Advances of Genomic Medicine in Psoriatic Arthritis
Abstract
:1. Introduction
2. Genetic Factors of Susceptibility to Psoriatic Arthritis
2.1. Human Leukocyte Antigen Region
2.2. Non-HLA Genetic Associations by Genome-Wide Association Studies
2.3. Implications and Challenges for Personalized Medicine
3. Deriving Insights into Disease Biology through Multi-Omics Data Integration
3.1. Epigenetics
3.1.1. DNA Methylation
Epigenetic Mechanism | Sample | Molecule | Variation | References |
---|---|---|---|---|
DNA methylation | PBMCs | Specific methylation signature | Hypomethylation | [48] |
Sperm cells | DYSFIP1, ADARB2, MBP, PRKAG2, ITGB2, OSBPL5, TNS3, and SNORD115 | Hypermethylation | [52] | |
HCG26, H19, and MIR675 | Hypomethylation | |||
Blood | MICA, IRIF1, PSORS1C3, and TNFSF4 | Hypermethylation | [53] | |
PSORS1C1C1 | Hypomethylation | |||
Histone modifications | PBMCs | H4 | Hypoacetylation | [54] |
HDMEC | H3, and H4 | Hyperacetylation | [55] | |
Regulation via non-coding RNAs | Circulating CD14+ monocytes | miRNA-146a and miRNA-941 | Upregulated | [56,57] |
PBCs | hsa-miR-126-3p, hsa-miR-151a-5p, hsa-miR-130a-3p, hsa-miR-199a-3p and hsa-miR-451a | Downregulated | [58] * | |
hsa-miR-4741, hsa-miR-3196, hsa-miR-575, hsa-miR-3135b and hsa-miR-574-5p | Upregulated |
3.1.2. Histone Modifications
3.1.3. Transcriptional Regulation via Non-Coding RNAs
3.2. Transcriptomics
3.2.1. Transcriptomics in Peripheral Blood
3.2.2. Transcriptomics in Tissues
3.2.3. Single-Cell mRNA Sequencing
3.3. Machine Learning-Based Analysis of Multi-Omics Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Van den Bosch, F.; Coates, L. Clinical Management of Psoriatic Arthritis. Lancet 2018, 391, 2285–2294. [Google Scholar] [CrossRef]
- Moll, J.M.; Wright, V. Psoriatic Arthritis. Semin. Arthritis Rheum. 1973, 3, 55–78. [Google Scholar] [CrossRef]
- Taylor, W.; Gladman, D.; Helliwell, P.; Marchesoni, A.; Mease, P.; Mielants, H. CASPAR Study Group Classification Criteria for Psoriatic Arthritis: Development of New Criteria from a Large International Study. Arthritis Rheum. 2006, 54, 2665–2673. [Google Scholar] [CrossRef] [PubMed]
- Alinaghi, F.; Calov, M.; Kristensen, L.E.; Gladman, D.D.; Coates, L.C.; Jullien, D.; Gottlieb, A.B.; Gisondi, P.; Wu, J.J.; Thyssen, J.P.; et al. Prevalence of Psoriatic Arthritis in Patients with Psoriasis: A Systematic Review and Meta-Analysis of Observational and Clinical Studies. J. Am. Acad. Derm. 2019, 80, 251.e19–265.e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, W.A.; Gottlieb, A.B.; Mease, P. Psoriasis and Psoriatic Arthritis: Clinical Features and Disease Mechanisms. Clin. Derm. 2006, 24, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Barnas, J.L.; Ritchlin, C.T. Etiology and Pathogenesis of Psoriatic Arthritis. Rheum. Dis. Clin. N. Am. 2015, 41, 643–663. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.L.; Hedrich, C.M. The Molecular Pathophysiology of Psoriatic Arthritis-The Complex Interplay Between Genetic Predisposition, Epigenetics Factors, and the Microbiome. Front. Mol. Biosci 2021, 8, 662047. [Google Scholar] [CrossRef]
- Ogdie, A.; Coates, L.C.; Gladman, D.D. Treatment Guidelines in Psoriatic Arthritis. Rheumatology 2020, 59, i37–i46. [Google Scholar] [CrossRef] [Green Version]
