Differentiation between Germinoma and Craniopharyngioma Using Radiomics-Based Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Image Acquisition
2.3. Radiomic Feature Extraction
2.4. Features Selection
2.5. Prediction Modeling
3. Results
3.1. Patient Characteristics
3.2. Diagnostic Value of Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014–2018. Neuro-Oncology 2021, 23, iii1–iii105. [Google Scholar] [CrossRef]
- Fetcko, K.; Dey, M. Primary Central Nervous System Germ Cell Tumors: A Review and Update. Med. Res. Arch. 2018, 6, 6. [Google Scholar] [CrossRef]
- Dufour, C.; Guerrini-Rousseau, L.; Grill, J. Central nervous system germ cell tumors: An update. Curr. Opin. Oncol. 2014, 26, 622–626. [Google Scholar] [CrossRef]
- Petito, C.K.; DeGirolami, U.; Earle, K.M. Craniopharyngiomas: A clinical and pathological review. Cancer 1976, 37, 1944–1952. [Google Scholar] [CrossRef]
- Jennings, M.T.; Gelman, R.; Hochberg, F. Intracranial germ-cell tumors: Natural history and pathogenesis. J. Neurosurg. 1985, 63, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Müller, H.L.; Merchant, T.E.; Warmuth-Metz, M.; Martinez-Barbera, J.P.; Puget, S. Craniopharyngioma. Nat. Rev. Dis. Primers 2019, 5, 75. [Google Scholar] [CrossRef]
- Müller, H.L. Craniopharyngioma. Endocr. Rev. 2014, 35, 513–543. [Google Scholar] [CrossRef]
- Allen, J.C.; Nisselbaum, J.; Epstein, F.; Rosen, G.; Schwartz, M.K. Alphafetoprotein and human chorionic gonadotropin determination in cerebrospinal fluid. An aid to the diagnosis and management of intracranial germ-cell tumors. J. Neurosurg. 1979, 51, 368–374. [Google Scholar] [CrossRef]
- Haase, J.; Borgaard-Pedersen, B. Alpha-feto-protein (AFP) and human chorionic gonadotropin (HCG) as biochemical markers of intracranial germ-cell tumours. Acta Neurochir. 1979, 50, 67–69. [Google Scholar] [CrossRef]
- Qaddoumi, I.; Sane, M.; Li, S.; Kocak, M.; Pai-Panandiker, A.; Harreld, J.; Klimo, P.; Wright, K.; Broniscer, A.; Gajjar, A. Diagnostic utility and correlation of tumor markers in the serum and cerebrospinal fluid of children with intracranial germ cell tumors. Childs Nerv. Syst. ChNS Off. J. Int. Soc. Pediatric Neurosurg. 2012, 28, 1017–1024. [Google Scholar] [CrossRef] [Green Version]
- Honegger, J.; Mann, K.; Thierauf, P.; Zrinzo, A.; Fahlbusch, R. Human chorionic gonadotrophin immunoactivity in cystic intracranial tumours. Clin. Endocrinol. 1995, 42, 235–241. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Tominaga, A.; Usui, S.; Kurisu, K. A craniopharyngioma with spontaneous involution of a gadolinium-enhanced region on magnetic resonance imaging. Surg. Neurol. Int. 2014, 5, 128. [Google Scholar] [CrossRef]
- Buchfelder, M.; Schlaffer, S.M.; Lin, F.; Kleindienst, A. Surgery for craniopharyngioma. Pituitary 2013, 16, 18–25. [Google Scholar] [CrossRef]
- Claude, L.; Faure-Conter, C.; Frappaz, D.; Mottolese, C.; Carrie, C. Radiation therapy in pediatric pineal tumors. Neuro-Chirurgie 2015, 61, 212–215. [Google Scholar] [CrossRef]
- Frappaz, D.; Conter, C.F.; Szathmari, A.; Valsijevic, A.; Mottolese, C. The management of pineal tumors as a model for a multidisciplinary approach in neuro-oncology. Neuro-Chirurgie 2015, 61, 208–211. [Google Scholar] [CrossRef]
- Fisher, A.R.; Siegelman, E.S. Magnetic resonance imaging techniques. Clin. Liver Dis. 2002, 6, 53–72. [Google Scholar] [CrossRef]
- Fujisawa, I.; Asato, R.; Okumura, R.; Nakano, Y.; Shibata, T.; Hamanaka, D.; Hashimoto, T.; Konishi, J. Magnetic resonance imaging of neurohypophyseal germinomas. Cancer 1991, 68, 1009–1014. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [Green Version]
- Amin, J.; Sharif, M.; Raza, M.; Saba, T.; Anjum, M.A. Brain tumor detection using statistical and machine learning method. Comput. Methods Programs Biomed. 2019, 177, 69–79. [Google Scholar] [CrossRef]
