Identification of Survival-Specific Genes in Clear Cell Renal Cell Carcinoma Using a Customized Next-Generation Sequencing Gene Panel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Machine Learning and Statistical Methods for the Discovery of 123 Survival-Specific Genes
2.3. Patients
2.4. Samples
2.5. Customized NGS Gene Panel
2.6. Library Preparation and Sequencing
2.7. NGS Data Analysis
2.8. Dataset
2.9. Data Preparation
2.10. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Translational Relevance
Abbreviations
ccRCC | clear cell renal cell carcinoma |
TCGA | The Cancer Genome Atlas |
ngs | next-generation sequencing |
RECA-EU | Renal Cell Cancer—European Union |
References
- Shuch, B.; Amin, A.; Armstrong, A.J.; Eble, J.N.; Ficarra, V.; López-Beltrán, A.; Martignoni, G.; Rini, B.I.; Kutikov, A. Understanding Pathologic Variants of Renal Cell Carcinoma: Distilling Therapeutic Opportunities from Biologic Complexity. Eur. Urol. 2015, 67, 85–97. [Google Scholar] [CrossRef]
- Byun, S.S.; Hong, S.K.; Lee, S.; Kook, H.R.; Lee, E.; Kim, H.H.; Kwak, C.; Ku, J.H.; Jeong, C.W.; Lee, J.Y.; et al. The establishment of KORCC (KOrean Renal Cell Carcinoma) database. Investig. Clin. Urol. 2016, 57, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.; Jeong, C.W.; Choi, S.; Ku, J.H.; Kim, H.H.; Kim, K.; Kwak, C. Sharing the initial experience of pan-cancer panel analysis in high-risk renal cell carcinoma in the Korean population. BMC Urol. 2020, 20, 125. [Google Scholar] [CrossRef]
- Beksac, A.T.; Paulucci, D.J.; Blum, K.A.; Yadav, S.S.; Sfakianos, J.P.; Badani, K.K. Heterogeneity in renal cell carcinoma. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Kan, Z.; Jaiswal, B.S.; Stinson, J.; Janakiraman, V.; Bhatt, D.; Stern, H.M.; Yue, P.; Haverty, P.M.; Bourgon, R.; Zheng, J.; et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010, 466, 869–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, H.; Yin, J.P.; Zhou, L.; Wu, Y.Q.; Ge, L.Y.; Lu, M.; Liu, L.; Zhang, H.; Zhao, Y.; Liu, C.; et al. Clinicopathological and prognostic impact of somatic mutations in Chinese patients with clear cell renal cell carcinoma. Transl. Androl. Urol. 2020, 9, 2751–2763. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013, 499, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Hakimi, A.A.; Ostrovnaya, I.; Reva, B.; Schultz, N.; Chen, Y.-B.; Gonen, M.; Liu, H.; Takeda, S.; Voss, M.H.; Tickoo, S.K.; et al. Adverse Outcomes in Clear Cell Renal Cell Carcinoma with Mutations of 3p21 Epigenetic Regulators BAP1 and SETD2: A Report by MSKCC and the KIRC TCGA Research Network. Clin. Cancer Res. 2013, 19, 3259–3267. [Google Scholar] [CrossRef] [Green Version]
