Opposite Response to Vitamin K Antagonists: A Report of Two Cases and Systematic Review of Literature
Abstract
:1. Introduction
2. Materials and Methods
Search Strategy of the Systematic Review
3. Results
3.1. Clinical Cases
3.1.1. Case 1
3.1.2. Case 2
3.2. Results of the Systematic Review
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Z.; Li, Y.; Meng, X.; Han, J.; Li, Y.; Liu, K.; Shen, J.; Qin, Y.; Zhang, H. New Warfarin Anticoagulation Management Model after Heart Valve Surgery: Rationale and Design of a Prospective, Multicentre, Randomised Trial to Compare an Internet-Based Warfarin Anticoagulation Management Model with the Traditional Warfarin Management Model. BMJ Open 2019, 9, e032949. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.T.M.; Klein, T.E. Pharmacogenetics of Warfarin: Challenges and Opportunities. J. Hum. Genet. 2013, 58, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Kuruvilla, M.; Gurk-Turner, C. A Review of Warfarin Dosing and Monitoring. Proc. (Bayl. Univ. Med. Cent.) 2001, 14, 305–306. [Google Scholar] [CrossRef]
- Manzo, V.; Tarallo, S.; Iannaccone, T.; Costantino, M.; Filippelli, W.; Filippelli, A. Cardiovascular Pharmacogenomics. Curr. Pharm. Pers. Med. 2017, 15, 67–80. [Google Scholar] [CrossRef]
- Mazzaccara, C.; Conti, V.; Liguori, R.; Simeon, V.; Toriello, M.; Severini, A.; Perricone, C.; Meccariello, A.; Meccariello, P.; Vitale, D.F.; et al. Warfarin Anticoagulant Therapy: A Southern Italy Pharmacogenetics-Based Dosing Model. PLoS ONE 2013, 8, e71505. [Google Scholar] [CrossRef] [PubMed]
- Ferder, N.S.; Eby, C.S.; Deych, E.; Harris, J.K.; Ridker, P.M.; Milligan, P.E.; Goldhaber, S.Z.; King, C.R.; Giri, T.; McLeod, H.L.; et al. Ability of VKORC1 and CYP2C9 to Predict Therapeutic Warfarin Dose during the Initial Weeks of Therapy. J. Thromb. Haemost. 2010, 8, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, J.; Fuster, V.; Ansell, J.; Halperin, J.L. American Heart Association/American College of Cardiology Foundation Guide to Warfarin Therapy. J. Am. Coll. Cardiol. 2003, 41, 1633–1652. [Google Scholar] [CrossRef]
- Conti, V.; Corbi, G.; Manzo, V.; Sellitto, C.; Iannello, F.; Esposito, S.; De Bellis, E.; Iannaccone, T.; Filippelli, A. The Role of Pharmacogenetics in Antithrombotic Therapy Management: New Achievements and Barriers Yet to Overcome. Curr. Med. Chem. 2021, 28, 6675–6703. [Google Scholar] [CrossRef]
- Johnson, J.A.; Caudle, K.E.; Gong, L.; Whirl-Carrillo, M.; Stein, C.M.; Scott, S.A.; Lee, M.T.; Gage, B.F.; Kimmel, S.E.; Perera, M.A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin. Pharmacol. Ther. 2017, 102, 397–404. [Google Scholar] [CrossRef]
- McDonald, M.G.; Rieder, M.J.; Nakano, M.; Hsia, C.K.; Rettie, A.E. CYP4F2 Is a Vitamin K1 Oxidase: An Explanation for Altered Warfarin Dose in Carriers of the V433M Variant. Mol. Pharmacol. 2009, 75, 1337–1346. [Google Scholar] [CrossRef] [Green Version]
