App-Based Rehabilitation in Back Pain, a Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madera, M.; Brady, J.; Deily, S.; McGinty, T.; Moroz, L.; Singh, D.; Tipton, G.; Truumees, E. The role of physical therapy and rehabilitation after lumbar fusion surgery for degenerative disease: A systematic review. J. Neurosurg. Spine 2017, 26, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Amankwah-Amoah, J.K.Z.; Wood, G.; Knight, G. COVID-19 and digitalization: The great acceleration. J. Bus. Res. 2021, 136, 602–611. [Google Scholar] [CrossRef] [PubMed]
- O’Dea, S. Smartphone Subscriptions Worldwide 2016–2027. Statista. 2022. Available online: https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (accessed on 8 June 2022).
- Dolan, S. How Mobile Users Spend Their Time on Their Smartphones in 2022. eMarketer. 2022. Available online: https://www.insiderintelligence.com/insights/mobile-users-smartphone-usage/#:~:text=Mobile%20usage%20statistics,digital%20media%20time%20per%20day (accessed on 8 June 2022).
- Nathan, J.K.; Rodoni, B.M.; Joseph, J.R.; Smith, B.W.; Park, P. Smartphone Use and Interest in a Spine Surgery Recovery Mobile Application Among Patients in a US Academic Neurosurgery Practice. Oper. Neurosurg. 2020, 18, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Robertson, G.A.J.; Wong, S.J.; Brady, R.R.; Subramanian, A.S. Smartphone apps for spinal surgery: Is technology good or evil? Eur. Spine J. 2016, 25, 1355–1362. [Google Scholar] [CrossRef]
- Petersen, W.; Karpinski, K.; Backhaus, L.; Bierke, S.; Haner, M. A systematic review about telemedicine in orthopedics. Arch. Orthop. Trauma Surg. 2021, 141, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Hou, J.; Yang, R.; Yang, Y.; Tang, Y.; Deng, H.; Chen, Z.; Wu, Y.; Shen, H. The Effectiveness and Safety of Utilizing Mobile Phone–Based Programs for Rehabilitation After Lumbar Spinal Surgery: Multicenter, Prospective Randomized Controlled Trial. JMIR mHealth uHealth 2019, 7, e10201. [Google Scholar] [CrossRef]
- Bailey, J.F.; Agarwal, V.; Zheng, P.; Smuck, M.; Fredericson, M.; Kennedy, D.J.; Krauss, J. Digital Care for Chronic Musculoskeletal Pain: 10,000 Participant Longitudinal Cohort Study. J. Med. Internet Res. 2020, 22, e18250. [Google Scholar] [CrossRef]
- Hasenöhrl, T.; Windschnurer, T.; Dorotka, R.; Ambrozy, C.; Crevenna, R. Prescription of individual therapeutic exercises via smartphone app for patients suffering from non-specific back pain: A qualitative feasibility and quantitative pilot study. Wien. Klin. Wochenschr. 2020, 132, 115–123. [Google Scholar] [CrossRef]
- Toelle, T.R.; Utpadel-Fischler, D.A.; Haas, K.-K.; Priebe, J.A. App-based multidisciplinary back pain treatment versus combined physiotherapy plus online education: A randomized controlled trial. NPJ Digit. Med. 2019, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Huber, S.; A Priebe, J.; Baumann, K.-M.; Plidschun, A.; Schiessl, C.; Tölle, T.R. Treatment of Low Back Pain with a Digital Multidisciplinary Pain Treatment App: Short-Term Results. JMIR Rehabil. Assist. Technol. 2017, 4, e11. [Google Scholar] [CrossRef]
- Chhabra, H.S.; Sharma, S.; Verma, S. Smartphone app in self-management of chronic low back pain: A randomized controlled trial. Eur. Spine J. 2018, 27, 2862–2874. [Google Scholar] [CrossRef]