- Kapur, P.; Peña-Llopis, S.; Christie, A.; Zhrebker, L.; Pavía-Jiménez, A.; Rathmell, W.K.; Xie, X.-J.; Brugarolas, J. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: A retrospective analysis with independent validation. Lancet Oncol. 2013, 14, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-H.; Chuang, C.-K.; Yu, K.-J.; Kan, H.-C.; Liu, C.-Y.; Lu, Y.-C.; Chang, Y.-H.; Shao, I.-H.; Pang, S.-T. Genomic characterization of clear cell renal cell carcinoma using targeted gene sequencing. Oncol. Lett. 2021, 21, 169. [Google Scholar] [CrossRef]
- Dalgliesh, G.L.; Furge, K.; Greenman, C.; Chen, L.; Bignell, G.; Butler, A.; Davies, H.; Edkins, S.; Hardy, C.; Latimer, C.; et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010, 463, 360–363. [Google Scholar] [CrossRef] [Green Version]
- Boycott, K.M.; Vanstone, M.R.; Bulman, D.E.; MacKenzie, A.E. Rare-disease genetics in the era of next-generation sequencing: Discovery to translation. Nat. Rev. Genet. 2013, 14, 681–691. [Google Scholar] [CrossRef]
- Legati, A.; Reyes, A.; Nasca, A.; Invernizzi, F.; Lamantea, E.; Tiranti, V.; Garavaglia, B.; Lamperti, C.; Ardissone, A.; Moroni, I.; et al. New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies. Biochim. Biophys. Acta 2016, 1857, 1326–1335. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Poplin, R.; Chang, P.-C.; Alexander, D.; Schwartz, S.; Colthurst, T.; Ku, A.; Newburger, D.; Dijamco, J.; Nguyen, N.; Afshar, P.T.; et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 2018, 36, 983–987. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w(1118); iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alfoldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Consortium, G.P.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landrum, M.J.; Lee, J.M.; Riley, G.R.; Jang, W.; Rubinstein, W.S.; Church, D.M.; Maglott, D.R. ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014, 42, D980–D985. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Han, B.G.; KoGES Group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Kim, Y.J.; Han, S.; Hwang, M.Y.; Shin, D.M.; Park, M.Y.; Lu, Y.; Yoon, K.; Jang, H.-M.; Kim, Y.K.; et al. The Korea Biobank Array: Design and Identification of Coding Variants Associated with Blood Biochemical Traits. Sci. Rep. 2019, 9, 1382. [Google Scholar] [CrossRef] [Green Version]
- Dufner, A.; Pownall, S.; Mak, T.W. Caspase recruitment domain protein 6 is a microtubule-interacting protein that positively modulates NF-κB activation. Proc. Natl. Acad. Sci. USA 2006, 103, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.S.; Ahn, C.H.; Kang, M.R.; Kim, Y.R.; Kim, H.S.; Yoo, N.J.; Lee, S.H. Expression of CARD6, an NF-kappaB activator, in gastric, colorectal and oesophageal cancers. Pathology 2010, 42, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.W.; Kapur, P.; Bs, D.J.S.; Eckel-Passow, J.E.; Parasramka, M.J.; Ho, T.; Cheville, J.C.; Frenkel, E.; Rakheja, D.; Brugarolas, J.; et al. Loss of BAP1 protein expression is an independent marker of poor prognosis in patients with low-risk clear cell renal cell carcinoma. Cancer Am. Cancer Soc. 2014, 120, 1059–1067. [Google Scholar] [CrossRef]