- Danese, E.; Raimondi, S.; Montagnana, M.; Tagetti, A.; Langaee, T.; Borgiani, P.; Ciccacci, C.; Carcas, A.J.; Borobia, A.M.; Tong, H.Y.; et al. Effect of CYP4F2, VKORC1, and CYP2C9 in Influencing Coumarin Dose: A Single-Patient Data Meta-Analysis in More Than 15,000 Individuals. Clin. Pharmacol. Ther. 2019, 105, 1477–1491. [Google Scholar] [CrossRef] [PubMed]
- Tavares, L.C.; Duarte, N.E.; Marcatto, L.R.; Soares, R.A.G.; Krieger, J.E.; Pereira, A.C.; Santos, P.C.J.L. Impact of Incorporating ABCB1 and CYP4F2 Polymorphisms in a Pharmacogenetics-Guided Warfarin Dosing Algorithm for the Brazilian Population. Eur. J. Clin. Pharmacol. 2018, 74, 1555–1566. [Google Scholar] [CrossRef] [PubMed]
- Wadelius, M.; Sörlin, K.; Wallerman, O.; Karlsson, J.; Yue, Q.-Y.; Magnusson, P.K.E.; Wadelius, C.; Melhus, H. Warfarin Sensitivity Related to CYP2C9, CYP3A5, ABCB1 (MDR1) and Other Factors. Pharm. J. 2004, 4, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Bratton, S.M.; Mosher, C.M.; Khallouki, F.; Finel, M.; Court, M.H.; Moran, J.H.; Radominska-Pandya, A. Analysis of R- and S-Hydroxywarfarin Glucuronidation Catalyzed by Human Liver Microsomes and Recombinant UDP-Glucuronosyltransferases. J. Pharmacol. Exp. Ther. 2012, 340, 46–55. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Almeida, V.C.; Ribeiro, D.D.; Gomes, K.B.; Godard, A.L.B. Polymorphisms of CYP2C9, VKORC1, MDR1, APOE and UGT1A1 Genes and the Therapeutic Warfarin Dose in Brazilian Patients with Thrombosis: A Prospective Cohort Study. Mol. Diagn. Ther. 2014, 18, 675–683. [Google Scholar] [CrossRef]
- Cini, M.; Legnani, C.; Cosmi, B.; Guazzaloca, G.; Valdrè, L.; Frascaro, M.; Palareti, G. A New Warfarin Dosing Algorithm Including VKORC1 3730 G > A Polymorphism: Comparison with Results Obtained by Other Published Algorithms. Eur. J. Clin. Pharmacol. 2012, 68, 1167–1174. [Google Scholar] [CrossRef]
- Bair, J.D.; Oppelt, T.F. Warfarin and ropinirole interaction. Ann. Pharmacother. 2001, 35, 1202–1204. [Google Scholar] [CrossRef]
- Scheda Agenzia Italiana Del Farmaco. Available online: https://farmaci.agenziafarmaco.gov.it/aifa/servlet/PdfDownloadServlet?pdfFileName=footer_001401_016366_RCP.pdf&retry=0&sys=m0b1l3 (accessed on 29 July 2022).
- Sattar, A.; Willman, J.E.; Kolluri, R. Possible Warfarin Resistance Due to Interaction with Ascorbic Acid: Case Report and Literature Review. Am. J. Health Syst. Pharm. 2013, 70, 782–786. [Google Scholar] [CrossRef]
- Li, X.; Lu, Y.; Yin, J.; Zhang, Q. Genotype-based anticoagulant therapy with warfarin for atrial fibrillation. Int. J. Clin. Exp. Med. 2017, 10, 14056–14062. [Google Scholar]
- Wang, M.; Lang, X.; Cui, S.; Fei, K.; Zou, L.; Cao, J.; Wang, L.; Zhang, S.; Wu, X.; Wang, Y.; et al. Clinical application of pharmacogenetic-based warfarin-dosing algorithm in patients of Han nationality after rheumatic valve replacement: A randomized and controlled trial. Int. J. Med. Sci. 2012, 9, 472–479. [Google Scholar] [CrossRef]
