Prognostic Nutritional Index and Major Cardiovascular Events in Patients Undergoing Invasive Coronary Angiography: A Clinical Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Anthropometric Measurements
2.3. Laboratory Measurements
2.4. Definition of CVD Risk Factors and Health Conditions
2.5. PNI Scores for Malnutrition Risk Assessment
2.6. Outcome Measurements
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Associations between Malnutrition Risk and the Incident MCEs
3.3. Subgroup Analyses
3.4. Receiver Operating Characteristic Analyses to Predict MCEs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Li, Y.; Zeng, X.; Wang, H.; Yin, P.; Wang, L.; Liu, Y.; Liu, J.; Qi, J.; Ran, S.; et al. Burden of Cardiovascular Diseases in China, 1990-2016: Findings from the 2016 Global Burden of Disease Study. JAMA Cardiol. 2019, 4, 342–352. [Google Scholar] [CrossRef]
- The Writing Committee of the Report on Cardiovascular Health and Diseases in China Report on Cardiovascular Health and Diseases Burden in China: An Updated Summary of 2020. Chin. Circ. J. 2021, 36, 521–545.
- Henneman, M.M.; Schuijf, J.D.; van der Wall, E.E.; Bax, J.J. Non-Invasive Anatomical and Functional Imaging for the Detection of Coronary Artery Disease. Br. Med. Bull. 2006, 79–80, 187–202. [Google Scholar] [CrossRef]
- Eckert, J.; Schmidt, M.; Magedanz, A.; Voigtländer, T.; Schmermund, A. Coronary CT Angiography in Managing Atherosclerosis. Int. J. Mol. Sci. 2015, 16, 3740–3756. [Google Scholar] [CrossRef]
- Raposeiras Roubín, S.; Abu Assi, E.; Cespón Fernandez, M.; Barreiro Pardal, C.; Lizancos Castro, A.; Parada, J.A.; Pérez, D.D.; Blanco Prieto, S.; Rossello, X.; Ibanez, B.; et al. Prevalence and Prognostic Significance of Malnutrition in Patients with Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2020, 76, 828–840. [Google Scholar] [CrossRef]
- Doi, S.; Iwata, H.; Wada, H.; Funamizu, T.; Shitara, J.; Endo, H.; Naito, R.; Konishi, H.; Tsuboi, S.; Ogita, M.; et al. A Novel and Simply Calculated Nutritional Index Serves as a Useful Prognostic Indicator in Patients with Coronary Artery Disease. Int. J. Cardiol. 2018, 262, 92–98. [Google Scholar] [CrossRef]
- Wada, H.; Dohi, T.; Miyauchi, K.; Jun, S.; Endo, H.; Doi, S.; Konishi, H.; Naito, R.; Tsuboi, S.; Ogita, M.; et al. Relationship between the Prognostic Nutritional Index and Long-Term Clinical Outcomes in Patients with Stable Coronary Artery Disease. J. Cardiol. 2018, 72, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Kurtul, A.; Gok, M.; Esenboga, K. Prognostic Nutritional Index Predicts Contrast-Associated Acute Kidney Injury in Patients with ST-Segment Elevation Myocardial Infarction. Acta Cardiol. Sin 2021, 37, 496–503. [Google Scholar] [CrossRef]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar]
- Cheng, Y.-L.; Sung, S.-H.; Cheng, H.-M.; Hsu, P.-F.; Guo, C.-Y.; Yu, W.-C.; Chen, C.-H. Prognostic Nutritional Index and the Risk of Mortality in Patients with Acute Heart Failure. J. Am. Heart Assoc. 2017, 6, e004876. [Google Scholar] [CrossRef]
- Keskin, M.; Hayıroğlu, M.I.; Keskin, T.; Kaya, A.; Tatlısu, M.A.; Altay, S.; Uzun, A.O.; Börklü, E.B.; Güvenç, T.S.; Avcı, I.I.; et al. A Novel and Useful Predictive Indicator of Prognosis in ST-Segment Elevation Myocardial Infarction, the Prognostic Nutritional Index. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 438–446. [Google Scholar] [CrossRef]
- Chen, X.-L.; Wei, X.-B.; Huang, J.-L.; Ke, Z.-H.; Tan, N.; Chen, J.-Y.; Liu, Y.-H.; Yu, D.-Q. The Prognostic Nutritional Index Might Predict Clinical Outcomes in Patients with Idiopathic Dilated Cardiomyopathy. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 393–399. [Google Scholar] [CrossRef]
- Yang, L.; Yu, W.; Pan, W.; Chen, S.; Ye, X.; Gu, X.; Hu, X. A Clinical Epidemiological Analysis of Prognostic Nutritional Index Associated with Diabetic Retinopathy. Diabetes Metab. Syndr. Obes. 2021, 14, 839–846. [Google Scholar] [CrossRef]
- Li, M.; Xu, Y.; Wan, Q.; Shen, F.; Xu, M.; Zhao, Z.; Lu, J.; Gao, Z.; Chen, G.; Wang, T.; et al. Individual and Combined Associations of Modifiable Lifestyle and Metabolic Health Status with New-Onset Diabetes and Major Cardiovascular Events: The China Cardiometabolic Disease and Cancer Cohort (4C) Study. Diabetes Care 2020, 43, 1929–1936. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2000; Volume 894, pp. i–xii, 1–253.