- Jin, S.M.; Wu, J.L.; Zhu, Y.; Gu, W.J.; Wan, F.N.; Xiao, W.; Dai, B.; Zhang, H.; Shi, G.; Shen, Y.; et al. Comprehensive Analysis of BAP1 Somatic Mutation in Clear Cell Renal Cell Carcinoma to Explore Potential Mechanisms in Silico. J. Cancer 2018, 9, 4108–4116. [Google Scholar] [CrossRef] [Green Version]
- Hakimi, A.A.; Chen, Y.B.; Wren, J.; Gonen, M.; Abdel-Wahab, O.; Heguy, A.; Liu, H.; Takeda, S.; Tickoo, S.K.; Reuter, V.E.; et al. Clinical and Pathologic Impact of Select Chromatin-modulating Tumor Suppressors in Clear Cell Renal Cell Carcinoma. Eur. Urol. 2013, 63, 848–854. [Google Scholar] [CrossRef] [Green Version]
- Kapur, P.; Christie, A.; Raman, J.D.; Then, M.T.; Nuhn, P.; Buchner, A.; Bastian, P.; Seitz, C.; Shariat, S.F.; Bensalah, K.; et al. BAP1 Immunohistochemistry Predicts Outcomes in a Multi-Institutional Cohort with Clear Cell Renal Cell Carcinoma. J. Urol. 2014, 191, 603–610. [Google Scholar] [CrossRef]
- Donovan, J.; Copeland, P.R. Evolutionary history of selenocysteine incorporation from the perspective of SECIS binding proteins. BMC Evol. Biol. 2009, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.S.; Fu, Q.; An, H.M.; Chang, Y.; Zhang, W.J.; Zhu, Y.; Xu, L.; Xu, J. Decreased Expression of SETD2 Predicts Unfavorable Prognosis in Patients With Nonmetastatic Clear-Cell Renal Cell Carcinoma. Medicine 2015, 94, e2004. [Google Scholar] [CrossRef]
- Rossi, M.N.; Pascarella, A.; Licursi, V.; Caiello, I.; Taranta, A.; Rega, L.R.; Levtchenko, E.; Emma, F.; De Benedetti, F.; Prencipe, G. NLRP2 Regulates Proinflammatory and Antiapoptotic Responses in Proximal Tubular Epithelial Cells. Front. Cell Dev. Biol. 2019, 7, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.; Chen, Y.; Wu, B.; Li, Z. Identification of the pyroptosisrelated prognostic gene signature and the associated regulation axis in lung adenocarcinoma. Cell Death Discov. 2021, 7, 161. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Tian, Y.; Zhu, G.; Qin, Y.; Pi, L.; Wei, M.; Liu, G.; Li, Z.; Chen, C.; et al. Six-gene signature for predicting survival in patients with head and neck squamous cell carcinoma. Aging 2020, 12, 767–783. [Google Scholar] [CrossRef]
- Ma, H.Y.; Song, B.; Guo, S.W.; Li, G.; Jin, G. Identification of germline and somatic mutations in pancreatic adenosquamous carcinoma using whole exome sequencing. Cancer Biomark. 2020, 27, 389–397. [Google Scholar] [CrossRef]
