Daily Physical Activity in Asthma and the Effect of Mepolizumab Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical Assessment
2.3. Monitoring of Daily Physical Activity
2.4. Physical Activity Guidelines
2.5. Statistical Analysis
3. Results
3.1. Study Flow
3.2. Patient Characteristics
3.3. Daily Physical Activity
3.4. Compliance with Physical Activity Guidelines
3.5. The Effect of Mepolizumab Therapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2022. Available online: www.Ginasthma.org (accessed on 15 August 2022).
- The Global Asthma Report 2018; Global Asthma Network: Auckland, New Zealand, 2018.
- Asher, M.I.; García-Marcos, L.; Pearce, N.E.; Strachan, D.P. Trends in worldwide asthma prevalence. Eur. Respir. J. 2020, 56, 2002094. [Google Scholar] [CrossRef] [PubMed]
- Panagiotou, M.; Koulouris, N.G.; Rovina, N. Physical Activity: A Missing Link in Asthma Care. J. Clin. Med. 2020, 9, 706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordova-Rivera, L.; Gibson, P.; Gardiner, P.A.; Powell, H.; McDonald, V.M. Physical Activity and Exercise Capacity in Severe Asthma: Key Clinical Associations. J. Allergy Clin. Immunol. Pract. 2018, 6, 814–822. [Google Scholar] [CrossRef]
- Cordova-Rivera, L.; Gibson, P.; Gardiner, P.A.; McDonald, V.M. A Systematic Review of Associations of Physical Activity and Sedentary Time with Asthma Outcomes. J. Allergy Clin. Immunol. Pract. 2018, 6, 1968–1981.e2. [Google Scholar] [CrossRef]
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International Ers/Ats Guidelines on Definition, Evaluation and Treatment of Severe Asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santus, P.; Saad, M.; Damiani, G.; Patella, V.; Radovanovic, D. Current and future targeted therapies for severe asthma: Managing treatment with biologics based on phenotypes and biomarkers. Pharmacol. Res. 2019, 146, 104296. [Google Scholar] [CrossRef] [PubMed]
- Chupp, G.L.; Bradford, E.S.; Albers, F.C.; Bratton, D.J.; Wang-Jairaj, J.; Nelsen, L.M.; Trevor, J.L.; Magnan, A.; Brinke, A.T. Efficacy of Mepolizumab Add-on Therapy on Health-Related Quality of Life and Markers of Asthma Control in Severe Eosinophilic Asthma (Musca): A Randomised, Double-Blind, Placebo-Controlled, Parallel-Group, Multicentre, Phase 3b Trial. Lancet Respir. Med. 2017, 5, 390–400. [Google Scholar] [CrossRef]
- Bermejo, I.; Stevenson, M.; Cooper, K.; Harnan, S.; Hamilton, J.; Clowes, M.; Carroll, C.; Harrison, T.; Saha, S. Mepolizumab for Treating Severe Eosinophilic Asthma: An Evidence Review Group Perspective of a Nice Single Technology Appraisal. Pharmacoeconomics 2018, 36, 131–144. [Google Scholar] [CrossRef]
- Holguin, F.; Cardet, J.C.; Chung, K.F.; Diver, S.; Ferreira, D.S.; Fitzpatrick, A.; Gaga, M.; Kellermeyer, L.; Khurana, S.; Knight, S.; et al. Management of Severe Asthma: A European Respiratory Society/American Thoracic Society Guideline. Eur. Respir. J. 2020, 55, 1900588. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, B.; Kamsma, Y.; Zijlstra, W. Detection of gait and postures using a miniaturised triaxial accelerometer-based system: Accuracy in community-dwelling older adults. Age Ageing 2010, 39, 259–262. [Google Scholar] [CrossRef]