- Gage, B.F.; Bass, A.R.; Lin, H.; Woller, S.C.; Stevens, S.M.; Al-Hammadi, N.; Li, J.; Rodríguez, T.J.; Miller, J.P.; McMillin, G.A.; et al. Effect of Genotype-Guided Warfarin Dosing on Clinical Events and Anticoagulation Control Among Patients Undergoing Hip or Knee Arthroplasty: The GIFT Randomized Clinical Trial. JAMA 2017, 318, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Syn, N.L.; Wong, A.L.-A.; Lee, S.-C.; Teoh, H.-L.; Yip, J.W.L.; Seet, R.C.; Yeo, W.T.; Kristanto, W.; Bee, P.-C.; Poon, L.M.; et al. Genotype-guided versus traditional clinical dosing of warfarin in patients of Asian ancestry: A randomized controlled trial. BMC Med. 2018, 16, 104. [Google Scholar] [CrossRef] [PubMed]
- Zambon, C.F.; Pengo, V.; Moz, S.; Bozzato, D.; Fogar, P.; Padoan, A.; Plebani, M.; Groppa, F.; De Rosa, G.; Padrini, R. Pharmacokinetic and Pharmacodynamic Re-Evaluation of a Genetic-Guided Warfarin Trial. Eur. J. Clin. Pharmacol. 2018, 74, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Yee, J.; Lee, G.Y.; Chung, J.E.; Seong, J.M.; Chang, B.C.; Gwak, H.S. Genotype-Guided Warfarin Dosing May Benefit Patients with Mechanical Aortic Valve Replacements: Randomized Controlled Study. Sci. Rep. 2020, 10, 6988. [Google Scholar] [CrossRef] [PubMed]
- Panchenko, E.; Kropacheva, E.; Dobrovolsky, A.; Titaeva, E.; Zemlyanskaya, O.; Trofimov, D.; Galkina, I.; Lifshits, G.; Vereina, N.; Sinitsin, S.; et al. CYP2C9 and VKORC1 genotyping for the quality of long-standing warfarin treatment in Russian patients. Pharm. J. 2020, 20, 687–694. [Google Scholar] [CrossRef]
- Pirmohamed, M.; Burnside, G.; Eriksson, N.; Jorgensen, A.L.; Toh, C.-H.; Nicholson, T.; Kesteven, P.; Christersson, C.; Wahlström, B.; Stafberg, C.; et al. A Randomized Trial of Genotype-Guided Dosing of Warfarin. N. Engl. J. Med. 2013, 369, 2294–2303. [Google Scholar] [CrossRef]
- Xu, Q.; Xu, B.; Zhang, Y.; Yang, J.; Gao, L.; Zhang, Y.; Wang, H.; Lu, C.; Zhao, Y.; Yin, T. Estimation of the Warfarin Dose with a Pharmacogenetic Refinement Algorithm in Chinese Patients Mainly under Low-Intensity Warfarin Anticoagulation. Thromb. Haemost. 2012, 108, 1132–1140. [Google Scholar] [CrossRef]
- Burmester, J.K.; Berg, R.L.; Yale, S.H.; Rottscheit, C.M.; Glurich, I.E.; Schmelzer, J.R.; Caldwell, M.D. A randomized controlled trial of genotype-based Coumadin initiation. Genet. Med. 2011, 13, 509–518. [Google Scholar] [CrossRef]
- Pengo, V.; Zambon, C.-F.; Fogar, P.; Padoan, A.; Nante, G.; Pelloso, M.; Moz, S.; Frigo, A.C.; Groppa, F.; Bozzato, D.; et al. A Randomized Trial of Pharmacogenetic Warfarin Dosing in Naïve Patients with Non-Valvular Atrial Fibrillation. PLoS ONE 2015, 10, e0145318. [Google Scholar] [CrossRef]
- Guo, C.; Kuang, Y.; Zhou, H.; Yuan, H.; Pei, Q.; Li, J.; Jiang, W.; Ng, C.M.; Chen, X.; Huo, Y.; et al. Genotype-Guided Dosing of Warfarin in Chinese Adults: A Multicenter Randomized Clinical Trial. Circ. Genomic Precis. Med. 2020, 13, e002602. [Google Scholar] [CrossRef]
- Dean, L. Warfarin Therapy and VKORC1 and CYP Genotype; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kane, M.S., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information: Bethesda, MD, USA, 2012.