- Iannone, L.F.; Bennardo, L.; Palleria, C.; Roberti, R.; De Sarro, C.; Naturale, M.D.; Dastoli, S.; Donato, L.; Manti, A.; Valenti, G.; et al. Safety Profile of Biologic Drugs for Psoriasis in Clinical Practice: An Italian Prospective Pharmacovigilance Study. PLoS ONE 2020, 15, e0241575. [Google Scholar] [CrossRef]
- Chandran, V.; Schentag, C.T.; Brockbank, J.E.; Pellett, F.J.; Shanmugarajah, S.; Toloza, S.M.A.; Rahman, P.; Gladman, D.D. Familial Aggregation of Psoriatic Arthritis. Ann. Rheum. Dis. 2009, 68, 664–667. [Google Scholar] [CrossRef]
- Karason, A.; Love, T.J.; Gudbjornsson, B. A Strong Heritability of Psoriatic Arthritis over Four Generations—The Reykjavik Psoriatic Arthritis Study. Rheumatology 2009, 48, 1424–1428. [Google Scholar] [CrossRef] [Green Version]
- Karmacharya, P.; Chakradhar, R.; Ogdie, A. The Epidemiology of Psoriatic Arthritis: A Literature Review. Best Pract. Res. Clin. Rheumatol. 2021, 35, 101692. [Google Scholar] [CrossRef]
- Trowsdale, J.; Knight, J.C. Major Histocompatibility Complex Genomics and Human Disease. Annu. Rev. Genom. Hum. Genet. 2013, 14, 301–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dendrou, C.A.; Petersen, J.; Rossjohn, J.; Fugger, L. HLA Variation and Disease. Nat. Rev. Immunol. 2018, 18, 325–339. [Google Scholar] [CrossRef]
- Winchester, R.; FitzGerald, O. MHC Class I Associations beyond HLA-B27: The Peptide Binding Hypothesis of Psoriatic Arthritis and Its Implications for Disease Pathogenesis. Curr. Opin. Rheumatol. 2020, 32, 330–336. [Google Scholar] [CrossRef]
- Chen, L.; Tsai, T.-F. HLA-Cw6 and Psoriasis. Br. J. Derm. 2018, 178, 854–862. [Google Scholar] [CrossRef]
- Winchester, R.; Minevich, G.; Steshenko, V.; Kirby, B.; Kane, D.; Greenberg, D.A.; FitzGerald, O. HLA Associations Reveal Genetic Heterogeneity in Psoriatic Arthritis and in the Psoriasis Phenotype. Arthritis Rheum. 2012, 64, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Han, B.; Tsoi, L.C.; Stuart, P.E.; Ellinghaus, E.; Tejasvi, T.; Chandran, V.; Pellett, F.; Pollock, R.; Bowcock, A.M.; et al. Fine Mapping Major Histocompatibility Complex Associations in Psoriasis and Its Clinical Subtypes. Am. J. Hum. Genet. 2014, 95, 162–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowes, J.; Ashcroft, J.; Dand, N.; Jalali-Najafabadi, F.; Bellou, E.; Ho, P.; Marzo-Ortega, H.; Helliwell, P.S.; Feletar, M.; Ryan, A.W.; et al. Cross-Phenotype Association Mapping of the MHC Identifies Genetic Variants That Differentiate Psoriatic Arthritis from Psoriasis. Ann. Rheum. Dis. 2017, 76, 1774–1779. [Google Scholar] [CrossRef]
- Cortes, A.; Pulit, S.L.; Leo, P.J.; Pointon, J.J.; Robinson, P.C.; Weisman, M.H.; Ward, M.; Gensler, L.S.; Zhou, X.; Garchon, H.-J.; et al. Major Histocompatibility Complex Associations of Ankylosing Spondylitis Are Complex and Involve Further Epistasis with ERAP1. Nat. Commun. 2015, 6, 7146. [Google Scholar] [CrossRef] [Green Version]
- Mills, M.C.; Rahal, C. A Scientometric Review of Genome-Wide Association Studies. Commun. Biol. 2019, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Peña, R.; Castro-Santos, P.; Durán, J.; Santiago, C.; Lucia, A. The Genetics of Spondyloarthritis. J. Pers. Med. 2020, 10, 151. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, F.; Fan, X.; Wang, Y. Psoriatic Arthritis: A Systematic Review of Non-HLA Genetic Studies and Important Signaling Pathways. Int. J. Rheum. Dis. 2020, 23, 1288–1296. [Google Scholar] [CrossRef]