- van Hees, V.T.; van Lummel, R.C.; Westerterp, K.R. Estimating Activity-Related Energy Expenditure under Sedentary Conditions Using a Tri-Axial Seismic Accelerometer. Obesity 2009, 17, 1287–1292. [Google Scholar] [CrossRef] [PubMed]
- de Groot, S.; Nieuwenhuizen, M.G. Validity and Reliability of Measuring Activities, Movement Intensity and Energy Expenditure with the Dynaport Movemonitor. Med. Eng. Phys. 2013, 35, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Storm, F.A.; Heller, B.W.; Mazzà, C. Step Detection and Activity Recognition Accuracy of Seven Physical Activity Monitors. PLoS ONE 2015, 10, e0118723. [Google Scholar]
- Rabinovich, R.A.; Louvaris, Z.; Raste, Y.; Langer, D.; van Remoortel, H.; Giavedoni, S.; Burtin, C.; Regueiro, E.M.; Vogiatzis, I.; Hopkinson, N.S.; et al. Validity of Physical Activity Monitors during Daily Life in Patients with Copd. Eur. Respir. J. 2013, 42, 1205–1215. [Google Scholar] [CrossRef] [Green Version]
- Van Remoortel, H.; Raste, Y.; Louvaris, Z.; Giavedoni, S.; Burtin, C.; Langer, D.; Wilson, F.; Rabinovich, R.; Vogiatzis, I.; Hopkinson, N.S.; et al. Validity of Six Activity Monitors in Chronic Obstructive Pulmonary Disease: A Comparison with Indirect Calorimetry. PLoS ONE 2012, 7, e39198. [Google Scholar] [CrossRef] [Green Version]
- van Schooten, K.S.; van Dieen, J.H.; Pijnappels, M.; Maier, A.B.; van’t Hul, A.J.; Niessen, M.; van Lummel, R.C. The Association between Age and Accelerometry-Derived Types of Habitual Daily Activity: An Observational Study over the Adult Life Span in the Netherlands. BMC Public Health 2018, 18, 824. [Google Scholar] [CrossRef]
- van Schooten, K.S.; Rispens, S.M.; Elders, P.J.; Lips, P.; van Dieen, J.H.; Pijnappels, M. Assessing Physical Activity in Older Adults: Required Days of Trunk Accelerometer Measurements for Reliable Estimation. J. Aging Phys. Act. 2015, 23, 9–17. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- World Health Organisation, Global Physical Activity Questionnaire (Gpaq) Analysis Guide. Available online: https://cdn.who.int/media/docs/default-source/ncds/ncd-surveillance/gpaq-analysis-guide.pdf?sfvrsn=1e83d571_2 (accessed on 15 August 2022).
- Jakicic, J.M.; Kraus, W.E.; Powell, K.E.; Campbell, W.W.; Janz, K.F.; Troiano, R.; Sprow, K.; Torres, A.; Piercy, K.L. Association between Bout Duration of Physical Activity and Health: Systematic Review. Med. Sci. Sports Exerc. 2019, 51, 1213–1219. [Google Scholar] [CrossRef]
- Millard, L.A.C.; Tilling, K.; Gaunt, T.R.; Carslake, D.; Lawlor, D.A. Association of Physical Activity Intensity and Bout Length with Mortality: An Observational Study of 79,503 Uk Biobank Participants. PLoS Med. 2021, 18, e1003757. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Troiano, R.P.; Matthews, C.E.; Kraus, W.E. Moderate-to-Vigorous Physical Activity and All-Cause Mortality: Do Bouts Matter? J. Am. Heart Assoc. 2018, 7, e03713. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Nair, P. Autoimmune Responses in Severe Asthma. Allergy Asthma Immunol. Res. 2018, 10, 428–447. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Lim, H.F.; Thomas, S.; Miller, D.; Kjarsgaard, M.; Tan, B.; Sehmi, R.; Khalidi, N.; Nair, P. Airway Autoimmune Responses in Severe Eosinophilic Asthma Following Low-Dose Mepolizumab Therapy. Allergy Asthma Clin. Immunol. 2017, 13, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schatz, M.; Kosinski, M.; Yarlas, A.S.; Hanlon, J.; Watson, M.E.; Jhingran, P. The minimally important difference of the Asthma Control Test. J. Allergy Clin. Immunol. 2009, 124, 719–723.e1. [Google Scholar] [CrossRef]
- Jones, P.W. Interpreting thresholds for a clinically significant change in health status in asthma and COPD. Eur. Respir. J. 2002, 19, 398–404. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, J.; Ferrari, G.; Rey-Lopez, J.P.; Rezende, L.F.M. Association of Physical Activity Intensity with Mortality: A National Cohort Study of 403681 Us Adults. JAMA Intern. Med. 2021, 181, 203–211. [Google Scholar] [CrossRef]
- Kyu, H.H.; Bachman, V.F.; Alexander, L.T.; Mumford, J.E.; Afshin, A.; Estep, K.; Veerman, J.L.; Delwiche, K.; Iannarone, M.L.; Moyer, M.L.; et al. Physical Activity and Risk of Breast Cancer, Colon Cancer, Diabetes, Ischemic Heart Disease, and Ischemic Stroke Events: Systematic Review and Dose-Response Meta-Analysis for the Global Burden of Disease Study 2013. BMJ 2016, 354, i3857. [Google Scholar] [CrossRef] [Green Version]
- Tudor-Locke, C.; Craig, C.L.; Thyfault, J.; Spence, J.C. A step-defined sedentary lifestyle index: <5000 steps/day. Appl. Physiol. Nutr. Metab. 2013, 38, 100–114. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Hatano, Y.; Pangrazi, R.P.; Kang, M. Revisiting “How Many Steps Are Enough?”. Med. Sci. Sports Exerc. 2008, 40 (Suppl. S7), S537–S543. [Google Scholar] [CrossRef] [Green Version]
- Paluch, A.E.; Bajpai, S.; Bassett, D.R.; Carnethon, M.R.; Ekelund, U.; Evenson, K.R.; Galuska, D.A.; Jefferis, B.J.; Kraus, W.E.; Lee, I.-M.; et al. Daily steps and all-cause mortality: A meta-analysis of 15 international cohorts. Lancet Public Health 2022, 7, e219–e228. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Loenneke, J.P.; Ahmed, H.; Blaha, M.J. Joint effects of objectively-measured sedentary time and physical activity on all-cause mortality. Prev. Med. 2016, 90, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Choi, J.W. Changes in the Frequency of Moderate-to-Vigorous Physical Activity and Subsequent Risk of All-Cause and Cardiovascular Disease Mortality. Int. J. Environ. Res. Public Health 2022, 19, 504. [Google Scholar] [CrossRef] [PubMed]
- Sheng, M.; Yang, J.; Bao, M.; Chen, T.; Cai, R.; Zhang, N.; Chen, H.; Liu, M.; Wu, X.; Zhang, B.; et al. The Relationships between Step Count and All-Cause Mortality and Cardiovascular Events: A Dose-Response Meta-Analysis. J. Sport Health Sci. 2021, 10, 620–628. [Google Scholar] [CrossRef] [PubMed]
- UK Chief Medical Officers’ Physical Activity Guidelines. 2019. Available online: https://www.gov.uk/Government/Publications/Physical-Activity-Guidelines-Uk-Chief-Medical-Officers-Report (accessed on 15 August 2022).