- Grebe, H.B.; Gregory, P.J. Inhibition of Warfarin Anticoagulation Associated with Chelation Therapy. Pharmacotherapy 2002, 22, 1067–1069. [Google Scholar] [CrossRef] [PubMed]
- Sigell, L.T.; Flessa, H.C. Drug Interactions with Anticoagulants. JAMA 1970, 214, 2035–2038. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, A.M.; Pereira, J.A.; Labiris, R.; McDonald, H.; Douketis, J.D.; Crowther, M.; Wells, P.S. Systematic Overview of Warfarin and Its Drug and Food Interactions. Arch. Intern. Med. 2005, 165, 1095–1106. [Google Scholar] [CrossRef]
- Tan, C.S.S.; Lee, S.W.H. Warfarin and Food, Herbal or Dietary Supplement Interactions: A Systematic Review. Br. J. Clin. Pharmacol. 2021, 87, 352–374. [Google Scholar] [CrossRef] [PubMed]
- Rouleau-Mailloux, É.; Shahabi, P.; Dumas, S.; Feroz Zada, Y.; Provost, S.; Hu, J.; Nguyen, J.; Bouchama, N.; Mongrain, I.; Talajic, M.; et al. Impact of Regular Physical Activity on Weekly Warfarin Dose Requirement. J. Thromb. Thrombolysis 2016, 41, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Shendre, A.; Beasley, T.M.; Brown, T.M.; Hill, C.E.; Arnett, D.K.; Limdi, N.A. Influence of Regular Physical Activity on Warfarin Dose and Risk of Hemorrhagic Complications. Pharmacotherapy 2014, 34, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Persky, A.M.; Eddington, N.D.; Derendorf, H. A Review of the Effects of Chronic Exercise and Physical Fitness Level on Resting Pharmacokinetics. Int. J. Clin. Pharmacol. Ther. 2003, 41, 504–516. [Google Scholar] [CrossRef]
- Lenz, T.L.; Lenz, N.J.; Faulkner, M.A. Potential Interactions between Exercise and Drug Therapy. Sports Med. 2004, 34, 293–306. [Google Scholar] [CrossRef]
- Klein, T.E.; Altman, R.B.; Eriksson, N.; Gage, B.F.; Kimmel, S.E.; Lee, M.-T.M.; Limdi, N.A.; Page, D.; Roden, D.M.; Wagner, M.J.; et al. Estimation of the Warfarin Dose with Clinical and Pharmacogenetic Data. N. Engl. J. Med. 2009, 360, 753–764. [Google Scholar] [CrossRef]
- Makeeva, O.; Stepanov, V.; Puzyrev, V.; Goldstein, D.B.; Grossman, I. Global Pharmacogenetics: Genetic Substructure of Eurasian Populations and Its Effect on Variants of Drug-Metabolizing Enzymes. Pharmacogenomics 2008, 9, 847–868. [Google Scholar] [CrossRef]
- Abdullah-Koolmees, H.; van Keulen, A.M.; Nijenhuis, M.; Deneer, V.H.M. Pharmacogenetics Guidelines: Overview and Comparison of the DPWG, CPIC, CPNDS, and RNPGx Guidelines. Front. Pharmacol. 2020, 11, 595219. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar] [CrossRef] [PubMed]
- Dahal, K.; Sharma, S.P.; Fung, E.; Lee, J.; Moore, J.H.; Unterborn, J.N.; Williams, S.M. Meta-Analysis of Randomized Controlled Trials of Genotype-Guided vs Standard Dosing of Warfarin. Chest 2015, 148, 701–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
References | Study Population Origin | Total Pts | Indication | Follow-Up (Days) | Analyzed Polymorphisms | TRSD * (Days) | TTR ** (%) | INR > 4 and/or Bleedings INR < 2 and/or Thromboembolism | Summary of Results |
---|---|---|---|---|---|---|---|---|---|
Burmester et al. [29] (2011) | Northern American | Tot: 230 GG: 115 CG: 115 | Arrhythmia, thromboembolic disease, valve surgery | 14 | CYP2C9*2, CYP2C9*3, VKORC1-1639G>A CYP4F2 V433M | GG: 29 [23,24,25,26,27,28,29,30,31,32,33,34,35,36] CG: 31 [24,25,26,27,28,29,30,31,32,33,34,35,36] p = 0.90 | 28.6% in both arms p = 0.564 | Study arms were similar regarding time to INR>4 and adverse events. | Genotype-informed dosing clearly improved the prediction of a therapeutic dosage beyond that planned using only clinical parameters. |