- Liu, Y.; Helms, C.; Liao, W.; Zaba, L.C.; Duan, S.; Gardner, J.; Wise, C.; Miner, A.; Malloy, M.J.; Pullinger, C.R.; et al. A Genome-Wide Association Study of Psoriasis and Psoriatic Arthritis Identifies New Disease Loci. PLoS Genet. 2008, 4, e1000041. [Google Scholar] [CrossRef]
- Hüffmeier, U.; Uebe, S.; Ekici, A.B.; Bowes, J.; Giardina, E.; Korendowych, E.; Juneblad, K.; Apel, M.; McManus, R.; Ho, P.; et al. Common Variants at TRAF3IP2 Are Associated with Susceptibility to Psoriatic Arthritis and Psoriasis. Nat. Genet. 2010, 42, 996–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellinghaus, E.; Stuart, P.E.; Ellinghaus, D.; Nair, R.P.; Debrus, S.; Raelson, J.V.; Belouchi, M.; Tejasvi, T.; Li, Y.; Tsoi, L.C.; et al. Genome-Wide Meta-Analysis of Psoriatic Arthritis Identifies Susceptibility Locus at REL. J. Invest. Derm. 2012, 132, 1133–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, P.E.; Nair, R.P.; Tsoi, L.C.; Tejasvi, T.; Das, S.; Kang, H.M.; Ellinghaus, E.; Chandran, V.; Callis-Duffin, K.; Ike, R.; et al. Genome-Wide Association Analysis of Psoriatic Arthritis and Cutaneous Psoriasis Reveals Differences in Their Genetic Architecture. Am. J. Hum. Genet. 2015, 97, 816–836. [Google Scholar] [CrossRef] [Green Version]
- Bowes, J.; Budu-Aggrey, A.; Huffmeier, U.; Uebe, S.; Steel, K.; Hebert, H.L.; Wallace, C.; Massey, J.; Bruce, I.N.; Bluett, J.; et al. Dense Genotyping of Immune-Related Susceptibility Loci Reveals New Insights into the Genetics of Psoriatic Arthritis. Nat. Commun. 2015, 6, 6046. [Google Scholar] [CrossRef] [Green Version]
- Cortés, A.; Brown, M. Promise and Pitfalls of the Immunochip. Arthritis Res. Ther. 2011, 13, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aterido, A.; Cañete, J.D.; Tornero, J.; Ferrándiz, C.; Pinto, J.A.; Gratacós, J.; Queiró, R.; Montilla, C.; Torre-Alonso, J.C.; Pérez-Venegas, J.J.; et al. Genetic Variation at the Glycosaminoglycan Metabolism Pathway Contributes to the Risk of Psoriatic Arthritis but Not Psoriasis. Ann. Rheum. Dis. 2019, 78, e214158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandran, V.; Bull, S.B.; Pellett, F.J.; Ayearst, R.; Pollock, R.A.; Gladman, D.D. Killer-Cell Immunoglobulin-like Receptor Gene Polymorphisms and Susceptibility to Psoriatic Arthritis. Rheumatology 2014, 53, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Hanson, A.L.; International Genetics of Ankylosing Spondylitis Consortium; Vukcevic, D.; Leslie, S.; Harris, J.; Lê Cao, K.-A.; Kenna, T.J.; Brown, M.A. Epistatic Interactions between Killer Immunoglobulin-like Receptors and Human Leukocyte Antigen Ligands Are Associated with Ankylosing Spondylitis. PLoS Genet. 2020, 16, e1008906. [Google Scholar] [CrossRef] [PubMed]
- Bowes, J.; Loehr, S.; Budu-Aggrey, A.; Uebe, S.; Bruce, I.N.; Feletar, M.; Marzo-Ortega, H.; Helliwell, P.; Ryan, A.W.; Kane, D.; et al. PTPN22 Is Associated with Susceptibility to Psoriatic Arthritis but Not Psoriasis: Evidence for a Further PsA-Specific Risk Locus. Ann. Rheum. Dis. 2015, 74, 1882–1885. [Google Scholar] [CrossRef] [Green Version]
