Contribution of Different Impairments to Restricted Knee Flexion during Gait in Individuals with Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocols
2.1.1. Clinical Examination
- Passive knee flexion ROM: It was tested with a handheld goniometer; the passive angular value of movement was measured, and the presence or absence of impairment was documented according to the normal values [20];
- Selective motor control (SMC): SMC was graded from 0 (no ability to perform isolated movement) to 2 (presented movement is completely isolated). The presence of impairment was defined in limbs with SMC < 2; otherwise, the limbs were defined as not impaired [21];
- Manual muscle testing (MMT): MMT was graded from 0 (no evidence of muscle contraction) to 5 (ability to produce movement against the full external resistance). The presence of strength impairment was defined in limbs with a grade less than 4 [20];
2.1.2. Gait Analysis
2.2. Data Analysis
2.2.1. Outcome Measures
2.2.2. Statistical Analysis
3. Results
Multiple Regression Analysis (Gradation of Impact of Single Impairment When Coexisting of Multi-Impairments Were Stated)
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanger, T.D.; Chen, D.; Delgado, M.R.; Gaebler-Spira, D.; Hallett, M.; Mink, J.W. Taskforce on Childhood Motor Disorders. Definition and Classification of Negative Motor Signs in Childhood. Pediatrics 2006, 118, 2159–2167. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A Report: The Definition and Classification of Cerebral Palsy April 2006. Dev. Med. Child Neurol. Suppl. 2007, 109, 8–14. [Google Scholar] [PubMed]
- Lebiedowska, M.K.; Wente, T.M.; Dufour, M. The Influence of Foot Position on Body Dynamics. J. Biomech. 2009, 42, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Babyar, S.R. Gait Analysis: Normal and Pathological Function. Perry J, Thorofare, NJ, Slack Inc, 1992. J. Phys. Ther. Educ. 1994, 8, 47–48. [Google Scholar] [CrossRef]
- Dreher, T.; Wolf, S.I.; Maier, M.; Hagmann, S.; Vegvari, D.; Gantz, S.; Heitzmann, D.; Wenz, W.; Braatz, F. Long-Term Results after Distal Rectus Femoris Transfer as a Part of Multilevel Surgery for the Correction of Stiff-Knee Gait in Spastic Diplegic Cerebral Palsy. J. Bone Jt. Surg. Am. 2012, 94, e142. [Google Scholar] [CrossRef]
- Goldberg, S.R.; Ounpuu, S.; Arnold, A.S.; Gage, J.R.; Delp, S.L. Kinematic and Kinetic Factors That Correlate with Improved Knee Flexion Following Treatment for Stiff-Knee Gait. J. Biomech. 2006, 39, 689–698. [Google Scholar] [CrossRef]
- Ounpuu, S.; Muik, E.; Davis, R.B., 3rd; Gage, J.R.; DeLuca, P.A. Rectus Femoris Surgery in Children with Cerebral Palsy. Part II: A Comparison between the Effect of Transfer and Release of the Distal Rectus Femoris on Knee Motion. J. Pediatr. Orthop. 1993, 13, 331–335. [Google Scholar] [CrossRef]
- Rha, D.-W.; Cahill-Rowley, K.; Young, J.; Torburn, L.; Stephenson, K.; Rose, J. Biomechanical and Clinical Correlates of Swing-Phase Knee Flexion in Individuals with Spastic Cerebral Palsy Who Walk with Flexed-Knee Gait. Arch. Phys. Med. Rehabil. 2015, 96, 511–517. [Google Scholar]
- Perry, J. Distal Rectus Femoris Transfer. Dev. Med. Child Neurol. 1987, 29, 153–158. [Google Scholar] [CrossRef]
- Lebiedowska, M.K.; Fisk, J.R. Quantitative Evaluation of Reflex and Voluntary Activity in Children with Spasticity. Arch. Phys. Med. Rehabil. 2003, 84, 828–837. [Google Scholar] [CrossRef]