- Zhang, C.J.; Zheng, Y.X.; Li, X.; Hu, X.; Qi, F.; Luo, J. Genome-wide mutation profiling and related risk signature for prognosis of papillary renal cell carcinoma. Ann. Transl. Med. 2019, 7, 427. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Yao, S.; Sun, X.; Hou, Z.; Lin, Y.; Su, L.; Liu, X. Glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the deubiquitinase USP40 to stabilize CFLAR(L) and inhibit apoptosis in human non-small cell lung cancer cells. J. Exp. Clin. Cancer Res. 2019, 38, 181. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.-Y.; Liu, Y.-P.; Xie, L.-Y.; Wang, X.-Y.; Yang, F.; Chen, S.-Y.; Li, Z.-G. AKAP-9 promotes colorectal cancer development by regulating Cdc42 interacting protein 4. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2016, 1862, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Han, S.W.; Ahn, J.Y.; Lee, S.; Noh, Y.S.; Jung, H.C.; Lee, M.H.; Park, H.J.; Chun, H.J.; Choi, S.J.; Kim, E.S.; et al. Gene expression network analysis of lymph node involvement in colon cancer identifies AHSA2, CDK10, and CWC22 as possible prognostic markers. Sci. Rep.-UK 2020, 10, 7170. [Google Scholar] [CrossRef]
- Ji, X.N.; Jin, S.; Qu, X.T.; Li, K.J.; Wang, H.J.; He, H.; Guo, F.; Dong, L. Lysine-specific demethylase 5C promotes hepatocellular carcinoma cell invasion through inhibition BMP7 expression. BMC Cancer 2015, 15, 801. [Google Scholar] [CrossRef] [Green Version]
- Karlo, C.A.; Di Paolo, P.L.; Chaim, J.; Hakimi, A.A.; Ostrovnaya, I.; Russo, P.; Hricak, H.; Motzer, R.; Hsieh, J.J.; Akin, O.; et al. Radiogenomics of Clear Cell Renal Cell Carcinoma: Associations between CT Imaging Features and Mutations. Radiology 2014, 270, 464–471. [Google Scholar] [CrossRef]
- Lichner, Z.; Scorilas, A.; White, N.M.A.; Girgis, A.H.; Rotstein, L.; Wiegand, K.C.; Latif, A.; Chow, C.; Huntsman, D.; Yousef, G.M. The Chromatin Remodeling Gene ARID1A Is a New Prognostic Marker in Clear Cell Renal Cell Carcinoma. Am. J. Pathol. 2013, 182, 1163–1170. [Google Scholar] [CrossRef]
- Porter, S.; Clark, I.M.; Kevorkian, L.; Edwards, D.R. The ADAMTS metalloproteinases. Biochem. J. 2005, 386, 15–27. [Google Scholar] [CrossRef]
- Liang, L.; Zhu, J.-H.; Chen, G.; Qin, X.-G.; Chen, J.-Q. Prognostic Values for the mRNA Expression of the ADAMTS Family of Genes in Gastric Cancer. J. Oncol. 2020, 2020, 9431560. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, M.; Jiang, Z.; Wang, X. ARID1A Mutations Are Associated with Increased Immune Activity in Gastrointestinal Cancer. Cells 2019, 8, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Lee, C.; Suh, J.H.; Chae, J.Y.; Kim, H.W.; Moon, K.C. Decreased ARID1A expression correlates with poor prognosis of clear cell renal cell carcinoma. Hum. Pathol. 2015, 46, 454–460. [Google Scholar] [CrossRef] [PubMed]
P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P10 | P11 | |
Age | 68 | 60 | 65 | 72 | 69 | 33 | 42 | 40 | 52 | 57 | 68 |
Sex (F/M) | F | F | M | F | M | F | F | M | M | M | M |
Tumor Size (cm) | 2.5 | 2.5 | 3.9 | 11 | 5.5 | 4.3 | 6 | 5.3 | 8.8 | 5.2 | 10 |
Nuclear Grade | II | II | IV | IV | III | II | II | III | III | III | IV |
