Impact of Smoking Status on Lung Cancer Characteristics and Mortality Rates between Screened and Non-Screened Lung Cancer Cohorts: Real-World Knowledge Translation and Education
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
3.1. Non-Smokers in Two-Group Comparison
3.2. Smokers in Two-Group Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Groot, P.M.; Wu, C.C.; Carter, B.W.; Munden, R.F. The epidemiology of lung cancer. Transl. Lung Cancer Res. 2018, 7, 220–233. [Google Scholar] [CrossRef]
- Wang, B.-Y.; Huang, J.-Y.; Cheng, C.-Y.; Lin, C.-H.; Ko, J.-L.; Liaw, Y.-P. Lung Cancer and Prognosis in Taiwan: A Population-Based Cancer Registry. J. Thorac. Oncol. 2013, 8, 1128–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.T.; Liu, F.C.; Wu, C.Y.; Kuo, C.F.; Lan, W.C.; Yu, H.P. Epidemiology and Survival Outcomes of Lung Cancer: A Population-Based Study. Biom. Res. Int. 2019, 2019, 8148156. [Google Scholar] [CrossRef] [Green Version]
- Rota, M.; Pizzato, M.; La Vecchia, C.; Boffetta, P. Efficacy of lung cancer screening appears to increase with prolonged intervention: Results from the MILD trial and a meta-analysis. Ann. Oncol. 2019, 30, 1040–1043. [Google Scholar] [CrossRef]
- Wu, F.-Z.; Huang, Y.-L.; Wu, Y.-J.; Tang, E.-K.; Wu, M.-T.; Chen, C.-S.; Lin, Y.-P. Prognostic effect of implementation of the mass low-dose computed tomography lung cancer screening program: A hospital-based cohort study. Eur. J. Cancer Prev. 2020, 29, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.Z.; Kuo, P.L.; Huang, Y.L.; Tang, E.K.; Chen, C.S.; Wu, M.T.; Lin, Y.P. Differences in lung cancer characteristics and mortality rate between screened and non-screened cohorts. Sci. Rep. 2019, 9, 19386. [Google Scholar] [CrossRef] [Green Version]
- Nawa, T.; Fukui, K.; Nakayama, T.; Sagawa, M.; Nakagawa, T.; Ichimura, H.; Mizoue, T. A population-based cohort study to evaluate the effectiveness of lung cancer screening using low-dose CT in Hitachi city, Japan. Jpn. J. Clin. Oncol. 2019, 49, 130–136. [Google Scholar] [CrossRef]
- Nawa, T.; Nakagawa, T.; Mizoue, T.; Kusano, S.; Chonan, T.; Hayashihara, K.; Suito, T.; Endo, K. A decrease in lung cancer mortality following the introduction of low-dose chest CT screening in Hitachi, Japan. Lung Cancer 2012, 78, 225–228. [Google Scholar] [CrossRef]
- Wu, F.-Z.; Huang, Y.-L.; Wu, C.C.; Tang, E.-K.; Chen, C.-S.; Mar, G.-Y.; Yen, Y.; Wu, M.-T. Assessment of Selection Criteria for Low-Dose Lung Screening CT Among Asian Ethnic Groups in Taiwan: From Mass Screening to Specific Risk-Based Screening for Non-Smoker Lung Cancer. Clin. Lung Cancer 2016, 17, e45–e56. [Google Scholar] [CrossRef]
- Hung, Y.-C.; Tang, E.-K.; Wu, Y.-J.; Chang, C.-J.; Wu, F.-Z. Impact of low-dose computed tomography for lung cancer screening on lung cancer surgical volume: The urgent need in health workforce education and training. Medicine 2021, 100, e26901. [Google Scholar] [CrossRef] [PubMed]
