Photoplethysmography-Based Blood Pressure Monitoring Could Improve Patient Outcome during Anesthesia Induction
Abstract
:1. Introduction
2. Method
2.1. Clinical Study
2.1.1. Authorizations
2.1.2. Patients Recruitment
2.1.3. Anesthesia and Signal Acquisition
2.1.4. Sample Size
2.2. Data Processing and Analysis
2.3. PPG-Based BP Estimation
2.4. Statistical Analysis
2.5. Added Value vs. a Cuff-Based Monitor
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gelb, A.W.; Morriss, W.W.; Johnson, W.; Merry, A.F.; Abayadeera, A.; Belîi, N.; Brull, S.J.; Chibana, A.; Evans, F.; Goddia, C.; et al. World Health Organization-World Federation of Societies of Anaesthesiologists (WHO-WFSA) International Standards for a Safe Practice of Anesthesia. Anesth. Analg. 2018, 126, 2047–2055. [Google Scholar] [CrossRef] [PubMed]
- Committee on Standards and Practice Parameters (CSPP) Standards for Basic Anesthetic Monitoring. 2020. Available online: https://www.asahq.org/standards-and-guidelines/standards-for-basic-anesthetic-monitoring (accessed on 13 June 2022).
- Salmasi, V.; Maheshwari, K.; Yang, D.; Mascha, E.J.; Singh, A.; Sessler, D.I.; Kurz, A. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery: A Retrospective Cohort Analysis. Anesthesiology 2017, 126, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I.; Meyhoff, C.S.; Zimmerman, N.M.; Mao, G.; Leslie, K.; Vásquez, S.M.; Balaji, P.; Alvarez-Garcia, J.; Cavalcanti, A.B.; Parlow, J.L.; et al. Period-Dependent Associations between Hypotension during and for Four Days after Noncardiac Surgery and a Composite of Myocardial Infarction and Death: A Substudy of the POISE-2 Trial. Anesthesiology 2018, 128, 317–327. [Google Scholar] [CrossRef]
- Walsh, M.; Devereaux, P.J.; Garg, A.X.; Kurz, A.; Turan, A.; Rodseth, R.N.; Cywinski, J.; Thabane, L.; Sessler, D.I. Relationship between Intraoperative Mean Arterial Pressure and Clinical Outcomes after Noncardiac Surgery: Toward an Empirical Definition of Hypotension. Anesthesiology 2013, 119, 507–515. [Google Scholar] [CrossRef]
- Roshanov, P.S.; Sheth, T.; Duceppe, E.; Tandon, V.; Bessissow, A.; Chan, M.T.V.; Butler, C.; Chow, B.J.W.; Khan, J.S.; Devereaux, P.J. Relationship between Perioperative Hypotension and Perioperative Cardiovascular Events in Patients with Coronary Artery Disease Undergoing Major Noncardiac Surgery. Anesthesiology 2019, 130, 756–766. [Google Scholar] [CrossRef]
- Monk, T.G.; Bronsert, M.R.; Henderson, W.G.; Mangione, M.P.; Sum-Ping, S.T.J.; Bentt, D.R.; Nguyen, J.D.; Richman, J.S.; Meguid, R.A.; Hammermeister, K.E. Association between Intraoperative Hypotension and Hypertension and 30-Day Postoperative Mortality in Noncardiac Surgery. Anesthesiology 2015, 123, 307–319. [Google Scholar] [CrossRef]
- O’Horo, J.C.; Maki, D.G.; Krupp, A.E.; Safdar, N. Arterial Catheters as a Source of Bloodstream Infection: A Systematic Review and Meta-Analysis. Crit. Care Med. 2014, 42, 1334–1339. [Google Scholar] [CrossRef] [PubMed]
- Bedford, R.F.; Wollman, H. Complications of Percutaneous Radial-Artery Cannulation: An Objective Prospective Study in Man. Anesthesiology 1973, 38, 228–236. [Google Scholar] [CrossRef]
- Garg, K.; Howell, B.W.; Saltzberg, S.S.; Berland, T.L.; Mussa, F.F.; Maldonado, T.S.; Rockman, C.B. Open Surgical Management of Complications from Indwelling Radial Artery Catheters. J. Vasc. Surg. 2013, 58, 1325–1330. [Google Scholar] [CrossRef]