Sarcomatoid component | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
TNM T-Stage | T1a | T1a | T3a | T2b | T1b | T1b | T1b | T1b | T2a | T3a | T3a |
TNM N-Stage | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
TNM M-Stage | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
Recurrence | No | No | No | No | Lung, Bone | No | No | No | Liver, Brain, Lung | No | Lung, Liver, Abdomen, Retroperitoneum |
Overall Survival (Month) | 36 | 35 | 35 | 35 | 32 | 32 | 30 | 28 | 12 | 14 | 42 |
Disease Free Survival (Month) | 36 | 35 | 35 | 35 | 10 | 32 | 30 | 28 | 10 | 14 | 10 |
Death | N | N | N | N | N | N | N | N | Y | N | Y |
Response to LRN * | NED | NED | NED | NED | Fail | NED | NED | NED | Fail | NED | Fail |
P12 | P13 | P14 | P15 | P16 | P17 | P18 | P19 | P20 | P21 | P22 | |
Age | 67 | 62 | 51 | 40 | 82 | 82 | 65 | 47 | 45 | 82 | 61 |
Sex (F/M) | F | M | M | M | F | M | M | M | M | M | M |
Tumor Size (cm) | 6 | 10 | 5 | 4.2 | 5.5 | 4.7 | 14.5 | 10.3 | 7.5 | 7.2 | 5.4 |
Nuclear Grade | IV | III | III | III | II | III | II | III | III | III | IV |
Sarcomatoid component | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
TNM T-Stage | T1b | T2a | T3a | T3a | T3a | T3a | T3b | T3a | T2a | T2a | T3b |
TNM N-Stage | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
TNM M-Stage | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
Recurrence | Lung, Bone | Lung | Lung, Brain | No | Lung | No | No | Lung | No | Lung | Lung, Bone, Jejunum, Peritoneum |
Overall Survival (Month) | 42 | 38 | 37 | 36 | 14 | 38 | 48 | 50 | 45 | 48 | 34 |
Disease Free Survival (Month) | 0 | 1 | 33 | 36 | 1 | 38 | 48 | 2 | 45 | 24 | 1 |
Death | N | N | N | N | Y | N | N | N | N | N | Y |
Response to LRN * | Fail | Fail | Fail | NED | Fail | NED | NED | Fail | NED | Fail | Fail |
Mutation Frequency (%) | ||||||
---|---|---|---|---|---|---|
Gene | Korean | TCGA | RECA-EU | Tokyo | Taiwan | |
VHL | 91 | 54 | 61 | 41 | 50 | |
PBRM1 | 36 | 39 | 44 | 29 | 26 | |
SETD2 | 50 | 21 | 22 | 11 | 22 | |
BAP1 | 18 | 19 | 13 | 8 | 9 | |
FBN2 | 4.5 | 18 | 42 | 0.9 | NA | |
TTN | 23 | 17 | 15 | 20 | NA | |
KDM5C | 9 | 7 | 10 | 4 | 9 | |
MTOR | 4.5 | 7 | 14 | 6 | 8 | |
XIRP2 | 4.5 | 7 | 32 | 2.8 | NA | |
AKAP9 | 4.5 | 6 | 9 | 2.8 | NA | |
ARID1A | 4.5 | 6 | 8 | 1.9 | NA | |
HMCN1 | 4.5 | 6 | 24 | 6 | NA | |
SSH2 | 9 | 6 | 14 | 0 | NA | |
TSHZ3 | 14 | 6 | 8 | 2.8 | NA | |
SPEN | 18 | 5 | 5 | 0 | NA | |
VWF | 9 | 5 | 10 | 4 | NA |
HGVS.c (cDNA) | HGVS.p (Protein) | HGVS.p (Single) | Variant Type | ClinVar | COSMIC ID |
---|---|---|---|---|---|
c.337C>T | p.Arg113 | R113 | Stop gained | Pathogenic | COSM30228 |
c.353T>C | p.Leu118Pro | L118P | Missense variant Intron variant | Pathogenic | COSM14312 |
c.174_208delGCCGC GGCCCGTG CTGCG CTCGGTGAACTCG CGCG | p.Pro59fs | P59fs | Frameshift variant | Unknown | - |
c.463+1G>A | - | - | Intron variant | Pathogenic | COSM51391 |