- Hays, L.E.; Zodrow, D.M.; Yates, J.E.; Deffebach, M.E.; Jacoby, D.B.; Olson, S.B.; Pankow, J.F.; Bagby, G.C. Cigarette smoke induces genetic instability in airway epithelial cells by suppressing FANCD2 expression. Br. J. Cancer. 2008, 98, 1653–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spira, A.; Beane, J.; Shah, V.; Liu, G.; Schembri, F.; Yang, X.; Palma, J.; Brody, J.S. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc. Natl. Acad. Sci. USA 2004, 101, 10143–10148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UyBico, S.J.; Wu, C.C.; Suh, R.D.; Le, N.H.; Brown, K.; Krishnam, M.S. Lung Cancer Staging Essentials: The New TNM Staging System and Potential Imaging Pitfalls. RadioGraphics 2010, 30, 1163–1181. [Google Scholar] [CrossRef]
- Thun, M.J.; Hannan, L.M.; Adams-Campbell, L.L.; Boffetta, P.; Buring, J.E.; Feskanich, D.; Flanders, W.D.; Jee, S.H.; Katanoda, K.; Kolonel, L.N.; et al. Lung cancer occurrence in never-smokers: An analysis of 13 cohorts and 22 cancer registry studies. PLoS Med. 2008, 5, e185. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Zhou, C. Lung cancer in never smokers—the East Asian experience. Transl. Lung Cancer Res. 2018, 7, 450–463. [Google Scholar] [CrossRef]
- Yano, T.; Miura, N.; Takenaka, T.; Haro, A.; Okazaki, H.; Ohba, T.; Kouso, H.; Kometani, T.; Shoji, F.; Maehara, Y. Never-smoking nonsmall cell lung cancer as a separate entity. Cancer 2008, 113, 1012–1018. [Google Scholar] [CrossRef]
- Kakinuma, R.; Muramatsu, Y.; Asamura, H.; Watanabe, S.-i.; Kusumoto, M.; Tsuchida, T.; Kaneko, M.; Tsuta, K.; Maeshima, A.M.; Ishii, G.; et al. Low-dose CT lung cancer screening in never-smokers and smokers: Results of an eight-year observational study. Transl. Lung Cancer Res. 2020, 9, 10–22. [Google Scholar] [CrossRef]
- Silvestri, G.A.; Nietert, P.J.; Zoller, J.; Carter, C.; Bradford, D. Attitudes towards screening for lung cancer among smokers and their non-smoking counterparts. Thorax 2007, 62, 126. [Google Scholar] [CrossRef] [Green Version]
- Quaife, S.L.; Vrinten, C.; Ruparel, M.; Janes, S.M.; Beeken, R.J.; Waller, J.; McEwen, A. Smokers’ interest in a lung cancer screening programme: A national survey in England. BMC Cancer 2018, 18, 497. [Google Scholar] [CrossRef] [Green Version]
- Castro, S.; Sosa, E.; Lozano, V.; Akhtar, A.; Love, K.; Duffels, J.; Raz, D.J.; Kim, J.Y.; Sun, V.; Erhunmwunsee, L. The impact of income and education on lung cancer screening utilization, eligibility, and outcomes: A narrative review of socioeconomic disparities in lung cancer screening. J. Thorac. Dis. 2021, 13, 3745–3757. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Tseng, J.-H.; Liang, C.-H.; Tang, E.-K.; Wu, F.-Z. The fate of subsolid nodule: Predictable or unpredictable? J. Thorac. Dis. 2020, 12, 1118–1120. [Google Scholar] [CrossRef]
- Heffner, J.L.; Krebs, P.; Johnson, H.; Greene, P.A.; Klein, D.E.; Feemster, L.C.; Slatore, C.G.; Au, D.H.; Zeliadt, S.B. Smokers’ Inaccurate Beliefs about the Benefits of Lung Cancer Screening. Ann. Am. Thorac. Soc. 2018, 15, 1110–1113. [Google Scholar] [CrossRef]