- Amorim, A.B.; Pappas, E.; Simic, M.; Ferreira, M.L.; Tiedemann, A.; Jennings, M.; Ferreira, P. Integrating Mobile health and Physical Activity to reduce the burden of Chronic low back pain Trial (IMPACT): A pilot trial protocol. BMC Musculoskelet. Disord. 2016, 17, 36. [Google Scholar] [CrossRef]
- Irvine, A.B.; Russell, H.; Manocchia, M.; Mino, D.E.; Glassen, T.C.; Morgan, R.; Gau, J.M.; Birney, A.J.; Ary, D.V.; Buhrman, M.; et al. Mobile-Web App to Self-Manage Low Back Pain: Randomized Controlled Trial. J. Med. Internet Res. 2015, 17, e1. [Google Scholar] [CrossRef]
- Yang, J.; Wei, Q.; Ge, Y.; Meng, L.; Zhao, M. Smartphone-Based Remote Self-Management of Chronic Low Back Pain: A Preliminary Study. J. Healthc. Eng. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Shebib, R.; Bailey, J.F.; Smittenaar, P.; Perez, D.A.; Mecklenburg, G.; Hunter, S. Randomized controlled trial of a 12-week digital care program in improving low back pain. Npj Digit. Med. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Arnhold, M.; Quade, M.; Kirch, W. Mobile Applications for Diabetics: A Systematic Review and Expert-Based Usability Evaluation Considering the Special Requirements of Diabetes Patients Age 50 Years or Older. J. Med. Internet Res. 2014, 16, e104. [Google Scholar] [CrossRef]
- Mateo, G.F.; Granado-Font, E.; Ferré-Grau, C.; Montaña-Carreras, X. Mobile Phone Apps to Promote Weight Loss and Increase Physical Activity: A Systematic Review and Meta-Analysis. J. Med. Internet Res. 2015, 17, e253. [Google Scholar] [CrossRef]
- Lee, H.; Sullivan, S.J.; Schneiders, A.; Ahmed, O.H.; Balasundaram, A.P.; Williams, D.; Meeuwisse, W.H.; McCrory, P. Smartphone and tablet apps for concussion road warriors (team clinicians): A systematic review for practical users. Br. J. Sports Med. 2014, 49, 499–505. [Google Scholar] [CrossRef]
- Furlong, L.M.; Morris, M.E.; Erickson, S.; Serry, T.A.; Robles-Bykbaev, V.; Amlani, A.M. Quality of Mobile Phone and Tablet Mobile Apps for Speech Sound Disorders: Protocol for an Evidence-Based Appraisal. JMIR Res. Protoc. 2016, 5, e233. [Google Scholar] [CrossRef] [Green Version]
- Santo, K.; Richtering, S.S.; Chalmers, J.; Thiagalingam, A.; Chow, C.K.; Redfern, J. Mobile Phone Apps to Improve Medication Adherence: A Systematic Stepwise Process to Identify High-Quality Apps. JMIR mHealth uHealth 2016, 4, e132. [Google Scholar] [CrossRef]
- Argent, R.; Daly, A.; Caulfield, B. Patient Involvement With Home-Based Exercise Programs: Can Connected Health Interventions Influence Adherence? JMIR mHealth uHealth 2018, 6, e47. [Google Scholar] [CrossRef]
- McGregor, A.H.; Henley, A.; Morris, T.P.; Doré, C.J. An Evaluation of a Postoperative Rehabilitation Program After Spinal Surgery and Its Impact on Outcome. Spine 2012, 37, E417–E422. [Google Scholar] [CrossRef]
- Johnson, R.E.; Jones, G.T.; Wiles, N.J.; Chaddock, C.; Potter, R.G.; Roberts, C.; Symmons, D.; Watson, P.J.; Torgerson, D.; Macfarlane, G. Active exercise, education, and cognitive behavioral therapy for persistent disabling low back pain: A randomized controlled tria. Spine 2007, 32, 1578–1585. [Google Scholar] [CrossRef]