c.263G>A | p.Trp88 | W88 | Stop gained | Pathogenic | COSM18070 |
c.220_231dupGTCAT CTTCTGC | p.Val74_Cys77dup | V74_C77dup | Conservative inframe insertion | Unknown | - |
c.257C>T | p.Pro86Leu | P86L | Missense variant | Pathogenic | COSM18028 |
c.473T>A | p.Leu158Gln | L158Q | Missense variant | Likely pathogenic | COSM14368 |
c.227_229delTCT | p.Phe76del | F76del | Disruptive inframe deletion | Unknown | COSM53186 |
c.430G>T | p.Gly144 | G144 | Stop gained Intron variant | Pathogenic | COSM25682 |
c.449delA | p.Asn150fs | N150fs | Frameshift variant Intron variant | Unknown | COSM17843 |
c.332G>T | p.Ser111Gly | S111l | Missense variant | Uncertain significance | COSM36341 |
c.280delG | p.Glu94fs | E94fs | Frameshift variant | Unknown | - |
c.281A>T | p.Glu94Val | E94V | Missense variant | Unknown | - |
c.331A>G | p.Ser111Gly | S111G | Missense variant | Pathogenic | COSM18353 |
c.337C>T | p.Arg113 | R113 | Stop gained | Pathogenic | COSM30228 |
c.266T>A | p.Leu89His | L89H | Missense variant | Likely pathogenic | COSM14305 |
c.523dupT | p.Tyr175fs | Y175fs | Frameshift variant | Unknown | COSM253386 |
c.203C>A | p.Ser68 | S68 | Stop gained | Pathogenic | COSM14372 |
c.362A>G | p.Asp121Gly | D121G | Missense variant intron variant | Pathogenic | COSM18009 |
Clinical Variable | Result | Survival-Specific Mutated Genes of ccRCC | Top Ranked Mutated Genes of TCGA_KIRC | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADAMTS10 | CARD6 | NLRP2 | OBSCN | SECISBP2L | USP40 | AKAP9 | ARID1A | BAP1 | KDM5C | SETD2 | ||
Overall Survival | r | 0.287 | −0.441 * | −0.055 | 0.119 | 0.159 | –0.055 | −0.055 | 0.287 | −0.235 | −0.204 | 0.377 |
p-value | 0.195 | 0.04 | 0.806 | 0.597 | 0.481 | 0.806 | 0.806 | 0.195 | 0.291 | 0.361 | 0.084 | |
Disease Free Survival | r | 0.350 | −0.124 | −0.180 | −0.234 | −0.180 | −0.180 | −0.180 | −0.350 | −0.465 * | −0.221 | −0.115 |
p-value | 0.110 | 0.581 | 0.422 | 0.295 | 0.422 | 0.422 | 0.422 | 0.110 | 0.029 | 0.323 | 0.610 | |
Death | r | −0.087 | −0.087 | −0.087 | −0.126 | 0.463 * | −0.087 | −0.087 | −0.087 | 0.389 | −0.126 | 0.024 |
p-value | 0.701 | 0.701 | 0.701 | 0.578 | 0.03 | 0.701 | 0.701 | 0.701 | 0.073 | 0.577 | 0.916 | |
Nuclear Grade | r | −0.299 | 0.019 | 0.019 | 0.034 | 0.318 | 0.019 | 0.019 | −0.299 | 0.192 | 0.244 | 0.451 * |
p-value | 0.176 | 0.934 | 0.934 | 0.881 | 0.149 | 0.934 | 0.934 | 0.176 | 0.392 | 0.274 | 0.035 | |
Sarcomatoid component | r | −0.069 | −0.069 | 0.690 ** | 0.474 * | −0.069 | 0.690 ** | 0.690 ** | −0.069 | 0.261 | −0.1 | 0.314 |
p-value | 0.76 | 0.76 | 0.00038 | 0.026 | 0.76 | 0.00038 | 0.00038 | 0.76 | 0.241 | 0.658 | 0.155 | |
N-stage | r | −0.048 | −0.048 | −0.048 | −0.069 | 1.000 ** | −0.048 | −0.048 | −0.048 | −0.103 | 0.690 ** | 0.217 |
p-value | 0.833 | 0.833 | 0.833 | 0.761 | 2.20e-16 | 0.833 | 0.833 | 0.833 | 0.649 | 0.00038 | 0.333 | |