- Tomioka, K.; Kurumatani, N.; Saeki, K. The Association Between Education and Smoking Prevalence, Independent of Occupation: A Nationally Representative Survey in Japan. J. Epidemiol. 2020, 30, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N. Engl. J. Med. 2011, 365, 395–409. [CrossRef] [PubMed] [Green Version]
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Clement-Duchene, C.; Vignaud, J.M.; Stoufflet, A.; Bertrand, O.; Gislard, A.; Thiberville, L.; Grosdidier, G.; Martinet, Y.; Benichou, J.; Hainaut, P.; et al. Characteristics of never smoker lung cancer including environmental and occupational risk factors. Lung Cancer 2010, 67, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Smolle, E.; Pichler, M. Non-Smoking-Associated Lung Cancer: A distinct Entity in Terms of Tumor Biology, Patient Characteristics and Impact of Hereditary Cancer Predisposition. Cancers 2019, 11, 204. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.T.; Tang, E.K.; Wu, M.T.; Wu, C.C.; Liang, C.H.; Chen, C.S.; Mar, G.Y.; Lai, R.S.; Wang, J.C.; Wu, C.L.; et al. Modified Lung-RADS Improves Performance of Screening LDCT in a Population with High Prevalence of Non-smoking-related Lung Cancer. Acad. Radiol. 2018, 25, 1240–1251. [Google Scholar] [CrossRef]
- Tang, E.-K.; Chen, C.-S.; Wu, C.C.; Wu, M.-T.; Yang, T.-L.; Liang, H.-L.; Hsu, H.-T.; Wu, F.-Z. Natural History of Persistent Pulmonary Subsolid Nodules: Long-Term Observation of Different Interval Growth. Heart Lung Circ. 2019, 28, 1747–1754. [Google Scholar] [CrossRef]
- Lin, K.-F.; Wu, H.-F.; Huang, W.-C.; Tang, P.-L.; Wu, M.-T.; Wu, F.-Z. Propensity score analysis of lung cancer risk in a population with high prevalence of non-smoking related lung cancer. BMC Pulm. Med. 2017, 17, 120. [Google Scholar] [CrossRef] [Green Version]
- van Rens, M.T.M.; Zanen, P.; Brutel de la Rivière, A.; Elbers, H.R.J.; van Swieten, H.A.; van den Bosch, J.M.M. Survival in Synchronous vs Single Lung Cancer: Upstaging Better Reflects Prognosis. CHEST 2000, 118, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Kauczor, H.-U.; von Stackelberg, O. Subsolid Lung Nodules: Potential for Overdiagnosis. Radiology 2019, 293, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.; Prokop, M.; Jacobs, C.; Capretti, G.; Sverzellati, N.; Ciompi, F.; van Ginneken, B.; Schaefer-Prokop, C.M.; Galeone, C.; Marchianò, A.; et al. Long-Term Active Surveillance of Screening Detected Subsolid Nodules is a Safe Strategy to Reduce Overtreatment. J. Thorac. Oncol. 2018, 13, 1454–1463. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.-Z.; Kuo, P.-L.; Wu, C.C.; Wu, M.-T. The impact of patients’ preferences on the decision of low-dose computed tomography lung cancer screening. Transl Lung Cancer Res. 2018, 7, S236–S238. [Google Scholar] [CrossRef] [PubMed]