- Machado, G.C.; Pinheiro, M.B.; Lee, H.; Ahmed, O.H.; Hendrick, P.; Williams, C.; Kamper, S.J. Smartphone apps for the self-management of low back pain: A systematic review. Best Pract. Res. Clin. Rheumatol. 2016, 30, 1098–1109. [Google Scholar] [CrossRef] [Green Version]
First Author | Year of Publication | Randomization | Allocation Concealment | Incomplete Outcome Data | Adequate Follow Up | Selective Reporting |
---|---|---|---|---|---|---|
Amorim AB | 2019 | + | - | - | - | - |
Bailey JF | 2020 | - | - | + | - | - |
Chhabra HS | 2018 | + | - | + | - | + |
Hasenöhrl T | 2020 | - | + | + | - | + |
Huber S | 2017 | - | - | - | - | - |
Irvine AB | 2015 | + | - | - | - | + |
Shebib R | 2019 | + | + | + | - | - |
Toelle TR | 2019 | + | + | - | - | - |
Yang J | 2019 | + | - | + | - | + |
First Author | Year of Publication | Intervention | Indication | Number of Patients (n) | Age (Years) | Gender (Female) | Bodyweight (kg) | BMI (kg/m2) | Pain Duration (Months) |
---|---|---|---|---|---|---|---|---|---|
Amorim AB | 2019 | Fitbit app | Chronic low back pain | 31 | 59.5 ± 11.9 | 15 | 28.9 ± 6.0 | ||
Control | 24 | 57.1 ± 14.9 | 19 | 27.2 ± 5.1 | |||||
Bailey JF | 2020 | Unspecified app | Neck and Backpain | 6468 | 42.6 ± 10.9 | 4981 | 29.8 ± 7.1 | ||
Chhabra HS | 2018 | Snapcare app | Chronic low back pain | 45 | 41.4 ± 14.2 | 63.4 ± 12.5 | 23.2 ± 4.2 | 22.8 ± 22.0 | |
Control | 48 | 41.0 ± 14.2 | 66.2 ± 11.5 | 23.5 ± 3.8 | 28.0 ± 25.5 | ||||
Hasenöhrl T | 2020 | Unspecified app | Non specific back pain | 27 | 81.7 ± 22.5 | 28.1 ± 7.1 | |||
Huber S | 2017 | Kaya app | Low back pain | 105 | 33.9 ± 10.9 | 105 | More than 12 weeks (73.3%) | ||
Irvine AB | 2015 | Fitback | Low back pain | 199 | 116 | ||||
Alternative care | 199 | 117 | |||||||
Control | 199 | 125 | |||||||
Shebib R | 2019 | Unspecified app | Back pain | 133 | 43.0 ± 11.0 | 37% | 26.0 ± 5.0 | ||
Control | 64 | 43.0 ± 12.0 | 48% | 26.0 ± 4.0 | |||||
Toelle TR | 2019 | Kaya App | Chronic low back pain | 42 | 41.0 ± 10.6 | 35 | 24.4 ± 3.3 | 7.2 ± 3.4 | |
Control | 44 | 43.0 ± 11.0 | 31 | 25.4 ± 4.6 | 6.7 ± 3.1 | ||||
Yang J | 2019 | unspecified app | Chronic low back pain | 5 | 35.0 ± 19.3 | 1 | 64.8 ± 10.3 | 35.8 ± 54.4 | |
Control | 3 | 50.3 ± 9.3 | 3 | 62.0 ± 15.9 | 17.0 ± 17.1 | ||||
Sum | 7636 | 5548 | |||||||
Average | 44.2 ± 7.4 | 67.7 ± 7.2 | 26.3 ± 2.2 | 19.6 ± 11.6 |
First Author | Year of Publication | Intervention | Follow Up | ODI Score Before | ODI Score ST | ODI Score LT | R-VAS | ST | LT | A-VAS | ST | LT | Significances |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amorim AB | 2019 | Fitbit app | 6 months | 5.3 | 3.8 | p = 0.815 | |||||||
control | 5.1 | 4.0 | |||||||||||
Bailey JF | 2020 | Intervention | 12 weeks | 4.6 | 1.4 | ||||||||
Chhabra HS | 2018 | Snapcare | 12 weeks | 7.3 | 3.3 | p < 0.001 | |||||||
Control | 6.6 | 3.2 | p < 0.05 | ||||||||||
Hasenöhrl T | 2020 | Unspecified app | 4 weeks | 17.1 | 14.4 | 3.2 | 3.2 | ||||||
Huber S | 2017 | Kaya App | 12 weeks | 4.8 | 3.2 | 2.6 | p < 0.001 | ||||||
Irvine AB | 2015 | Fitback | 16 weeks | 3.0 | 3.3 | 3.4 | p < 0.001, between control and treatment | ||||||
Alternative care | 3.0 | 3.3 | 3.5 | ||||||||||
Control | 2.9 | 3.1 | 3.3 | ||||||||||
Shebib R | 2019 | Unspecified app | 12 weeks | 21.7 | 19.7 | 4.6 | 4.4 | 3.9 | 3.7 | ||||