- Knevel, R.; le Cessie, S.; Terao, C.C.; Slowikowski, K.; Cui, J.; Huizinga, T.W.J.; Costenbader, K.H.; Liao, K.P.; Karlson, E.W.; Raychaudhuri, S. Using Genetics to Prioritize Diagnoses for Rheumatology Outpatients with Inflammatory Arthritis. Sci. Transl. Med. 2020, 12, eaay1548. [Google Scholar] [CrossRef]
- Patrick, M.T.; Stuart, P.E.; Raja, K.; Gudjonsson, J.E.; Tejasvi, T.; Yang, J.; Chandran, V.; Das, S.; Callis-Duffin, K.; Ellinghaus, E.; et al. Genetic Signature to Provide Robust Risk Assessment of Psoriatic Arthritis Development in Psoriasis Patients. Nat. Commun. 2018, 9, 4178. [Google Scholar] [CrossRef]
- O’Rielly, D.D.; Rahman, P. Clinical and Molecular Significance of Genetic Loci Associated with Psoriatic Arthritis. Best Pract. Res. Clin. Rheumatol. 2021, 35, 101691. [Google Scholar] [CrossRef]
- Furrow, R.E.; Christiansen, F.B.; Feldman, M.W. Environment-Sensitive Epigenetics and the Heritability of Complex Diseases. Genetics 2011, 189, 1377–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Lu, Q.; Chang, C. Epigenetics in Health and Disease. Adv. Exp. Med. Biol. 2020, 1253, 3–55. [Google Scholar] [CrossRef]
- Fogel, O.; Richard-Miceli, C.; Tost, J. Epigenetic Changes in Chronic Inflammatory Diseases. Adv. Protein Chem. Struct. Biol. 2017, 106, 139–189. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Liang, G.; Wu, X.; Wang, S.; Zhang, P.; Su, Y.; Yin, H.; Tan, Y.; Zhang, J.; Lu, Q. Abnormal Epigenetic Modifications in Peripheral Blood Mononuclear Cells from Patients with Alopecia Areata. Br. J. Derm. 2012, 166, 226–273. [Google Scholar] [CrossRef]
- Mervis, J.S.; McGee, J.S. Epigenetic Therapy and Dermatologic Disease: Moving beyond CTCL. J. Dermatol. Treat. 2019, 30, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, O.B.; Svendsen, A.J.; Ejstrup, L.; Skytthe, A.; Junker, P. On the Heritability of Psoriatic Arthritis. Disease Concordance among Monozygotic and Dizygotic Twins. Ann. Rheum. Dis. 2008, 67, 1417–1421. [Google Scholar] [CrossRef] [Green Version]
- Burden, A.D.; Javed, S.; Bailey, M.; Hodgins, M.; Connor, M.; Tillman, D. Genetics of Psoriasis: Paternal Inheritance and a Locus on Chromosome 6p. J. Invest. Derm. 1998, 110, 958–960. [Google Scholar] [CrossRef] [Green Version]
- Rahman, P.; Gladman, D.D.; Schentag, C.T.; Petronis, A. Excessive Paternal Transmission in Psoriatic Arthritis. Arthritis Rheum. 1999, 42, 1228–1231. [Google Scholar] [CrossRef]
- Pollock, R.A.; Thavaneswaran, A.; Pellett, F.; Chandran, V.; Petronis, A.; Rahman, P.; Gladman, D.D. Further Evidence Supporting a Parent-of-Origin Effect in Psoriatic Disease. Arthritis Care Res. 2015, 67, 1586–1590. [Google Scholar] [CrossRef] [Green Version]
- Horsthemke, B. Epimutations in Human Disease. Curr. Top. Microbiol. Immunol. 2006, 310, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Oey, H.; Whitelaw, E. On the Meaning of the Word “Epimutation”. Trends Genet. 2014, 30, 519–520. [Google Scholar] [CrossRef]
- Kim, Y.I.; Logan, J.W.; Mason, J.B.; Roubenoff, R. DNA Hypomethylation in Inflammatory Arthritis: Reversal with Methotrexate. J. Lab. Clin. Med. 1996, 128, 165–172. [Google Scholar] [CrossRef]
- Zhang, P.; Su, Y.; Chen, H.; Zhao, M.; Lu, Q. Abnormal DNA Methylation in Skin Lesions and PBMCs of Patients with Psoriasis Vulgaris. J. Derm. Sci. 2010, 60, 40–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, M.; Sawalha, A.H.; Richardson, B.; Lu, Q. Impaired DNA Methylation and Its Mechanisms in CD4+T Cells of Systemic Lupus Erythematosus. J. Autoimmun. 2013, 41, 92–99. [Google Scholar] [CrossRef] [PubMed]