- Artzi, M.; Bressler, I.; Ben Bashat, D. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J. Magn. Reson. Imaging JMRI 2019, 50, 519–528. [Google Scholar] [CrossRef]
- Kniep, H.C.; Madesta, F.; Schneider, T.; Hanning, U.; Schonfeld, M.H.; Schon, G.; Fiehler, J.; Gauer, T.; Werner, R.; Gellissen, S. Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type. Radiology 2019, 290, 479–487. [Google Scholar] [CrossRef]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuze, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Wu, C.C.; Wu, H.M.; Hung, S.C.; Lirng, J.F.; Luo, C.B.; Chang, F.C.; Guo, W.Y. Pretreatment diagnosis of suprasellar papillary craniopharyngioma and germ cell tumors of adult patients. AJNR Am. J. Neuroradiol. 2015, 36, 508–517. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, Y.; Yamasaki, F.; Tominaga, A.; Ohtaki, M.; Usui, S.; Arita, K.; Sugiyama, K.; Kurisu, K. Diffusion-weighted imaging and the apparent diffusion coefficient on 3T MR imaging in the differentiation of craniopharyngiomas and germ cell tumors. Neurosurg. Rev. 2016, 39, 207–213; discussion 213. [Google Scholar] [CrossRef]
- Norris, G.A.; Garcia, J.; Hankinson, T.C.; Handler, M.; Foreman, N.; Mirsky, D.; Stence, N.; Dorris, K.; Green, A.L. Diagnostic accuracy of neuroimaging in pediatric optic chiasm/sellar/suprasellar tumors. Pediatric Blood Cancer 2019, 66, e27680. [Google Scholar] [CrossRef]
- Chang, C.V.; Nunes Vdos, S.; Felicio, A.C.; Zanini, M.A.; Cunha-Neto, M.B.; de Castro, A.V. Mixed germ cell tumor of the pituitary-hypothalamic region presenting as craniopharyngioma: Case report and review of the literature. Arq. Bras. Endocrinol. Metabol. 2008, 52, 1501–1504. [Google Scholar] [CrossRef] [Green Version]
- Grossmann, P.; Narayan, V.; Chang, K.; Rahman, R.; Abrey, L.; Reardon, D.A.; Schwartz, L.H.; Wen, P.Y.; Alexander, B.M.; Huang, R.; et al. Quantitative imaging biomarkers for risk stratification of patients with recurrent glioblastoma treated with bevacizumab. Neuro-Oncology 2017, 19, 1688–1697. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Park, J.E.; Kim, Y.H.; Kim, J.H.; Oh, J.Y.; Kim, J.; Kim, Y.; Kim, S.T.; Kim, H.S. Diffusion radiomics as a diagnostic model for atypical manifestation of primary central nervous system lymphoma: Development and multicenter external validation. Neuro-Oncology 2018, 20, 1251–1261. [Google Scholar] [CrossRef] [Green Version]
- Larroza, A.; Moratal, D.; Paredes-Sanchez, A.; Soria-Olivas, E.; Chust, M.L.; Arribas, L.A.; Arana, E. Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI. J. Magn. Reson. Imaging JMRI 2015, 42, 1362–1368. [Google Scholar] [CrossRef]
- Zhou, H.; Vallieres, M.; Bai, H.X.; Su, C.; Tang, H.; Oldridge, D.; Zhang, Z.; Xiao, B.; Liao, W.; Tao, Y.; et al. MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro-Oncology 2017, 19, 862–870. [Google Scholar] [CrossRef]
- Cao, H.; Erson-Omay, E.Z.; Li, X.; Gunel, M.; Moliterno, J.; Fulbright, R.K. A quantitative model based on clinically relevant MRI features differentiates lower grade gliomas and glioblastoma. Eur. Radiol. 2020, 30, 3073–3082. [Google Scholar] [CrossRef]
- Park, Y.W.; Oh, J.; You, S.C.; Han, K.; Ahn, S.S.; Choi, Y.S.; Chang, J.H.; Kim, S.H.; Lee, S.K. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Eur. Radiol. 2019, 29, 4068–4076. [Google Scholar] [CrossRef]
- Tateishi, M.; Nakaura, T.; Kitajima, M.; Uetani, H.; Nakagawa, M.; Inoue, T.; Kuroda, J.I.; Mukasa, A.; Yamashita, Y. An initial experience of machine learning based on multi-sequence texture parameters in magnetic resonance imaging to differentiate glioblastoma from brain metastases. J. Neurol. Sci. 2020, 410, 116514. [Google Scholar] [CrossRef]