Control | 21.0 | 18.9 | 4.5 | 4.3 | 4.4 | 4.1 | p < 0.05 | ||||||
Toelle TR | 2019 | Kaya App | 12 weeks | 5.1 | 4.3 | 2.7 | |||||||
Control | 5.4 | 4.1 | 3.4 | p = 0.021 | |||||||||
Yang J | 2019 | Unspecified app | 4 weeks | 5.9 | 3.4 | p < 0.05 for vitality | |||||||
Control | 6.0 | 6.0 | |||||||||||
Sum | Intervention | 4.9 ± 1.2 | 3.5 ± 0.5 | 3.1 ± 1.0 | 3.9 | 3.7 | |||||||
Control | 5.2 ± 1.2 | 4.4 ± 1.5 | 3.6 ± 0.5 | 4.4 | 4.1 |
First Author | Year of Publication | Score | Pain | ST | LT | Symptoms/Emotions/Other | ST | LT | Function in ADL | ST | LT | Sport/Recreation | ST | LT | Quality of Life/Vitality | ST | LT | Overall | ST |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amorim AB | 2019 | Likert | 202.20 | 187.70 | 1984.90 | 2065.70 | |||||||||||||
200.50 | 169.20 | 1936.70 | 1941.20 | ||||||||||||||||
Bailey JF | 2020 | PHQ-9/Korff | 15.95 | 7.75 | 4.39 | 3.35 | 11.56 | ||||||||||||
Chhabra HS | 2018 | Current Symptom score/SF-36 | 7.02 | 3.27 | 2.11 | 1.22 | 4.82 | 3.02 | 2.58 | 1.27 | 2.09 | 1.04 | 52.1 | 20.2 | |||||
41.4 | 29.2 | ||||||||||||||||||
Hasenöhrl T | 2020 | SF-36 | 38.78 | 53.59 | 71.26 | 80.25 | 65.15 | 68.41 | 72.78 | 77.78 | 54.44 | 61.67 | |||||||
Huber S | 2017 | VAS | |||||||||||||||||
Irvine AB | 2015 | Multidimensional Pain Inventory Interference Scale. Dartmouth CO-OP. WLQ | 2.96 | 3.32 | 3.38 | 4.02 | 4.59 | 4.90 | 3.83 | 3.27 | 3.03 | 3.14 | 3.38 | 3.51 | |||||
3.01 | 3.30 | 3.47 | 4.07 | 4.48 | 4.65 | 3.93 | 3.45 | 3.31 | 3.10 | 3.34 | 3.37 | ||||||||
2.92 | 3.08 | 3.28 | 4.08 | 4.03 | 4.12 | 4.03 | 3.85 | 3.74 | 3.09 | 3.11 | 3.14 | ||||||||
Shebib R | 2019 | VAS | |||||||||||||||||
Toelle TR | 2019 | SF-36 | 45.53 | 41.65 | 44.38 | 46.53 | 48.69 | 50.58 | |||||||||||
47.32 | 40.78 | 44.56 | 45.56 | 47.64 | 48.64 | ||||||||||||||
Yang J | 2019 | SF-36 | 44.00 | 40.00 | 58.40 | 60.07 | 49.00 | 50.00 | 74.00 | 59.00 | 50.00 | 47.00 | |||||||
63.33 | 56.67 | 66.67 | 44.56 | 58.33 | 65.00 | 46.67 | 51.67 | 63.33 | 65.00 | ||||||||||
Sum | Intervention | 42.77 ± 3.54 | 45.08 ± 7.42 | 58.01 ± 13.44 | 62.28 ± 16.97 | 57.08 ± 11.42 | 59.21 ± 13.02 | 73.39 ± 0.86 | 68.39 ± 13.28 | 51.04 ± 3.01 | 53.08 ± 7.65 | ||||||||
Control | 55.33 ± 11.32 | 48.73 ± 11.25 | 55.62 ± 15.63 | 45.06 ± 0.71 | 58.33 | 65.00 | 46.67 | 51.67 | 55.49 ± 11.09 | 56.82 ± 11.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stark, C.; Cunningham, J.; Turner, P.; Johnson, M.A.; Bäcker, H.C. App-Based Rehabilitation in Back Pain, a Systematic Review. J. Pers. Med. 2022, 12, 1558. https://doi.org/10.3390/jpm12101558
Stark C, Cunningham J, Turner P, Johnson MA, Bäcker HC. App-Based Rehabilitation in Back Pain, a Systematic Review. Journal of Personalized Medicine. 2022; 12(10):1558. https://doi.org/10.3390/jpm12101558
Chicago/Turabian StyleStark, Claire, John Cunningham, Peter Turner, Michael A. Johnson, and Henrik C. Bäcker. 2022. "App-Based Rehabilitation in Back Pain, a Systematic Review" Journal of Personalized Medicine 12, no. 10: 1558. https://doi.org/10.3390/jpm12101558
APA StyleStark, C., Cunningham, J., Turner, P., Johnson, M. A., & Bäcker, H. C. (2022). App-Based Rehabilitation in Back Pain, a Systematic Review. Journal of Personalized Medicine, 12(10), 1558. https://doi.org/10.3390/jpm12101558