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [Green Version]
- Kjeldsen, S.E.; Farsang, C.; Sleigh, P.; Mancia, G. World Health Organization; International Society of Hypertension 1999 WHO/ISH Hypertension Guidelines--Highlights and Esh Update. J. Hypertens 2001, 19, 2285–2288. [Google Scholar] [CrossRef]
- Joint Committee Issued Chinese Guideline for the Management of Dyslipidemia in Adults Chinese Guideline for the Management of Dyslipidemia in Adults. Chin. J. Cardiol. 2016, 44, 833–853.
- Judkins, M.P. Percutaneous Transfemoral Selective Coronary Arteriography. Radiol. Clin. N. Am. 1968, 6, 467–492. [Google Scholar] [CrossRef]
- Chen, Q.-J.; Qu, H.-J.; Li, D.-Z.; Li, X.-M.; Zhu, J.-J.; Xiang, Y.; Li, L.; Ma, Y.-T.; Yang, Y.-N. Prognostic Nutritional Index Predicts Clinical Outcome in Patients with Acute ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Sci. Rep. 2017, 7, 3285. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-R.; Kang, M.G.; Kim, K.; Koh, J.-S.; Park, J.R.; Hwang, S.-J.; Jeong, Y.-H.; Ahn, J.H.; Park, Y.; Bae, J.S.; et al. Comparative Analysis of Three Nutrition Scores in Predicting Mortality after Acute Myocardial Infarction. Nutrition 2021, 90, 111243. [Google Scholar] [CrossRef]
- Kalyoncuoğlu, M.; Katkat, F.; Biter, H.I.; Cakal, S.; Tosu, A.R.; Can, M.M. Predicting One-Year Deaths and Major Adverse Vascular Events with the Controlling Nutritional Status Score in Elderly Patients with Non-ST-Elevated Myocardial Infarction Undergoing Percutaneous Coronary Intervention. J. Clin. Med. 2021, 10, 2247. [Google Scholar] [CrossRef]
- Basta, G.; Chatzianagnostou, K.; Paradossi, U.; Botto, N.; Del Turco, S.; Taddei, A.; Berti, S.; Mazzone, A. The Prognostic Impact of Objective Nutritional Indices in Elderly Patients with ST-Elevation Myocardial Infarction Undergoing Primary Coronary Intervention. Int. J. Cardiol. 2016, 221, 987–992. [Google Scholar] [CrossRef]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 62, e147–e239. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC)Developed with the Special Contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, E.; Miller, M.; Yaxley, A.; Isenring, E. Malnutrition in the Elderly: A Narrative Review. Maturitas 2013, 76, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Zhao, X.; Li, M. Application of mini-nutritional assessment in malnutrition risk evaluation of elderly inpatient with cardiovascular disease. Chongqing Med. 2015, 10, 1362–1363, 1366. [Google Scholar]
- Reber, E.; Gomes, F.; Vasiloglou, M.F.; Schuetz, P.; Stanga, Z. Nutritional Risk Screening and Assessment. J. Clin. Med. 2019, 8, 1065. [Google Scholar] [CrossRef] [Green Version]
- Soeters, P.B.; Schols, A.M.W.J. Advances in Understanding and Assessing Malnutrition. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 487–494. [Google Scholar] [CrossRef]
- Elguindy, M.; Stables, R.; Nicholas, Z.; Kemp, I.; Curzen, N. Design and Rationale of the RIPCORD 2 Trial (Does Routine Pressure Wire Assessment Influence Management Strategy at Coronary Angiography for Diagnosis of Chest Pain?): A Randomized Controlled Trial to Compare Routine Pressure Wire Assessment with Conventional Angiography in the Management of Patients with Coronary Artery Disease. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004191. [Google Scholar] [CrossRef]