- Zhou, H.; Chang, K.; Bai, H.X.; Xiao, B.; Su, C.; Bi, W.L.; Zhang, P.J.; Senders, J.T.; Vallières, M.; Kavouridis, V.K.; et al. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low- and high-grade gliomas. J. Neuro-Oncol. 2019, 142, 299–307. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Dellacasa Bellingegni, A.; Gruppioni, E.; Colazzo, G.; Davalli, A.; Sacchetti, R.; Guglielmelli, E.; Zollo, L. NLR, MLP, SVM, and LDA: A comparative analysis on EMG data from people with trans-radial amputation. J. Neuroeng. Rehabil. 2017, 14, 82. [Google Scholar] [CrossRef]
- Azar, A.T.; Elshazly, H.I.; Hassanien, A.E.; Elkorany, A.M. A random forest classifier for lymph diseases. Comput. Methods Programs Biomed. 2014, 113, 465–473. [Google Scholar] [CrossRef]
- Quadrianto, N.; Ghahramani, Z. A Very Simple Safe-Bayesian Random Forest. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1297–1303. [Google Scholar] [CrossRef] [Green Version]
Sequence | Feature Selector | Feature | |||||
---|---|---|---|---|---|---|---|
Contrast-enhanced T1WI | DC | HISTO_Energy | GLCM_Homogeneity | GLRLM_RP | GLCM_Energy | HISTO_Entropy_log10 | GLZLM_ZLNU |
RFS | minValue | GLZLM_SZE | GLZLM_LZE | NGLDM_Busyness | GLZLM_LZLGE | GLRLM_HGRE | |
LASSO | GLZLM_ZLNU | GLZLM_SZE | HISTO_Energy | HISTO_Entropy_log10 | NGLDM_Coarseness | minValue | |
T2WI | DC | GLRLM_RP | GLRLM_SRE | GLCM_Homogeneity | GLRLM_LRHGE | GLRLM_SRLGE | GLRLM_HGRE |
RFS | GLZLM_LZHGE | GLZLM_LZE | GLRLM_HGRE | GLRLM_SRLGE | minValue | GLZLM_SZE | |
LASSO | GLCM_Homogeneity | GLZLM_ZLNU | GLRLM_HGRE | NGLDM_Coarseness | GLZLM_SZHGE | GLRLM_RP |
Model | Contrast-Enhanced T1WI | T2WI | ||
---|---|---|---|---|
Training Cohort | Validation Cohort | Training Cohort | Validation Cohort | |
DC + LDA | 0.91 | 0.89 | 0.88 | 0.88 |
RFS + LDA | 0.93 | 0.86 | 0.85 | 0.85 |
LASSO + LDA | 0.97 | 0.91 | 0.92 | 0.88 |
DC + SVM | 0.83 | 0.82 | 0.87 | 0.87 |
RFS + SVM | 1 | 0.5 | 1 | 0.5 |
LASSO + SVM | 0.80 | 0.75 | 0.86 | 0.86 |
DC + RFC | 0.89 | 0.79 | 0.92 | 0.84 |
RFS + RFC | 0.97 | 0.91 | 0.95 | 0.78 |
LASSO + RFC | 0.95 | 0.83 | 0.95 | 0.83 |
Model | Training Cohort | Validation Cohort | ||||||
---|---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Accuracy | AUC | Sensitivity | Specificity | Accuracy | AUC | |
Contrast-enhanced T1WI | ||||||||
RFS + RFC | 0.87 | 0.95 | 0.91 | 0.97 | 0.81 | 0.84 | 0.83 | 0.91 |
LASSO + LDA | 0.84 | 0.92 | 0.89 | 0.97 | 0.80 | 0.84 | 0.82 | 0.91 |
T2WI | ||||||||
DC + LDA | 0.74 | 0.84 | 0.80 | 0.88 | 0.75 | 0.81 | 0.79 | 0.88 |
LASSO + LDA | 0.75 | 0.90 | 0.83 | 0.92 | 0.71 | 0.82 | 0.77 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Chen, C.; Zhang, Y.; Huang, Z.; Wang, H.; Li, R.; Xu, J. Differentiation between Germinoma and Craniopharyngioma Using Radiomics-Based Machine Learning. J. Pers. Med. 2022, 12, 45. https://doi.org/10.3390/jpm12010045
Chen B, Chen C, Zhang Y, Huang Z, Wang H, Li R, Xu J. Differentiation between Germinoma and Craniopharyngioma Using Radiomics-Based Machine Learning. Journal of Personalized Medicine. 2022; 12(1):45. https://doi.org/10.3390/jpm12010045
Chicago/Turabian StyleChen, Boran, Chaoyue Chen, Yang Zhang, Zhouyang Huang, Haoran Wang, Ruoyu Li, and Jianguo Xu. 2022. "Differentiation between Germinoma and Craniopharyngioma Using Radiomics-Based Machine Learning" Journal of Personalized Medicine 12, no. 1: 45. https://doi.org/10.3390/jpm12010045
APA StyleChen, B., Chen, C., Zhang, Y., Huang, Z., Wang, H., Li, R., & Xu, J. (2022). Differentiation between Germinoma and Craniopharyngioma Using Radiomics-Based Machine Learning. Journal of Personalized Medicine, 12(1), 45. https://doi.org/10.3390/jpm12010045