Sex | r | −0.149 | −0.149 | −0.149 | 0.462 * | −0.149 | −0.149 | −0.149 | −0.149 | 0.184 | -0.216 | −0.379 |
p-value | 0.508 | 0.508 | 0.508 | 0.03 | 0.508 | 0.508 | 0.508 | 0.508 | 0.412 | 0.334 | 0.082 | |
Tumor size | r | 0.585 ** | −0.104 | −0.082 | −0.119 | 0.252 | −0.082 | −0.082 | 0.585 ** | −0.169 | 0.107 | 0.123 |
p-value | 0.004 | 0.645 | 0.717 | 0.599 | 0.259 | 0.717 | 0.717 | 0.004 | 0.453 | 0.636 | 0.585 |
Genes | Mutant Type | Mutation | HGVS.p | Mutation Frequency % | Patient ID | TCGA-KIRC (Firehose) Mutation Frequency % | RECA-EU Mutation Frequency % |
---|---|---|---|---|---|---|---|
HGVS.c | |||||||
ADAMTS10 | missense_variant | c.2303G>A | p.Arg768His | 4.5 | P18 | 0.9 | 2.1 |
CARD6 | missense_variant | c.2674G>A | p.Gly892Arg | 4.5 | P10 | 1.1 | 0.7 |
NLRP2 | missense_variant | c.2233C>T | p.Arg745Trp | 4.5 | P05 | 1.1 | 4.7 |
OBSCN | missense_variant | c.18052C>T | p.Arg6018Cys | 9.1 | P06 | 1.1 | 6 |
c.3529C>G | p.Gln1177Glu | P12 | |||||
c.12072_12073delTCinsCT | p.Arg4025Cys | ||||||
SECISBP2L | missense_variant | c.1930A>G | p.Met644Val | 4.5 | P11 | 1.8 | 3.5 |
USP40 | frameshift_variant | c.3477dupA | p.Gln1160fs | 4.5 | P05 | 2.2 | 4.5 |
AKAP9 | missense_variant | c.89A>T | p.Gln30Leu | 4.5 | P05 | 6 | 7 |
ARID1A | missense_variant | c.6200T>G | p.Ile2067Ser | 4.5 | P18 | 6 | 7 |
BAP1 | missense_variant and splice_region_variant | c.437G>C | p.Arg146Thr | 18.1 | P08 | 19 | 13 |
frameshift_variant | c.878dupC | p.Leu294fs | P12 | ||||
c.1636_1642delTACAACC | p.Tyr546fs | P16 | |||||
splice_acceptor_variant and splice_region_variant | c.581-2A>G | Unknown | P22 | ||||
KDM5C | frameshift_variant | c.3460delG | p.Glu1154fs | 9.1 | P10 | 7 | 10 |
splice_donor_variant&intron_variant | c.531+2T>A | Unknown | P11 | ||||
SETD2 | missense_variant | c.2357_2358delGCinsTT | p.Cys786Phe | 50 | P08 | 21 | 20 |
c.4885C>G | p.His1629Asp | P18 | |||||
c.373T>G | p.Ser125Ala | P21 | |||||
c.577C>T | p.Pro193Ser | P22 | |||||
frameshift_variant | c.7537_7546dupACTCACGGTG | p.Val2516fs | P11 | ||||
c.572delC | p.Pro191fs | P22 | |||||
stop_gained | c.6520C>T | p.Gln2174 | P05 | ||||
c.4486C>T | p.Arg1496 | P21 | |||||
stop_gained and splice_region_variant | c.5013T>G | p.Tyr1671 | P12 | ||||
splice_donor_variant and intron_variant | c.4715+1G>A | Unknown | P03 | ||||
conservative_inframe_deletion | C.625_681delACAGAGCCAGTGGCCTTGCCACATACACCAATAACAGTTCTAATGGCAGCACCAGTA | p.Thr209_Val227del | P20 |
Survival Analysis | Survival-Specific Mutated Genes of ccRCC | Top Ranked Mutated Genes of TCGA_KIRC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ADAMTS10 | CARD6 | NLRP2 | OBSCN | SECISBP2L | USP40 | AKAP9 | ARID1A | BAP1 | KDM5C | SETD2 | ||
TCGA_KIRC | Overall Survival | |||||||||||
Firehose Legacy | 0.209 | 0.15 | 0.0029 * | 0.0096 * | 0.112 | 0.378 | 0.284 | 0.906 | 0.577 | 0.102 | 0.821 | |