- Tosti, R.; Özkan, S.; Schainfeld, R.M.; Eberlin, K.R. Radial Artery Pseudoaneurysm. J. Hand Surg. Am. 2017, 42, 295.e1–295.e6. [Google Scholar] [CrossRef]
- Sherertz, R.J. Update on Vascular Catheter Infections. Curr. Opin. Infect. Dis. 2004, 17, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Saugel, B.; Hoppe, P.; Nicklas, J.Y.; Kouz, K.; Körner, A.; Hempel, J.C.; Vos, J.J.; Schön, G.; Scheeren, T.W.L. Continuous Noninvasive Pulse Wave Analysis Using Finger Cuff Technologies for Arterial Blood Pressure and Cardiac Output Monitoring in Perioperative and Intensive Care Medicine: A Systematic Review and Meta-Analysis. Br. J. Anaesth. 2020, 125, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Solà, J.; Delgado-Gonzalo, R. (Eds.) The Handbook of Cuffless Blood Pressure Monitoring: A Practical Guide for Clinicians, Researchers, and Engineers; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-24700-3. [Google Scholar]
- Nichols, W.W.; Nichols, W.W.; McDonald, D.A. (Eds.) McDonald’s Blood Flow in Arteries: Theoretic, Experimental, and Clinical Principles, 6th ed.; Hodder Arnold: London, UK, 2011; ISBN 978-0-340-98501-4. [Google Scholar]
- Westerhof, N.; Stergiopulos, N.; Noble, M.I.M. Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education, 2nd ed.; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6363-5. [Google Scholar]
- Mukkamala, R.; Hahn, J.-O.; Inan, O.T.; Mestha, L.K.; Kim, C.-S.; Töreyin, H.; Kyal, S. Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice. IEEE Trans. Biomed. Eng. 2015, 62, 1879–1901. [Google Scholar] [CrossRef]
- Kim, S.-H.; Song, J.-G.; Park, J.-H.; Kim, J.-W.; Park, Y.-S.; Hwang, G.-S. Beat-to-Beat Tracking of Systolic Blood Pressure Using Noninvasive Pulse Transit Time during Anesthesia Induction in Hypertensive Patients. Anesth. Analg. 2013, 116, 94–100. [Google Scholar] [CrossRef]
- Ghamri, Y.; Proença, M.; Hofmann, G.; Renevey, P.; Bonnier, G.; Braun, F.; Axis, A.; Lemay, M.; Schoettker, P. Automated Pulse Oximeter Waveform Analysis to Track Changes in Blood Pressure During Anesthesia Induction: A Proof-of-Concept Study. Anesth. Analg. 2020, 130, 1222–1233. [Google Scholar] [CrossRef]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting Outliers: Do Not Use Standard Deviation around the Mean, Use Absolute Deviation around the Median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- ISO 81060-2:2018; Non-Invasive Sphygmomanometers—Part 2: Clinical Investigation of Intermittent Automated Measurement Type. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- Saugel, B.; Grothe, O.; Nicklas, J.Y. Error Grid Analysis for Arterial Pressure Method Comparison Studies. Anesth. Analg. 2018, 126, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Mukkamala, R.; Yavarimanesh, M.; Natarajan, K.; Hahn, J.-O.; Kyriakoulis, K.G.; Avolio, A.P.; Stergiou, G.S. Evaluation of the Accuracy of Cuffless Blood Pressure Measurement Devices: Challenges and Proposals. Hypertension 2021, 78, 1161–1167. [Google Scholar] [CrossRef]
- Juri, T.; Suehiro, K.; Uchimoto, A.; Go, H.; Fujimoto, Y.; Mori, T.; Nishikawa, K. Error Grid Analysis for Risk Management in the Difference between Invasive and Noninvasive Blood Pressure Measurements. J. Anesth. 2021, 35, 189–196. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics (n = 40) | Median (Range) or Count (Percentage) | |
---|---|---|