Gage et al. [22] (2017) | Caucasian, African, American, Hispanic and Asian | Tot: 1597 GG: 808 CG: 789 | hip/knee arthroplasty | 90 | CYP2C9*2, CYP2C9*3, VKORC1-1639G>A CYP4F2 V433M. | NA | GG: 54.7% [53.0–56.4] CG: 51.3% [49.6–53.0] p = 0.004 | INR ≥ 4 GG: 6.9% CG: 9.8% p = 0.04 Major bleedings GG: 0.2% CG: 1% p = 0.06 Thromboembolism GG: 4.1% CG: 4.8% p = 0.48 | Genotype-informed dosing reduced the combined risk of major bleeding, INR of 4 or greater, VTE or death. |
Guo et al. [31] (2020) | Chinese | Tot: 551 GG: 272 CG: 279 | AF, DVT | 84 | CYP2C9*3, VKORC1-1639G>A | GG: 22 [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30] CG: 21 [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29] p = 0.69 | GG: 58.8% ± 24.3 CG: 53.2% ± 26.3 p = 0.01 | There were no significant differences across the various safety parameters between the two groups. | The outcomes of genotype-guided warfarin dosing were superior to those of clinical standard dosing. |
Lee et al. [25] (2019) | Korean | Tot: 91 GG: 42 CG: 49 | heart valve replacement surgery | 7 | CYP2C9*3, VKORC-1639G>A, CYP4F2 V433M | NA | %TTR Rosendaal GG: 55.9% CG: 46.9% p = 0.059 | NA | The genotype-guided dosing did not offer a significant clinical advantage, but a possible benefit in patients with aortic valve replacement has been suggested (p = 0.012). |
Li et al. [20] (2017) | Chinese | Tot: 57 GG: 28 CG: 29 | NVAF | 180 | CYP2C9*3, VKORC-1639G>A, CYP4F2 V433M, GGCX | GG: 15.1 ± 5.1 CG: 27.6 ± 6.6 p = 0.033 | NA | The rate of bleeding and thrombosis was 0 in GG group and 5 (17.2%) in CG group. p = 0.022 | Genotype-based anticoagulant therapy with warfarin is safe and effective in the treatment of NVAF. |
Syn et al. [23] (2018) | Chinese, Indian | Tot: 322 GG: 159 CG: 163 | AF, DVT, PE, LVT and Stroke | 90 | CYP2C9*3, VKORC1-381T>C | NA | GG: 52.5% CG: 47.1% p = 0.059 | Minor bleeding GG: 6.1% CG: 5.9% p = 0.96 Major bleeding GG: 3.8% CG: 3.7% p = 0.97 | Genotype-guided dosing reduced the number of dose titrations compared to traditional dosing while maintaining similar INR time within therapeutic ranges. PGx-based algorithm predicted maintenance dose requirements. |
Panchenko et al. [26] (2019) | Russian | Tot: 263 GG: 127 CG: 136 | VTE, NVAF and mechanical prosthetic valves | 180 | CYP2C9*2, CYP2C9*3, VKORC1-1639G>A | GG: 11 CG: 17 p = 0.046 | GG: 71% CG: 50% p = 0.092 | Frequency of INR ≥ 4.0 GG: 11% CG: 30.9% p = 0.002 Major bleedings GG: 0% CG: 4.4% p = 0.031 Minor bleedings GG: 17.3% CG: 17.7% p = 1 | The advantages of the pharmacogenetics dosing were demonstrated in patients with increased warfarin sensitivity. |
Pengo et al. [30] (2015) | Italian | Tot: 180 GG: 88 CG: 92 | NVAF | At least 30 | CYP2C9*2, CYP2C9*3, VKORC1-1639G>A CYP4F2 V433M. | GG: 5.96 CG: 5.05 p = 0.28 | GG 51.9% CG 53.2% p = 0.71 | %Time in INR>4.0 GG: 0.7% CG: 1.8% p = 0.02% Time in INR<1.5 was not significantly different between the two groups p = 0.96 No bleedings and thromboembolic complications were recorded. | Genotype-guided warfarin dosing is not superior in overall anticoagulation control when compared to accurate clinical standard of care. |
Pirmohamed et al. [27] (2013) | European | Tot: 427 GG: 211 CG: 216 | AF, VTE | 84 | CYP2C9*2 CYP2C9*3 VKORC1-1639G>A | GG: 44 CG: 59 p = 0.003 | GG: 67.4% CG: 60.3% p < 0.001 | %Time with INR ≥4.0 GG: 2.3% CG: 5.3% p < 0.001. Bleeding events GG: 37% CG: 38% p = 0.87 | Pharmacogenetic-based dosing was associated with a higher percentage of time in the therapeutic INR range. |