- Bar-On, L.; Molenaers, G.; Aertbeliën, E.; Monari, D.; Feys, H.; Desloovere, K. The Relation between Spasticity and Muscle Behavior during the Swing Phase of Gait in Children with Cerebral Palsy. Res. Dev. Disabil. 2014, 35, 3354–3364. [Google Scholar] [CrossRef] [PubMed]
- Tuzson, A.E.; Granata, K.P.; Abel, M.F. Spastic Velocity Threshold Constrains Functional Performance in Cerebral Palsy. Arch. Phys. Med. Rehabil. 2003, 84, 1363–1368. [Google Scholar] [CrossRef]
- Bell, K.J.; Ounpuu, S.; DeLuca, P.A.; Romness, M.J. Natural Progression of Gait in Children with Cerebral Palsy. J. Pediatr. Orthop. 2002, 22, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Sousa, T.C.; Nazareth, A.; Rethlefsen, S.A.; Mueske, N.M.; Wren, T.A.L.; Kay, R.M. Rectus Femoris Transfer Surgery Worsens Crouch Gait in Children with Cerebral Palsy at GMFCS Levels III and IV. J. Pediatr. Orthop. 2019, 39, 466–471. [Google Scholar] [CrossRef]
- Kay, R.M.; Rethlefsen, S.A.; Kelly, J.P.; Wren, T.A.L. Predictive Value of the Duncan-Ely Test in Distal Rectus Femoris Transfer. J. Pediatr. Orthop. 2004, 24, 59–62. [Google Scholar] [CrossRef]
- Metaxiotis, D.; Wolf, S.; Doederlein, L. Conversion of Biarticular to Monoarticular Muscles as a Component of Multilevel Surgery in Spastic Diplegia. J. Bone Jt. Surg. Br. 2004, 86, 102–109. [Google Scholar] [CrossRef]
- Salazar-Torres, J.J.; Church, C.; Shields, T.; Lennon, N.; Shrader, M.W.; Sees, J.P.; Miller, F. Comparison of Surgical Outcomes for Distal Rectus Femoris Transfer and Resection Surgeries in Children With Cerebral Palsy with Stiff Knee Gait. J. Pediatr. Orthop. 2021, 41, 520–524. [Google Scholar] [CrossRef]
- Campbell, R.; Tipping, N.; Carty, C.; Walsh, J.; Johnson, L. Orthopaedic Management of Knee Joint Impairment in Cerebral Palsy: A Systematic Review and Meta-Analysis. Gait Posture 2020, 80, 347–360. [Google Scholar] [CrossRef]
- Miller, F.; Cardoso Dias, R.; Lipton, G.E.; Albarracin, J.P.; Dabney, K.W.; Castagno, P. The Effect of Rectus EMG Patterns on the Outcome of Rectus Femoris Transfers. J. Pediatr. Orthop. 1997, 17, 603–607. [Google Scholar] [CrossRef]
- Hislop, H.; Avers, D.; Brown, M. Daniels and Worthingham’s Muscle Testing: Techniques of Manual Examination and Performance Testing, 9th ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Trost, J.P. Physical Assessment and Observational Gait Analysis. In The Treatment of Gait Problems in Cerebral Palsy; Gage, J.R., Ed.; MacKeith Press: London, UK, 2004; pp. 71–89. [Google Scholar]
- Bohannon, R.W.; Smith, M.B. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. Phys. Ther. 1987, 67, 206–207. [Google Scholar] [CrossRef]
- Boyd, R.N.; Graham, H.K. Objective Measurement of Clinical Findings in the Use of Botulinum Toxin Type A for the Management of Children with Cerebral Palsy. Eur. J. Neurol. 2007, 6, S23–S35. [Google Scholar] [CrossRef]
- Young, R.R.; Wiegner, A.W. Spasticity. Clin. Orthop. Relat. Res. 1987, 219, 50–62. [Google Scholar] [CrossRef]
- Ross, S.A.; Engsberg, J.R. Relationships between Spasticity, Strength, Gait, and the GMFM-66 in Persons with Spastic Diplegia Cerebral Palsy. Arch. Phys. Med. Rehabil. 2007, 88, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, D.H.; Santi, M.; Abel, M.F. Treatment of Stiff-Knee Gait in Cerebral Palsy: A Comparison by Gait Analysis of Distal Rectus Femoris Transfer versus Proximal Rectus Release. J. Pediatr. Orthop. 1990, 10, 433–441. [Google Scholar] [CrossRef]