- Dewey, M.; Rochitte, C.E.; Ostovaneh, M.R.; Chen, M.Y.; George, R.T.; Niinuma, H.; Kitagawa, K.; Laham, R.; Kofoed, K.; Nomura, C.; et al. Prognostic Value of Noninvasive Combined Anatomic/Functional Assessment by Cardiac CT in Patients with Suspected Coronary Artery Disease—Comparison with Invasive Coronary Angiography and Nuclear Myocardial Perfusion Imaging for the Five-Year-Follow up of the CORE320 Multicenter Study. J. Cardiovasc. Comput. Tomogr. 2021, 15, 485–491. [Google Scholar] [CrossRef]
- Fleck, A.; Hawker, F.; Wallace, P.I.; Raines, G.; Trotter, J.; Ledingham, I.M.; Calman, K.C. Increased Vascular Permeability: A Major Cause of Hypoalbuminaemia in Disease and Injury. Lancet 1985, 325, 781–784. [Google Scholar] [CrossRef]
- Ronit, A.; Kirkegaard-Klitbo, D.M.; Dohlmann, T.L.; Lundgren, J.; Sabin, C.A.; Phillips, A.N.; Nordestgaard, B.G.; Afzal, S. Plasma Albumin and Incident Cardiovascular Disease: Results from the CGPS and an Updated Meta-Analysis. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Martinez, R.; Andreola, F.; Mehta, G.; Poulton, K.; Oria, M.; Jover, M.; Soeda, J.; Macnaughtan, J.; De Chiara, F.; Habtesion, A.; et al. Immunomodulatory and Antioxidant Function of Albumin Stabilises the Endothelium and Improves Survival in a Rodent Model of Chronic Liver Failure. J. Hepatol. 2015, 62, 799–806. [Google Scholar] [CrossRef]
- Cohen, S.; Danzaki, K.; MacIver, N.J. Nutritional Effects on T-Cell Immunometabolism. Eur. J. Immunol. 2017, 47, 225–235. [Google Scholar] [CrossRef]
- Ommen, S.R.; Hodge, D.O.; Rodeheffer, R.J.; McGregor, C.G.; Thomson, S.P.; Gibbons, R.J. Predictive Power of the Relative Lymphocyte Concentration in Patients with Advanced Heart Failure. Circulation 1998, 97, 19–22. [Google Scholar] [CrossRef]
Variable | Total (n = 485) | High PNI (n = 362) | Low PNI (n = 123) | p |
---|---|---|---|---|
Socio-demographics factors | ||||
Men (n, %) | 253 (52.16%) | 188 (51.93%) | 65 (52.85%) | 0.861 |
Elderly (n, %) | 235 (48.45%) | 158 (43.65%) | 77 (62.60%) | <0.001 |
Lifestyle risk factors | ||||
Current smoking (n, %) | 92 (18.97%) | 78 (21.55%) | 14 (11.38%) | 0.013 |
Current drinking (n, %) | 21 (4.33%) | 19 (5.25%) | 2 (1.63%) | 0.088 |
Baseline health status | ||||
Overall overweight/obesity (n, %) | 301 (62.06%) | 234 (64.64%) | 67 (54.47%) | 0.045 |
Diabetes (n, %) | 279 (57.53%) | 202 (55.80%) | 77 (62.60%) | 0.187 |
Hypertension (n, %) | 388 (80.00%) | 292 (80.66%) | 96 (78.05%) | 0.531 |
Dyslipidemia (n, %) | 390 (80.41%) | 293 (80.94%) | 97 (78.86%) | 0.616 |
Coronary artery disease (n, %) | 328 (67.63%) | 244 (67.40%) | 84 (68.29%) | 0.855 |
Metabolic risk factor | ||||
BMI (kg/m2) | 26.08 (24.13–28.06) | 26.11 (24.29–28.08) | 25.96 (23.51–28.08) | 0.467 |
SBP (mmHg) | 138.00 (124.00–152.50) | 138.00 (124.00–152.00) | 138.00 (124.00–154.00) | 0.953 |
DBP (mmHg) | 77.00 (68.50–84.00) | 77.00 (69.00–84.25) | 78.00 (67.00–83.00) | 0.837 |
FPG (mmol/L) | 5.40 (4.70–6.80) | 5.40 (4.70–6.80) | 5.20 (4.68–6.82) | 0.483 |
2 hPG (mmol/L) | 12.133 ± 3.76 | 12.09 ± 3.94 | 12.28 ± 3.21 | 0.774 |
HbA1 c (%) | 6.30 (5.80–7.48) | 6.30 (5.90–7.20) | 6.30 (5.60–7.80) | 0.642 |