- Demeyer, H.; Burtin, C.; Hornikx, M.; Camillo, C.A.; van Remoortel, H.; Langer, D.; Janssens, W.; Troosters, T. The Minimal Important Difference in Physical Activity in Patients with Copd. PLoS ONE 2016, 11, e0154587. [Google Scholar] [CrossRef] [Green Version]
- Carpagnano, G.E.; Sessa, F.; Scioscia, G.; Lacedonia, D.; Foschino, M.P.; Venuti, M.; Triggiani, A.I.; Valenzano, A.; Resta, O.; Cibelli, G.; et al. Physical Activity as a New Tool to Evaluate the Response to Omalizumab and Mepolizumab in Severe Asthmatic Patients: A Pilot Study. Front. Pharmacol. 2020, 10, 1630. [Google Scholar] [CrossRef]
- Louvaris, Z.; Kortianou, E.A.; Spetsioti, S.; Vasilopoulou, M.; Nasis, I.; Asimakos, A.; Zakynthinos, S.; Vogiatzis, I. Intensity of Daily Physical Activity Is Associated with Central Hemodynamic and Leg Muscle Oxygen Availability in Copd. J. Appl. Physiol. 2013, 115, 794–802. [Google Scholar] [CrossRef] [Green Version]
- Kortianou, E.A.; Aliverti, A.; Louvaris, Z.; Vasilopoulou, M.; Nasis, I.; Asimakos, A.; Zakynthinos, S.; Vogiatzis, I. Limitation in Tidal Volume Expansion Partially Determines the Intensity of Physical Activity in Copd. J. Appl. Physiol. 2015, 118, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Vorrink, S.N.; Kort, H.S.; Troosters, T.; Lammers, J.-W.J. Level of daily physical activity in individuals with COPD compared with healthy controls. Respir. Res. 2011, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Burge, A.T.; Cox, N.S.; Abramson, M.J.; Holland, A.E. Interventions for promoting physical activity in people with chronic obstructive pulmonary disease (COPD). Cochrane Database Syst. Rev. 2020, 2020, CD012626. [Google Scholar] [CrossRef]
- Hennegrave, F.; Le Rouzic, O.; Fry, S.; Behal, H.; Chenivesse, C.; Wallaert, B. Factors associated with daily life physical activity in patients with asthma. Health Sci. Rep. 2018, 1, e84. [Google Scholar] [CrossRef] [Green Version]
- van’t Hul, A.J.; Frouws, S.; van den Akker, E.; van Lummel, R.; Starrenburg-Razenberg, A.; van Bruggen, A.; Braunstahl, G.J.; Veen, J.C.I. Decreased Physical Activity in Adults with Bronchial Asthma. Respir. Med. 2016, 114, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Bahmer, T.; Waschki, B.; Schatz, F.; Herzmann, C.; Zabel, P.; Kirsten, A.-M.; Rabe, K.F.; Watz, H. Physical activity, airway resistance and small airway dysfunction in severe asthma. Eur. Respir. J. 2016, 49, 1601827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordova-Rivera, L.; Gibson, P.G.; Gardiner, P.A.; McDonald, V.M. Physical Activity Associates with Disease Characteristics of Severe Asthma, Bronchiectasis and Copd. Respirology 2019, 24, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Neale, J.; Orme, M.W.; Majd, S.; Chantrell, S.; Singh, S.J.; Bradding, P.; Green, R.H.; Evans, R.A. A comparison of daily physical activity profiles between adults with severe asthma and healthy controls. Eur. Respir. J. 2020, 56, 1902219. [Google Scholar] [CrossRef]
- Stockwell, S.; Trott, M.; Tully, M.; Shin, J.; Barnett, Y.; Butler, L.; McDermott, D.; Schuch, F.; Smith, L. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc. Med. 2021, 7, e000960. [Google Scholar] [CrossRef]