- De Andres, M.C.; Perez-Pampin, E.; Calaza, M.; Santaclara, F.J.; Ortea, I.; Gomez-Reino, J.J.; Gonzalez, A. Assessment of Global DNA Methylation in Peripheral Blood Cell Subpopulations of Early Rheumatoid Arthritis before and after Methotrexate. Arthritis Res. 2015, 17, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, R.A.; Zaman, L.; Chandran, V.; Gladman, D.D. Epigenome-Wide Analysis of Sperm Cells Identifies IL22 as a Possible Germ Line Risk Locus for Psoriatic Arthritis. PLoS ONE 2019, 14, e0212043. [Google Scholar] [CrossRef] [Green Version]
- O’Rielly, D.D.; Pollock, R.; Zhang, Y.; Al-Ghanim, N.; Yazdani, R.; Hamilton, S.; Bricknell, R.; Chandran, V.; Ardern, R.; Gladman, D.D.; et al. Epigenetic Studies in Maternally versus Paternally Transmitted Psoriatic Disease. Ann. Rheum. Dis. 2014, 73, 856. [Google Scholar] [CrossRef]
- Ovejero-Benito, M.C.; Reolid, A.; Sánchez-Jiménez, P.; Saiz-Rodríguez, M.; Muñoz-Aceituno, E.; Llamas-Velasco, M.; Martín-Vilchez, S.; Cabaleiro, T.; Román, M.; Ochoa, D.; et al. Histone Modifications Associated with Biological Drug Response in Moderate-to-Severe Psoriasis. Exp. Derm. 2018, 27, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Orecchia, A.; Scarponi, C.; Di Felice, F.; Cesarini, E.; Avitabile, S.; Mai, A.; Mauro, M.L.; Sirri, V.; Zambruno, G.; Albanesi, C.; et al. Sirtinol Treatment Reduces Inflammation in Human Dermal Microvascular Endothelial Cells. PLoS ONE 2011, 6, e24307. [Google Scholar] [CrossRef]
- Lin, S.-H.; Ho, J.-C.; Li, S.-C.; Chen, J.-F.; Hsiao, C.-C.; Lee, C.-H. MiR-146a-5p Expression in Peripheral CD14+ Monocytes from Patients with Psoriatic Arthritis Induces Osteoclast Activation, Bone Resorption, and Correlates with Clinical Response. J. Clin. Med. 2019, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.-H.; Ho, J.-C.; Li, S.-C.; Cheng, Y.-W.; Yang, Y.-C.; Chen, J.-F.; Hsu, C.-Y.; Nakano, T.; Wang, F.-S.; Yang, M.-Y.; et al. Upregulation of MiR-941 in Circulating CD14+ Monocytes Enhances Osteoclast Activation via WNT16 Inhibition in Patients with Psoriatic Arthritis. Int. J. Mol. Sci. 2020, 21, 4301. [Google Scholar] [CrossRef]
- Pelosi, A.; Lunardi, C.; Fiore, P.F.; Tinazzi, E.; Patuzzo, G.; Argentino, G.; Moretta, F.; Puccetti, A.; Dolcino, M. MicroRNA Expression Profiling in Psoriatic Arthritis. Biomed. Res. Int. 2018, 2018, 7305380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedrich, C.M.; Tsokos, G.C. Epigenetic Mechanisms in Systemic Lupus Erythematosus and Other Autoimmune Diseases. Trends Mol. Med. 2011, 17, 714–724. [Google Scholar] [CrossRef] [Green Version]
- Tessarz, P.; Kouzarides, T. Histone Core Modifications Regulating Nucleosome Structure and Dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15, 703–708. [Google Scholar] [CrossRef]
- Mendes, K.L.; de Farias Lelis, D.; Santos, S.H.S. Nuclear Sirtuins and Inflammatory Signaling Pathways. Cytokine Growth Factor Rev. 2017, 38, 98–105. [Google Scholar] [CrossRef]
- Hu, Q.; Sun, Y.; Li, Y.; Shi, H.; Teng, J.; Liu, H.; Cheng, X.; Ye, J.; Su, Y.; Yin, Y.; et al. Anti-SIRT1 Autoantibody Is Elevated in Ankylosing Spondylitis: A Potential Disease Biomarker. BMC Immunol. 2018, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An Overview of MicroRNAs: Biology, Functions, Therapeutics, and Analysis Methods. J. Cell Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef]