Age (years) | 62 (24–81) | |
Height (cm) | 169 (154–195) | |
Weight (kg) | 75 (46–118) | |
Body mass index (kg/m2) | 25 (18–45) | |
Sex, male | 22 (55.0) | |
Active smoking | 16 (40.0) | |
ASA class | I | 3 (7.5) |
II | 23 (57.5) | |
III | 14 (35.0) | |
Type of surgery | ENT surgery | 12 (30.0) |
Neurosurgery | 20 (50.0) | |
Spinal surgery | 8 (20.0) | |
Comorbidities | Arterial hypertension | 12 (30.0) |
Coronary artery disease | 3 (7.5) | |
Atrial fibrillation | 3 (7.5) | |
Arteriopathy | 4 (10.0) | |
Valvular heart disease | 2 (5.0) | |
Renal insufficiency | 3 (7.5) | |
Diabetes mellitus | 6 (15.0) | |
Dyslipidemia | 9 (22.5) | |
Medication | Beta-blockers | 6 (15.0) |
ACE inhibitors and ARBs | 8 (20.0) | |
Calcium channel blockers | 3 (7.5) | |
SBP average (mmHg) | 121 (83–200) | |
DBP average (mmHg) | 63 (42–87) | |
MBP average (mmHg) | 87 (58–121) | |
SBP variability (mmHg) | 77 (29–134) | |
DBP variability (mmHg) | 39 (19–79) | |
MBP variability (mmHg) | 55 (24–103) |
Mean ± SD of the Differences with BPINV (mmHg) | Recalibration Interval | ||||
---|---|---|---|---|---|
Every Minute | Every 2 Minutes | Every 3 Minutes | Every 4 Minutes | Every 5 Minutes | |
SBPPPG − SBPINV | 0.2 ± 6.0 | 0.4 ± 8.9 | 0.5 ± 11.2 | 0.5 ± 11.5 | −0.4 ± 11.7 |
MBPPPG − MBPINV | 0.1 ± 4.4 | 0.2 ± 6.4 | 0.0 ± 8.1 | 0.2 ± 8.2 | −0.7 ± 8.3 |
SBPCUFF − SBPINV | 0.8 ± 9.8 | 1.7 ± 13.3 | 2.6 ± 19.6 | 4.9 ± 20.4 | 3.8 ± 22.0 |
MBPCUFF − MBPINV | 0.4 ± 6.8 | 0.9 ± 10.3 | 1.2 ± 13.2 | 2.7 ± 13.5 | 1.5 ± 14.4 |
Median (Q1, Q3) Patient-Wise Correlation Coefficient | Recalibration Interval | ||||
---|---|---|---|---|---|
Every Minute | Every 2 Minutes | Every 3 Minutes | Every 4 Minutes | Every 5 Minutes | |
ρ(SBPPPG, SBPINV) | 0.93 (0.87, 0.96) | 0.88 (0.79, 0.94) | 0.83 (0.69, 0.92) | 0.88 (0.75, 0.93) | 0.85 (0.72, 0.90) |
ρ(MBPPPG, MBPINV) | 0.89 (0.85, 0.94) | 0.82 (0.74, 0.92) | 0.80 (0.56, 0.89) | 0.80 (0.66, 0.89) | 0.79 (0.66, 0.88) |
ρ(SBPCUFF, SBPINV) | 0.83 (0.74, 0.87) | 0.71 (0.45, 0.77) | 0.48 (0.20, 0.67) | 0.42 (0.19, 0.76) | 0.36 (0.13, 0.63) |
ρ(MBPCUFF, MBPINV) | 0.82 (0.71, 0.86) | 0.66 (0.36, 0.74) | 0.37 (0.13, 0.66) | 0.40 (0.10, 0.70) | 0.37 (0.00, 0.60) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degiorgis, Y.; Proença, M.; Ghamri, Y.; Hofmann, G.; Lemay, M.; Schoettker, P. Photoplethysmography-Based Blood Pressure Monitoring Could Improve Patient Outcome during Anesthesia Induction. J. Pers. Med. 2022, 12, 1571. https://doi.org/10.3390/jpm12101571
Degiorgis Y, Proença M, Ghamri Y, Hofmann G, Lemay M, Schoettker P. Photoplethysmography-Based Blood Pressure Monitoring Could Improve Patient Outcome during Anesthesia Induction. Journal of Personalized Medicine. 2022; 12(10):1571. https://doi.org/10.3390/jpm12101571
Chicago/Turabian StyleDegiorgis, Yan, Martin Proença, Yassine Ghamri, Gregory Hofmann, Mathieu Lemay, and Patrick Schoettker. 2022. "Photoplethysmography-Based Blood Pressure Monitoring Could Improve Patient Outcome during Anesthesia Induction" Journal of Personalized Medicine 12, no. 10: 1571. https://doi.org/10.3390/jpm12101571
APA StyleDegiorgis, Y., Proença, M., Ghamri, Y., Hofmann, G., Lemay, M., & Schoettker, P. (2022). Photoplethysmography-Based Blood Pressure Monitoring Could Improve Patient Outcome during Anesthesia Induction. Journal of Personalized Medicine, 12(10), 1571. https://doi.org/10.3390/jpm12101571