- Desloovere, K.; Molenaers, G.; Feys, H.; Huenaerts, C.; Callewaert, B.; Van de Walle, P. Do Dynamic and Static Clinical Measurements Correlate with Gait Analysis Parameters in Children with Cerebral Palsy? Gait Posture 2006, 24, 302–313. [Google Scholar] [CrossRef]
- Sanger, T.D.; Delgado, M.R.; Gaebler-Spira, D.; Hallett, M.; Mink, J.W. Task Force on Childhood Motor Disorders. Classification and Definition of Disorders Causing Hypertonia in Childhood. Pediatrics 2003, 111, e89–e97. [Google Scholar] [CrossRef]
- Ross, S.A.; Engsberg, J.R. Relation between Spasticity and Strength in Individuals with Spastic Diplegic Cerebral Palsy. Dev. Med. Child Neurol. 2002, 44, 148–157. [Google Scholar] [CrossRef]
- Fowler, E.G. Concepts in Spasticity and Selective Motor Control in Children with Spastic Cerebral Palsy. Technol. Disabil. 2010, 22, 207–214. [Google Scholar] [CrossRef]
- Fellows, S.J.; Kaus, C.; Ross, H.F.; Thilmann, A.F. Agonist and Antagonist EMG Activation during Isometric Torque Development at the Elbow in Spastic Hemiparesis. Electroencephalogr. Clin. Neurophysiol. 1994, 93, 106–112. [Google Scholar] [CrossRef]
- Levin, M.F.; Hui-Chan, C. Ankle Spasticity Is Inversely Correlated with Antagonist Voluntary Contraction in Hemiparetic Subjects. Electromyogr. Clin. Neurophysiol. 1994, 34, 415–425. [Google Scholar]
- Myklebust, B.M.; Gottlieb, G.L.; Penn, R.D.; Agarwal, G.C. Reciprocal Excitation of Antagonistic Muscles as a Differentiating Feature in Spasticity. Ann. Neurol. 1982, 12, 367–374. [Google Scholar] [CrossRef]
- Grimby, L.; Hannerz, J. Recruitment Order of Motor Units on Voluntary Contraction: Changes Induced by Proprioceptive Afferent Activity. J. Neurol. Neurosurg. Psychiatry 1968, 31, 565–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, S.R.; Ounpuu, S.; Delp, S.L. The Importance of Swing-Phase Initial Conditions in Stiff-Knee Gait. J. Biomech. 2003, 36, 1111–1116. [Google Scholar] [CrossRef]
- Thawrani, D.; Haumont, T.; Church, C.; Holmes, L.; Dabney, K.W.; Miller, F. Rectus Femoris Transfer Improves Stiff Knee Gait in Children With Spastic Cerebral Palsy. Clin. Orthop. Relat. Res. 2011, 470, 1303–1311. [Google Scholar] [CrossRef]
- Piazza, S.J.; Delp, S.L. The Influence of Muscles on Knee Flexion during the Swing Phase of Gait. J. Biomech. 1996, 29, 723–733. [Google Scholar] [CrossRef]
- Young, J.L.; Rodda, J.; Selber, P.; Rutz, E.; Graham, H.K. Management of the Knee in Spastic Diplegia: What Is the Dose? Orthop. Clin. N. Am. 2010, 41, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Ellington, M.D.; Scott, A.C.; Linton, J.; Sullivan, E.; Barnes, D. Rectus Femoris Transfer versus Rectus Intramuscular Lengthening for the Treatment of Stiff Knee Gait in Children with Cerebral Palsy. J. Pediatr. Orthop. 2018, 38, e213–e218. [Google Scholar] [CrossRef] [PubMed]
- Josse, A.; Pons, C.; Printemps, C.; Chan-Waï-Nam, J.; Affes, H.; Brochard, S.; Thépaut, M. Rectus Femoris Surgery for the Correction of Stiff Knee Gait in Cerebral Palsy: A Systematic Review and Meta-Analysis. Orthop. Traumatol. Surg. Res. 2021, 24, 103022. [Google Scholar] [CrossRef] [PubMed]