Wang et al. [21] (2012) | Chinese | Tot: 101 GG: 50 CG: 51 | Rheumatic heart disease after valve replacement | 50 | CYP2C9*3 VKORC1-1173C>T | GG: 27.5 ± 1.8 CG: 34.7 ± 1.8 p < 0.001 | NA | Hemorrhage or INR over 3.5 GG: 10.0% CG: 15.7% p = 0.55 | PGx algorithm may reduce the time elapsed from initiation of warfarin therapy to drug maintenance dose. |
Zambon et al. [24] (2018) | Italian | Tot: 180 GG: 88 CG: 92 | NVAF | 19 | CYP2C9*2 CYP2C9*3 VKORC1-1639G>A CYP4F2 V433M | NA | The overall %TTR did not differ between GG and CG groups. | INR > 3 in patients hypersensitive to warfarin (Q1) GG: 9.1% CG: 21.7% p = 0.004 No bleeding events occurred. Overall % of INR < 2 GG: 33.3% CG: 32.6% p = NS | The genetic method may protect patients who are hypersensitive to Warfarin from the risk of excessive anticoagulation during the first week of therapy and allow hypersensitive patients to reach the INR therapeutic range sooner. |
Zhu et al. [1] (2020) | Chinese | Tot: 507 GG: 313 CG: 194 | NVAF | 90 | CYP2C9*3 VKORC1-1639G>A | NA | GG: 70.80% ± 24.39 CG: 53.44% ± 26.73 p < 0.001. | The cumulative incidence of total, minor, gastrointestinal and intracerebral hemorrhagic events was not significantly different between two groups, p > 0.05. | Genotype-guided dosing could improve the average TTR, and follow-up results showed that genotype-guided therapy resulted in a significantly lower risk of ischemic stroke events. |
Xu et al. [28] (2018) | East Asian | Tot: 201 GG: 100 CG: 101 | heart valve implant | 90 | CYP2C9*3, VKORC1-1639A>G, CYP4F2 V433M | GG: 33.52 ± 20.044 CG: 42.09 ± 23.655 p = 0.009 | GG: 47.461% ± 18.592 CG: 47.257% ± 20.147 p = 0.941 | INR ≥ 4 GG: 0.1680% CG: 0.1633% p = 0.690 Major bleeding events GG: 3% CG: 2.97% p = 1 Major thrombosis rate GG: 1.00% CG: 0% p = 0.498 | The genotype-guided warfarin dosing was safe and might be more efficient for TRSD. Pharmacogenomic testing might be beneficial to identify the patients with the CYP2C9 *1/*3 genotype and the highly sensitive responders. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conti, V.; Manzo, V.; De Bellis, E.; Stefanelli, B.; Sellitto, C.; Bertini, N.; Corbi, G.; Ferrara, N.; Filippelli, A. Opposite Response to Vitamin K Antagonists: A Report of Two Cases and Systematic Review of Literature. J. Pers. Med. 2022, 12, 1578. https://doi.org/10.3390/jpm12101578
Conti V, Manzo V, De Bellis E, Stefanelli B, Sellitto C, Bertini N, Corbi G, Ferrara N, Filippelli A. Opposite Response to Vitamin K Antagonists: A Report of Two Cases and Systematic Review of Literature. Journal of Personalized Medicine. 2022; 12(10):1578. https://doi.org/10.3390/jpm12101578
Chicago/Turabian StyleConti, Valeria, Valentina Manzo, Emanuela De Bellis, Berenice Stefanelli, Carmine Sellitto, Nicola Bertini, Graziamaria Corbi, Nicola Ferrara, and Amelia Filippelli. 2022. "Opposite Response to Vitamin K Antagonists: A Report of Two Cases and Systematic Review of Literature" Journal of Personalized Medicine 12, no. 10: 1578. https://doi.org/10.3390/jpm12101578
APA StyleConti, V., Manzo, V., De Bellis, E., Stefanelli, B., Sellitto, C., Bertini, N., Corbi, G., Ferrara, N., & Filippelli, A. (2022). Opposite Response to Vitamin K Antagonists: A Report of Two Cases and Systematic Review of Literature. Journal of Personalized Medicine, 12(10), 1578. https://doi.org/10.3390/jpm12101578