PanCancer Atlas | 0.0186 * | 0.0003 ** | 0.0142 * | 0.289 | 0.0005 ** | 0.53 | 0.845 | 0.464 | 0.0754 | 0.0664 | 0.273 | |
Disease Free Survival | ||||||||||||
Firehose Legacy | 0.0004 * | 0.074 | 3.09e-12 ** | 0.0048 * | 0.0489 * | 0.0003 ** | 0.8 | 0.384 | 0.285 | 0.0911 | 0.238 | |
PanCancer Atlas | NA | NA | <10−10 ** | 0.695 | NA | 0.0269 * | 0.177 | 0.228 | 0.401 | 0.488 | 0.0201 * | |
RECA-EU | Overall Survival | 0.326 | 0.0005 ** | 0.061 | 0.423 | 0.564 | 0.042 * | 0.047 * | 0.0204 * | 0.0024 * | 0.022 * | 0.056 |
Disease Free Survival | 0.0011 * | 1.0 | 0.65 | 3.28e-06 ** | 0.669 | 0.669 | 0.263 | 1.24e-05 ** | 0.421 | 0.491 | 0.0002 ** |
Multivariate Cox Regression | ||||||
---|---|---|---|---|---|---|
Overall Survival | Disease Free Survival | |||||
Covariates | Hazard Ratio | Lower-Upper (95% CI) | p-Value | Hazard Ratio | Lower-Upper (95% CI) | p-Value |
ADAMTS10 | 0.33 | 0.03–3.08 | 0.33 | 0.98 | 0.14–7.07 | 0.98 |
CARD6 | 0.82 | 0.08–8.44 | 0.86 | 0.45 | 0.07–2.85 | 0.39 |
NLRP2 | 5.72 | 1.48–22.1 | 0.01 * | 9.62 | 2.51–36.92 | <0.005 * |
OBSCN | 7.5 | 1.67–33.69 | 0.01 * | 2.5 | 0.56–11.09 | 0.23 |
SECISBP2L | 2.47 | 0.66–9.22 | 0.18 | 1.09 | 0.27–4.51 | 0.9 |
USP40 | 2.06 | 0.28–15.08 | 0.48 | 5.29 | 1.62–17.29 | 0.01 * |
T Stage | 2.09 | 1.46–3 | <0.005 * | 1.9 | 1.48–2.44 | <0.005 * |
Metastasis | 4.62 | 2.68–7.95 | <0.005 * | 4.98 | 3.21–7.74 | <0.005 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, J.; Kim, H.; Han, J.; Lee, J.; Hong, S.; Kim, S.; Yoon, S.K.; Choi, K.; Yang, J.; Park, U.; et al. Identification of Survival-Specific Genes in Clear Cell Renal Cell Carcinoma Using a Customized Next-Generation Sequencing Gene Panel. J. Pers. Med. 2022, 12, 113. https://doi.org/10.3390/jpm12010113
Hwang J, Kim H, Han J, Lee J, Hong S, Kim S, Yoon SK, Choi K, Yang J, Park U, et al. Identification of Survival-Specific Genes in Clear Cell Renal Cell Carcinoma Using a Customized Next-Generation Sequencing Gene Panel. Journal of Personalized Medicine. 2022; 12(1):113. https://doi.org/10.3390/jpm12010113
Chicago/Turabian StyleHwang, Jia, Heeeun Kim, Jinseon Han, Jieun Lee, Sunghoo Hong, Saewoong Kim, Sungjoo Kim Yoon, Keonwoo Choi, Jihoon Yang, Unsang Park, and et al. 2022. "Identification of Survival-Specific Genes in Clear Cell Renal Cell Carcinoma Using a Customized Next-Generation Sequencing Gene Panel" Journal of Personalized Medicine 12, no. 1: 113. https://doi.org/10.3390/jpm12010113
APA StyleHwang, J., Kim, H., Han, J., Lee, J., Hong, S., Kim, S., Yoon, S. K., Choi, K., Yang, J., Park, U., Kim, K., Yim, K., Kim, Y., & Choi, Y. (2022). Identification of Survival-Specific Genes in Clear Cell Renal Cell Carcinoma Using a Customized Next-Generation Sequencing Gene Panel. Journal of Personalized Medicine, 12(1), 113. https://doi.org/10.3390/jpm12010113