- Riewald, S.A.; Delp, S.L. The Action of the Rectus Femoris Muscle Following Distal Tendon Transfer: Does It Generate Knee Flexion Moment? Dev. Med. Child Neurol. 1997, 39, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, D.S.; Blemker, S.S.; Rab, G.T.; Bagley, A.; Delp, S.L. Three-Dimensional Muscle-Tendon Geometry after Rectus Femoris Tendon Transfer. J. Bone Jt. Surg. Am. 2004, 86, 348–354. [Google Scholar] [CrossRef]
- Dan, B.; Mayston, M.; Paneth, N.; Rosenbloom, L. (Eds.) Clinics in Developmental Medicine. In Cerebral Palsy; MacKeith Press: London, UK, 2014. [Google Scholar]
- Bonnefoy-Mazure, A.; Sagawa, Y., Jr.; Pomero, V.; Lascombes, P.; De Coulon, G.; Armand, S. Are Clinical Parameters Sufficient to Model Gait Patterns in Patients with Cerebral Palsy Using a Multilinear Approach? Comput. Methods Biomech. Biomed. Engin. 2016, 19, 800–806. [Google Scholar] [CrossRef] [PubMed]
- McMulkin, M.L.; Gulliford, J.J.; Williamson, R.V.; Ferguson, R.L. Correlation of Static to Dynamic Measures of Lower Extremity Range of Motion in Cerebral Palsy and Control Populations. J. Pediatr. Orthop. 2000, 20, 366–369. [Google Scholar] [CrossRef] [PubMed]
Impairment | Muscle Group | Outcome Measure |
---|---|---|
Weakness (MMT) | Hip flexors Knee extensors | MMT_HIP_FL MMT_KNEE_EXT |
Hypertonia (HYP) | Knee extensors Knee flexors Plantar flexors | HYP_KNEE_EXT HYP_KNEE_FL HYP_PF |
Lack of selectivity (SMC) | Hip flexors Knee extension | SMC_HIP_FL SMC_KNEE_EXT |
Restricted range of motion (ROM) | Knee extensors | CON_KNEE_EXT |
β | 95% CI | p-Value | |
---|---|---|---|
K5–K3 | |||
HYP_KNEE_EXT | −5.75 | [−8.74; −2.76] | 0.0002 |
MMT_KNEE_EXT | 2.76 | [0.08; 5.44] | 0.0433 |
Adjusted R2 = 0.0801, F = 11.0963, p < 0.0001 | |||
K4–K3 | <0.0001 | ||
HYP_KNEE_EXT | −2.74 | [−4.98; −0.49] | 0.0170 |
MMT_HIP_FL | 2.01 | [−3.89; −0.14] | 0.0353 |
MMT_KNEE_EXT | 4.04 | [1.87; 6.21] | 0.0003 |
Adjusted R2 = 0.0744, F = 7.2135, p < 0.0001 | |||
K5–K4 | |||
CON_KNEE_EXT | 0.16 | [0.01; 0.31] | 0.0400 |
HYP_KNEE_EXT | −2.55 | [−4.96; −0.14] | 0.0384 |
SMC_HIP_FL | 2.02 | [1.56; −1.05] | 0.1962 |
SMC_KNEE_EXT | −2.42 | [2.03; −6.43] | 0.2353 |
Adjusted R2 = 0.0398, F = 3.4010, p = 0.01 | |||
V | |||
HYP_ KNEE_EXT | −39.86 | [−60.60; −19.11] | 0.0002 |
SMC_HIP_FL | 39.68 | [15.27; 64.09] | 0.0016 |
Adjusted R2 = 0.1152, F = 16.0988, p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manikowska, F.; Brazevič, S.; Jóźwiak, M.; Lebiedowska, M.K. Contribution of Different Impairments to Restricted Knee Flexion during Gait in Individuals with Cerebral Palsy. J. Pers. Med. 2022, 12, 1568. https://doi.org/10.3390/jpm12101568
Manikowska F, Brazevič S, Jóźwiak M, Lebiedowska MK. Contribution of Different Impairments to Restricted Knee Flexion during Gait in Individuals with Cerebral Palsy. Journal of Personalized Medicine. 2022; 12(10):1568. https://doi.org/10.3390/jpm12101568
Chicago/Turabian StyleManikowska, Faustyna, Sabina Brazevič, Marek Jóźwiak, and Maria K. Lebiedowska. 2022. "Contribution of Different Impairments to Restricted Knee Flexion during Gait in Individuals with Cerebral Palsy" Journal of Personalized Medicine 12, no. 10: 1568. https://doi.org/10.3390/jpm12101568
APA StyleManikowska, F., Brazevič, S., Jóźwiak, M., & Lebiedowska, M. K. (2022). Contribution of Different Impairments to Restricted Knee Flexion during Gait in Individuals with Cerebral Palsy. Journal of Personalized Medicine, 12(10), 1568. https://doi.org/10.3390/jpm12101568