- Li, X.; Yang, L.; Chen, L.-L. The Biogenesis, Functions, and Challenges of Circular RNAs. Mol. Cell 2018, 71, 428–442. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.C.R.; Acuña, S.M.; Aoki, J.I.; Floeter-Winter, L.M.; Muxel, S.M. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Noncoding RNA 2019, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, M.; Reddy, P.H. Non-Coding RNAs Based Molecular Links in Type 2 Diabetes, Ischemic Stroke, and Vascular Dementia. J. Alzheimer’s Dis. 2020, 75, 353–383. [Google Scholar] [CrossRef]
- Van Raemdonck, K.; Umar, S.; Palasiewicz, K.; Romay, B.; Volkov, S.; Arami, S.; Sweiss, N.; Shahrara, S. TLR7 Endogenous Ligands Remodel Glycolytic Macrophages and Trigger Skin-to-Joint Crosstalk in Psoriatic Arthritis. Eur. J. Immunol. 2021, 51, 714–720. [Google Scholar] [CrossRef]
- Wade, S.M.; McGarry, T.; Wade, S.C.; Fearon, U.; Veale, D.J. Serum MicroRNA Signature as a Diagnostic and Therapeutic Marker in Patients with Psoriatic Arthritis. J. Rheumatol. 2020, 47, 1760–1767. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A Revolutionary Tool for Transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Batliwalla, F.M.; Li, W.; Ritchlin, C.T.; Xiao, X.; Brenner, M.; Laragione, T.; Shao, T.; Durham, R.; Kemshetti, S.; Schwarz, E.; et al. Microarray Analyses of Peripheral Blood Cells Identifies Unique Gene Expression Signature in Psoriatic Arthritis. Mol. Med. 2005, 11, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Stoeckman, A.K.; Baechler, E.C.; Ortmann, W.A.; Behrens, T.W.; Michet, C.J.; Peterson, E.J. A Distinct Inflammatory Gene Expression Profile in Patients with Psoriatic Arthritis. Genes Immun. 2006, 7, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Dolcino, M.; Ottria, A.; Barbieri, A.; Patuzzo, G.; Tinazzi, E.; Argentino, G.; Beri, R.; Lunardi, C.; Puccetti, A. Gene Expression Profiling in Peripheral Blood Cells and Synovial Membranes of Patients with Psoriatic Arthritis. PLoS ONE 2015, 10, e0128262. [Google Scholar] [CrossRef] [Green Version]
- Belasco, J.; Louie, J.S.; Gulati, N.; Wei, N.; Nograles, K.; Fuentes-Duculan, J.; Mitsui, H.; Suárez-Fariñas, M.; Krueger, J.G. Comparative Genomic Profiling of Synovium versus Skin Lesions in Psoriatic Arthritis. Arthritis Rheumatol. 2015, 67, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Penkava, F.; Velasco-Herrera, M.D.C.; Young, M.D.; Yager, N.; Nwosu, L.N.; Pratt, A.G.; Lara, A.L.; Guzzo, C.; Maroof, A.; Mamanova, L.; et al. Single-Cell Sequencing Reveals Clonal Expansions of pro-Inflammatory Synovial CD8 T Cells Expressing Tissue-Homing Receptors in Psoriatic Arthritis. Nat. Commun. 2020, 11, 4767. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Ramsköld, D.; Reinius, B.; Sandberg, R. Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells. Science 2014, 343, 193–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaitin, D.A.; Kenigsberg, E.; Keren-Shaul, H.; Elefant, N.; Paul, F.; Zaretsky, I.; Mildner, A.; Cohen, N.; Jung, S.; Tanay, A.; et al. Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types. Science 2014, 343, 776–779. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.; Marks, L.; May, G.H.W.; Wilson, J.B. The Genetic Basis of Disease. Essays Biochem. 2018, 62, 643–723. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-Omics Data Integration, Interpretation, and Its Application. Bioinform. Biol. Insights 2020, 14, 1177932219899051. [Google Scholar] [CrossRef] [Green Version]