- Caverly, T. Selecting the best candidates for lung cancer screening. JAMA Intern. Med. 2015, 175, 898–900. [Google Scholar] [CrossRef] [PubMed]
Group 1 (N = 1570) | Group 2 (N = 81) | Group 3 (N = 1220) | Group 4 (N = 12) | p-Value | 1 vs. 2 | 1 vs. 3 | 1 vs. 4 | 2 vs. 3 | 2 vs. 4 | 3 vs. 4 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean age at diagnosis, years (mean, SD) | 66.36 ± 12.78 | 59.41 ± 7.41 | 69.15 ± 13.00 | 63.33 ± 11.83 | <0.0001 | <0.0001 | <0.0001 | 1 | <0.0001 | 1 | 0.695 |
Median age at diagnosis, years (range) | 66 (40–99) | 66 (42–77) | 71 (41–99) | 72 (42–83) | |||||||
Gender (n, %) | <0.0001 | 0.437 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 1 | ||||
Male | 589 (37.5%) | 24 (29.6%) | 1175 (96.3%) | 12 (100%) | |||||||
Female | 981 (62.5%) | 57 (70.4%) | 45 (3.7%) | 0 (0%) | |||||||
Smoking | 0 (0%) | 0 (0%) | 1220 (100%) | 12 (100%) | |||||||
Alcohol consumption | 39 (2.5%) | 4 (4.9%) | 405 (33.2%) | 6 (50%) | <0.0001 | 1 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.481 |
Betel nut consumption | 8 (0.5%) | 0 (0%) | 187 (15.3%) | 3 (25%) | <0.0001 | 1 | <0.0001 | 0.003 | <0.0001 | 0.005 | 1 |
Histology | <0.0001 | 0.009 | <0.0001 | 1 | <0.0001 | 0.613 | 1 | ||||
Adenocarcinoma | 1269 (80.8%) | 79 (97.5%) | 744 (61%) | 9 (75%) | |||||||
Squamous cell carcinoma | 170 (10.8%) | 1 (1.2%) | 273 (22.4%) | 2 (16.7%) | |||||||
Small cell carcinoma | 79 (5%) | 1 (1.2%) | 178 (14.6%) | 0 (0%) | |||||||
Other | 52 (3.3%) | 0 (0%) | 25 (2%) | 1 (8.3%) | |||||||
Adenocarcinoma spectrum | <0.0001 | <0.0001 | 1 | 1 | <0.0001 | <0.0001 | 1 | ||||
AAH | 0 (0%) | 6 (7.4%) | 0 (0%) | 0 (0%) | |||||||
AIS | 0 (0%) | 7 (8.6%) | 0 (0%) | 0 (0%) | |||||||
MIA | 0 (0%) | 9 (11.1%) | 0 (0%) | 0 (0%) | |||||||
IPA | 1269 (100%) | 57 (70.4%) | 744 (60.9%) | 9 (75%) | |||||||
Stage | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.95 | <0.0001 | ||||
Carcinoma in situ | 4 (0.3%) | 14 (17.3%) | 0 (0%) | 0 (0%) | |||||||
I | 326 (20.8%) | 54 (66.7%) | 129 (10.6%) | 8 (66.7%) | |||||||
II | 64 (4.1%) | 4 (4.9%) | 60 (4.9%) | 1 (8.3%) | |||||||
III | 334 (21.3%) | 2 (2.5%) | 302 (24.8%) | 2 (16.7%) | |||||||
IV | 842 (53.6%) | 7 (8.6%) | 729 (59.8%) | 1 (8.3%) | |||||||
Curative surgery rate | 459 (29.2%) | 35 (83.3%) | 211 (17.3%) | 10 (83.3%) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 1 | <0.0001 |
Targeted therapy | 319 (20.3%) | 5 (11.9%) | 197 (16.1%) | 0 (0%) | 0.008 | 0.982 | 0.028 | 0.418 | 1 | 1 | 0.898 |
Mean tumor size (mm) | 41.25 ± 23.36 | 16.16 ± 13.74 | 51.12 ± 26.60 | 26.75 ± 19.99 | <0.0001 | <0.0001 | <0.0001 | 0.249 | <0.0001 | 0.976 | 0.004 |
Deaths | 1159 (73.8%) | 8 (9.9%) | 1047 (85.8%) | 2 (16.7%) | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 1 | <0.0001 |
Mean survival days | 676.03 ± 600.47 | 892.05 ± 516.24 | 444.85 ± 468.43 | 646.08 ± 337.21 | <0.0001 | 0.003 | <0.0001 | 1 | <0.0001 | 0.869 | 1 |
Median survival days | 517.5 (1–3128) | 825 (30–2599) | 304 (1–2937) | 683 (22–1217) |
