; Wilhelm, M.; Salzmann, S.; Rief, W.; Euteneuer, F. A meta-analysis of heart rate variability in major depression. Psychol. Med. 2019, 49, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Heiss, S.; Vaschillo, B.; Vaschillo, E.G.; Timko, C.A.; Hormes, J.M. Heart Rate Variability as a Biobehavioral Marker of Diverse Psychopathologies: A Review and Argument for an “Ideal Range”. Neurosci. Biobehav. Rev. 2021, 121, 144–155. [Google Scholar] [CrossRef]
- Lane, R.D.; Reiman, E.M.; Ahern, G.L.; Thayer, J.F. Activity in medial prefrontal cortex correlates with vagal component of heart rate variability during emotion. Brain Cogn. 2001, 47, 97–100. [Google Scholar]
- Nugent, A.C.; Bain, E.E.; Thayer, J.F.; Drevets, W.C. Anatomical correlates of autonomic control during a motor task. Psychosom. Med. 2007, 69, A-74. [Google Scholar]
- Nugent, A.C.; Bain, E.E.; Thayer, J.F.; Sollers, J.J.; Drevets, W.C. Alterations in neural correlates of autonomic control in females with major depressive disorder. Int. J. Psychophysiol. 2008, 69, 195. [Google Scholar] [CrossRef]
- Ter Horst, G.J. Central autonomic control of the heart, angina, and pathogenic mechanisms of post-myocardial infarction depression. Eur. J. Morphol. 1999, 37, 257–266. [Google Scholar] [CrossRef]
- Aron, A.R.; Robbins, T.W.; Poldrack, R.A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 2004, 8, 170–177. [Google Scholar] [CrossRef]
- Kalisch, R.; Wiech, K.; Critchley, H.D.; Seymour, B.; O’Doherty, J.P.; Oakley, D.A.; Allen, P.; Dolan, R.J. Anxiety Reduction through Detachment: Subjective, Physiological, and Neural Effects. J. Cogn. Neurosci. 2005, 17, 874–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garavan, H.; Ross, T.J.; Stein, E.A. Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proc. Natl. Acad. Sci. USA 1999, 96, 8301–8306. [Google Scholar] [CrossRef] [Green Version]
- Konishi, S.; Nakajima, K.; Uchida, I.; Kikyo, H.; Kameyama, M.; Miyashita, Y. Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain 1999, 122, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, R.Z.; Volkow, N.D. Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat. Rev. Neurosci. 2011, 12, 652–669. [Google Scholar] [CrossRef]
- Gertz, H.J.; Wolf, H.; Arendt, T. Psychiatric disorders of the frontal lobe. Curr. Opin. Psychiatry 1999, 12, 321–324. [Google Scholar] [CrossRef]
- Goldman-Rakic, P.S. The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1996, 351, 1445–1453. [Google Scholar] [CrossRef]
- Arnsten, A.F.; Goldman-Rakic, P.S. Noise stress impairs prefrontal cortical cognitive function in monkeys: Evidence for a hyperdopaminergic mechanism. Arch. Gen. Psychiatry 1998, 55, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Baddeley, A.D.; Della Sala, S. Working memory and executive control. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1996, 351, 1397–1404. [Google Scholar] [CrossRef]
- Garavan, H.; Ross, T.J.; Li, S.J.; Stein, E.A. A parametric manipulation of central executive functioning. Cereb. Cortex 2000, 10, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Rosvold, H.E.; Mirsky, A.F.; Sarason, I.; Bransome, E.D., Jr.; Beck, L.H. A continuous performance test of brain damage. J. Consult. Psychol. 1956, 20, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Hugdahl, K.; Thomsen, T.; Landrø, N.I.; Ersland, L.; Smievoll, A.I.; Lundervold, A.; Barndon, R.; Sundberg, H.; Iversen, J.K.; Roscher, B. Separating mental arithmetic from working memory: An fMRI-study. NeuroImage 2000, 11, S384. [Google Scholar] [CrossRef]
- Frankenhaeuser, M.; Nordheden, B.; Myrsten, A.L.; Post, B. Psychophysiological reactions to understimulation and overstimulation. Acta Psychol. 1971, 35, 298–308. [Google Scholar] [CrossRef]
- Broadbent, D.E. Decision and Stress; Academic Press: London, UK, 1971. [Google Scholar]
- Stenfors, C.U.; Hanson, L.M.; Theorell, T.; Osika, W.S. Executive cognitive functioning and cardiovascular autonomic regulation in a population-based sample of working adults. Front. Psychol. 2016, 7, 1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gathright, E.C.; Walter, F.A.; Hawkins, M.A.; Spitznagel, M.B.; Hughes, J.W.; Gunstad, J. Executive function moderates the relationship between depressive symptoms and resting heart rate variability in heart failure. J. Behav. Med. 2016, 39, 192–200. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Gorenstein, C. Psychometric properties of the Beck Depression Inventory-II: A comprehensive review. Rev. Bras. Psiquiatr. 2013, 35, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Morgan, A.B.; Lilienfeld, S.O. A meta-analytic review of the relation between antisocial behavior and neuropsychological measures of executive function. Clin. Psychol. Rev. 2000, 20, 113–136. [Google Scholar] [CrossRef]
- Gorenstein, E.E. Frontal lobe functions in psychopaths. J. Abnorm. Psychol. 1982, 91, 368–379. [Google Scholar] [CrossRef]
- Hare, R.D. Performance of psychopaths on cognitive tasks related to frontal lobe function. J. Abnorm. Psychol. 1984, 93, 133–140. [Google Scholar] [CrossRef]
- Hansen, A.L.; Johnsen, B.H.; Thornton, D.; Waage, L.; Thayer, J.F. Facets of psychopathy, heart rate variability and cognitive function. J. Personal. Disord. 2007, 21, 568–582. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.R.; Woodruff-Borden, J. Parent emotion socialization practices and child self-regulation as predictors of child anxiety: The mediating role of cardiac variability. Child Psychiatry Hum. Dev. 2015, 46, 512–522. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattaneo, L.A.; Franquillo, A.C.; Grecucci, A.; Beccia, L.; Caretti, V.; Dadomo, H. Is Low Heart Rate Variability Associated with Emotional Dysregulation, Psychopathological Dimensions, and Prefrontal Dysfunctions? An Integrative View. J. Pers. Med. 2021, 11, 872. https://doi.org/10.3390/jpm11090872
Cattaneo LA, Franquillo AC, Grecucci A, Beccia L, Caretti V, Dadomo H. Is Low Heart Rate Variability Associated with Emotional Dysregulation, Psychopathological Dimensions, and Prefrontal Dysfunctions? An Integrative View. Journal of Personalized Medicine. 2021; 11(9):872. https://doi.org/10.3390/jpm11090872
Chicago/Turabian StyleCattaneo, Lorena Angela, Anna Chiara Franquillo, Alessandro Grecucci, Laura Beccia, Vincenzo Caretti, and Harold Dadomo. 2021. "Is Low Heart Rate Variability Associated with Emotional Dysregulation, Psychopathological Dimensions, and Prefrontal Dysfunctions? An Integrative View" Journal of Personalized Medicine 11, no. 9: 872. https://doi.org/10.3390/jpm11090872
APA StyleCattaneo, L. A., Franquillo, A. C., Grecucci, A., Beccia, L., Caretti, V., & Dadomo, H. (2021). Is Low Heart Rate Variability Associated with Emotional Dysregulation, Psychopathological Dimensions, and Prefrontal Dysfunctions? An Integrative View. Journal of Personalized Medicine, 11(9), 872. https://doi.org/10.3390/jpm11090872