TG (mmol/L) | 1.88 (1.41–2.54) | 1.94 (1.49–2.61) | 1.64 (1.23–2.29) | 0.001 |
TC (mmol/L) | 4.47 (3.78–5.34) | 4.51 (3.85–5.33) | 4.31 (3.63–5.36) | 0.402 |
HDL-c (mmol/L) | 0.98 (0.82–1.14) | 0.99 (0.84–1.13) | 0.94 (0.80–1.16) | 0.158 |
LDL-c (mmol/L) | 2.49 (1.91–3.20) | 2.51 (1.94–3.18) | 2.35 (1.78–3.23) | 0.381 |
PNI Scores (Low vs. High) | Hazard Ratios | 95% Confidence Intervals | p |
---|---|---|---|
Model 1 | 2.579 | 1.450–4.590 | 0.001 |
Model 2 | 2.406 | 1.334–4.337 | 0.004 |
Model 3 | 2.592 | 1.426–4.711 | 0.002 |
Model 4 | 2.593 | 1.418–4.742 | 0.002 |
Variable | Total (N) | MCE (N) | MCE (%) | Hazard Ratios | 95% Confidence Intervals | p | p for Interaction |
---|---|---|---|---|---|---|---|
Socio-demographics factors | |||||||
Gender | 0.015 | ||||||
Men | 253 | 24 | 9.49 | 0.845 | 0.314–2.273 | 0.739 | |
Women | 232 | 23 | 9.91 | 5.055 | 2.160–11.828 | <0.001 | |
Age range | 0.051 | ||||||
<65 | 250 | 18 | 7.20 | 0.808 | 0.225–2.904 | 0.744 | |
≥65 | 235 | 29 | 12.34 | 4.202 | 1.920–9.198 | <0.001 | |
Baseline health status | |||||||
Overall overweight/Obesity | 0.604 | ||||||
Yes | 301 | 30 | 9.97 | 2.842 | 1.318–6.129 | 0.008 | |
No | 184 | 17 | 9.24 | 2.811 | 0.987–8.006 | 0.053 | |
Diabetes | 0.376 | ||||||
Yes | 279 | 30 | 10.75 | 1.810 | 0.804–4.076 | 0.152 | |
No | 206 | 17 | 8.25 | 4.195 | 1.514–11.623 | 0.006 | |
Hypertension | 0.429 | ||||||
Yes | 388 | 41 | 10.57 | 2.860 | 1.488–5.498 | 0.002 | |
No | 97 | 6 | 6.19 | 1.126 | 0.164–7.746 | 0.904 | |
Dyslipidemia | 0.384 | ||||||
Yes | 390 | 34 | 8.72 | 2.253 | 1.087–4.669 | 0.029 | |
No | 95 | 13 | 13.68 | 4.520 | 1.432–14.272 | 0.010 | |
Coronary heart disease | 0.314 | ||||||
Yes | 328 | 36 | 10.98 | 2.102 | 1.034–4.272 | 0.040 | |
No | 157 | 11 | 7.01 | 4.406 | 1.174–16.532 | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Sang, K.; Chen, C.; Lian, L.; Wang, K.; Zhang, Y.; Wang, X.; Zhou, Q.; Deng, H.; Yang, B. Prognostic Nutritional Index and Major Cardiovascular Events in Patients Undergoing Invasive Coronary Angiography: A Clinical Retrospective Study. J. Pers. Med. 2022, 12, 1679. https://doi.org/10.3390/jpm12101679
Hu X, Sang K, Chen C, Lian L, Wang K, Zhang Y, Wang X, Zhou Q, Deng H, Yang B. Prognostic Nutritional Index and Major Cardiovascular Events in Patients Undergoing Invasive Coronary Angiography: A Clinical Retrospective Study. Journal of Personalized Medicine. 2022; 12(10):1679. https://doi.org/10.3390/jpm12101679
Chicago/Turabian StyleHu, Xiang, Kanru Sang, Chen Chen, Liyou Lian, Kaijing Wang, Yaozhang Zhang, Xuedong Wang, Qi Zhou, Huihui Deng, and Bo Yang. 2022. "Prognostic Nutritional Index and Major Cardiovascular Events in Patients Undergoing Invasive Coronary Angiography: A Clinical Retrospective Study" Journal of Personalized Medicine 12, no. 10: 1679. https://doi.org/10.3390/jpm12101679
APA StyleHu, X., Sang, K., Chen, C., Lian, L., Wang, K., Zhang, Y., Wang, X., Zhou, Q., Deng, H., & Yang, B. (2022). Prognostic Nutritional Index and Major Cardiovascular Events in Patients Undergoing Invasive Coronary Angiography: A Clinical Retrospective Study. Journal of Personalized Medicine, 12(10), 1679. https://doi.org/10.3390/jpm12101679