Screened Group | Non-Screened Group | p-Value | |
---|---|---|---|
Patients | N = 81 | N = 1570 | |
Deaths | N = 8 | N = 1159 | <0.001 |
1-year mortality | 1.25% | 33.78% | <0.001 |
5-year mortality | 15.55% | 74.22% | <0.001 |
Overall mortality | 9.90% | 73.80% | <0.001 |
Average survival days | 892.05 ± 516.24 | 676.03 ± 600.47 | <0.001 |
Variable | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|
Age | 1.011 | 1.005–1.016 | <0.001 |
Gender | 0.861 | 0.750–0.989 | 0.034 |
Alcohol consumption | 1.029 | 0.575–1.841 | 0.924 |
Betel nut consumption | 0.879 | 0.315–2.453 | 0.805 |
Screened | 0.480 | 0.238–0.967 | 0.040 |
Tumor size | 1.012 | 1.009–1.015 | <0.001 |
Targeted therapy | 0.839 | 0.716–0.985 | 0.031 |
Histology | 0.872 | 0.740–1.029 | 0.105 |
Curative surgery | 0.196 | 0.162–0.238 | <0.001 |
Screened Group | Nonscreened Group | p-Value | |
---|---|---|---|
Patients | N = 12 | N = 1220 | |
Deaths | N = 2 | N = 1047 | <0.0001 |
1-year mortality | 8.33% | 51.51% | <0.001 |
5-year mortality | 17.50% | 85.5% | <0.001 |
Overall mortality | 16.7% | 85.8% | <0.001 |
Average days of survival | 646.08 ± 337.21 | 444.85 ± 468.43 | 0.064 |
Variable | Hazard Ratio | 95% CI | p-Value |
---|---|---|---|
Age | 1.014 | 1.009–1.020 | <0.001 |
Gender | 0.788 | 0.536–1.158 | 0.225 |
Alcohol consumption | 1.095 | 0.931–1.287 | 0.272 |
Betel nut consumption | 0.912 | 0.733–1.135 | 0.409 |
Screened | 0.386 | 0.096–1.553 | 0.180 |
Tumor size | 1.011 | 1.008–1.013 | <0.001 |
Targeted therapy | 0.792 | 0.648–0.968 | 0.023 |
Histology | 1.021 | 0.878–1.187 | 0.788 |
Curative surgery | 0202 | 0.159–0.256 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.-Z.; Wu, Y.-J.; Chen, C.-S.; Yang, S.-C. Impact of Smoking Status on Lung Cancer Characteristics and Mortality Rates between Screened and Non-Screened Lung Cancer Cohorts: Real-World Knowledge Translation and Education. J. Pers. Med. 2022, 12, 26. https://doi.org/10.3390/jpm12010026
Wu F-Z, Wu Y-J, Chen C-S, Yang S-C. Impact of Smoking Status on Lung Cancer Characteristics and Mortality Rates between Screened and Non-Screened Lung Cancer Cohorts: Real-World Knowledge Translation and Education. Journal of Personalized Medicine. 2022; 12(1):26. https://doi.org/10.3390/jpm12010026
Chicago/Turabian StyleWu, Fu-Zong, Yun-Ju Wu, Chi-Shen Chen, and Shu-Ching Yang. 2022. "Impact of Smoking Status on Lung Cancer Characteristics and Mortality Rates between Screened and Non-Screened Lung Cancer Cohorts: Real-World Knowledge Translation and Education" Journal of Personalized Medicine 12, no. 1: 26. https://doi.org/10.3390/jpm12010026
APA StyleWu, F. -Z., Wu, Y. -J., Chen, C. -S., & Yang, S. -C. (2022). Impact of Smoking Status on Lung Cancer Characteristics and Mortality Rates between Screened and Non-Screened Lung Cancer Cohorts: Real-World Knowledge Translation and Education. Journal of Personalized Medicine, 12(1), 26. https://doi.org/10.3390/jpm12010026