- Goecks, J.; Jalili, V.; Heiser, L.M.; Gray, J.W. How Machine Learning Will Transform Biomedicine. Cell 2020, 181, 92–101. [Google Scholar] [CrossRef]
- Jayatilake, S.M.D.A.C.; Ganegoda, G.U. Involvement of Machine Learning Tools in Healthcare Decision Making. J. Healthc. Eng. 2021, 2021, 6679512. [Google Scholar] [CrossRef]
- Currie, G.; Hawk, K.E.; Rohren, E.; Vial, A.; Klein, R. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J. Med. Imaging Radiat. Sci. 2019, 50, 477–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genes | Chromosome | Population |
---|---|---|
HLA class I molecules | ||
HLA-B*08 | 6 | EUR |
HLA-B*27 | 6 | EUR |
HLA-B*38 | 6 | EUR |
HLA-B*39 | 6 | EUR |
Non-HLA genes | ||
IL23R | 1 | EUR |
PTPN22 | 1 | EUR |
RUNX3 | 1 | EUR |
IL28RA | 1 | EUR, EAS |
LCE3B/LCE3A | 1 | EAS |
REL | 2 | EUR |
IFIH1 | 2 | EUR |
STAT4 | 2 | EUR |
IL1 | 2 | EUR |
B3GNT2 | 2 | EUR |
CSF2/P4HA2 | 5 | EUR |
TNIP1 | 5 | EUR, EAS |
IL12B | 5 | EUR, EAS |
ERAP1 | 5 | EUR, EAS |
ERAP2 | 5 | EUR |
PTTG1 | 5 | EAS |
TNFA | 6 | EUR |
HCP5 | 6 | EAS |
TNFAIP3 | 6 | EUR |
TRAF3IP2 | 6 | EUR |
TLR4 | 9 | EUR |
IL23A | 12 | EUR |
GJB2 | 13 | EAS |
COG6 | 14 | EUR |
NFKBIA | 14 | EUR |
FBXL19 | 16 | EUR |
NOS2 | 17 | EUR |
CD226 | 18 | EUR |
TYK2 | 19 | EUR |
KIR2DS2 | 19 | EUR |
RNF114 | 20 | EUR |
Origin | Sample | Genes | Deregulation | References |
---|---|---|---|---|
Peripheral blood | PBCs | S100A8, S100A12 and TXN | Upregulated | [70] |
SIGIRR, STAT3, SHP1, IKBKB, IL-11RA, and TCF7 | Downregulated | |||
Blood | RAB13, RAB32, and FCGBP | Upregulated | [71] | |
ZNF395, DDX28, PCNX3, and PI3KC2B | Downregulated | |||
Tissues | PBCs and synovial biopsies | Th17 related genes, IFN inducible genes | Upregulated | [72] |
Skin | S100A7, S100A8, and S100A9 | Upregulated | [73] | |
Sinovium | MMP1, COL2A1, WISP1, HAS1, IBSP, FZD8, BMPR2, and WNT3A | Upregulated | ||
Synovial T cells | CXCR3, CXCR6, CCR5, and CCR2 | Upregulated | [74] * | |
Synovial fluid | CXCL9 and CXCL10 | Upregulated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laborde, C.M.; Larzabal, L.; González-Cantero, Á.; Castro-Santos, P.; Díaz-Peña, R. Advances of Genomic Medicine in Psoriatic Arthritis. J. Pers. Med. 2022, 12, 35. https://doi.org/10.3390/jpm12010035
Laborde CM, Larzabal L, González-Cantero Á, Castro-Santos P, Díaz-Peña R. Advances of Genomic Medicine in Psoriatic Arthritis. Journal of Personalized Medicine. 2022; 12(1):35. https://doi.org/10.3390/jpm12010035
Chicago/Turabian StyleLaborde, Carlos M., Leyre Larzabal, Álvaro González-Cantero, Patricia Castro-Santos, and Roberto Díaz-Peña. 2022. "Advances of Genomic Medicine in Psoriatic Arthritis" Journal of Personalized Medicine 12, no. 1: 35. https://doi.org/10.3390/jpm12010035
APA StyleLaborde, C. M., Larzabal, L., González-Cantero, Á., Castro-Santos, P., & Díaz-Peña, R. (2022). Advances of Genomic Medicine in Psoriatic Arthritis. Journal of Personalized Medicine, 12(1), 35. https://doi.org/10.3390/jpm12010035