- Puccinelli, P.J.; da Costa, T.S.; Seffrin, A.; de Lira, C.A.B.; Vancini, R.L.; Nikolaidis, P.T.; Knechtle, B.; Rosemann, T.; Hill, L.; Andrade, M.S. Correction To: Reduced Level of Physical Activity During COVID-19 Pandemic Is Associated with Depression and Anxiety Levels: An Internet-Based Survey. BMC Public Health 2021, 21, 613. [Google Scholar] [CrossRef]
All (n = 36) | Mild-to-Moderate Asthma (n = 15) | Severe Asthma (n = 21) | p | |
---|---|---|---|---|
Sex, F/M | 29/7 | 11/4 | 18/3 | 0.362 |
Age | 49.8 ± 14.8 | 45.1 ± 16.5 | 53.1 ± 12.8 | 0.172 |
BMI (Kg/m2) | 29.3 ± 6.8 | 27.7 ± 4.6 | 30.3 ± 7.9 | 0.238 |
FEV1 (L) | 2.4 ± 1.1 | 3.1 ± 1.17 | 1.9 ± 0.8 | <0.001 |
FEV1% predicted | 83.4 ± 26.4 | 96.1 ± 19.2 | 73.9 ± 27.4 | 0.006 |
FEV1/FVC ratio | 0.74 ± 1.5 | 0.79 ± 0.1 | 0.70 ± 0.2 | 0.084 |
Therapy | ||||
ICS/LABA | 36 | 15 | 21 | N/A |
LAMA | 20 | 1 | 19 | N/A |
Montelukast | 22 | 7 | 15 | N/A |
OCS | 2 | 0 | 2 | N/A |
Omalizumab | 2 | 0 | 2 | N/A |
ACT score | 20 (9) | 25 (4) | 15 (5) | <0.001 |
SGRQ score | 30.8 (44.1) | 58.8 (34.5) | 12.6 (10.8) | <0.001 |
All (n = 36) | Mild-to-Moderate Asthma (n = 15) | Severe Asthma (n = 21) | p | |
---|---|---|---|---|
Daily step count | 7806 ± 3823 | 8209 ± 3815 | 7518 ± 3896 | 0.558 |
Daily time in MVPA (min) | 123 (63) | 133(64) | 97 (70) | 0.505 |
Daily MVPA volume (MET·min) | 657 ± 255 | 618 ± 244 | 547 ± 266 | 0.553 |
Daily Movement Intensity (m/s2) | 1.96 (0.45) | 2.09(0.46) | 1.72 (0.50) | 0.083 |
Daily moving time (min) | 94 ± 43 | 98 ± 44 | 91 ± 43 | 0.630 |
Patients met recommendations for weekly time in moderate activity [min/week] [20] | 36; 100% [745 (392)] | 15; 100% [742 (357)] | 21; 100% [777 (389)] | 1 |
Patients met recommendations for weekly time in vigorous activity [min/week] [20] | 15; 41% [70 (137)] | 8; 53% [126 (168)] | 8; 38% [28 (112)] | 0.464 |
Patients met recommendations for weekly MVPA volume [MET·min] [20,21] | 36; 100% [4034 ± 1791] | 15; 100% [4323 ± 1707] | 21; 100 [3828 ± 2651] | 1 |
Study | Sample Size | Accelerometer (Position) | Daily Step Count | Daily Time in MVPA | Daily Step Count Associations |
---|---|---|---|---|---|
Bahmer et al. [46] | 63 | SenseWear Pro Armband (upper arm) | 6174 (4822–9277) | 125 (68–172) | Impulse oscillometric airway resistance and small airway dysfunction |
Cordova-Rivera et al. [5] | 61 | ActiGraph wGT3X-BT (over dominant hip) | 5362 (3999–7817) | 22 (13–38) | 6MWD, ACT score, FEV1, hs-CRP |
Cordova-Rivera et al. [47] | 62 | ActiGraph wGT3X-BT (over dominant hip) | 5385 (3941–7844) | 22 (13–35) | 6MWD, FEV1% pred., dyspnoea, hs-CRP, eosinophils% |
Carpagnano et al. [39] | 40 | SenseWear Pro Armband (upper arm) | 3806 ± 421 | N/A | |
Hennegrave et al. [44] | 23 | SenseWear Pro Armband (upper arm) | 6560 ± 3915 | 120 ± 54 | Age, anxiety, FEV1 |
Neale et al. [48] | 48 | SenseWear Pro3 Armband (upper arm) | 5183 ± 2935 | 44 ± 46 | EQ-5D-3L, AQLQ score, CRQ score |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panagiotou, M.; Koulouris, N.; Koutsoukou, A.; Rovina, N. Daily Physical Activity in Asthma and the Effect of Mepolizumab Therapy. J. Pers. Med. 2022, 12, 1692. https://doi.org/10.3390/jpm12101692
Panagiotou M, Koulouris N, Koutsoukou A, Rovina N. Daily Physical Activity in Asthma and the Effect of Mepolizumab Therapy. Journal of Personalized Medicine. 2022; 12(10):1692. https://doi.org/10.3390/jpm12101692
Chicago/Turabian StylePanagiotou, Marios, Nikolaos Koulouris, Antonia Koutsoukou, and Nikoletta Rovina. 2022. "Daily Physical Activity in Asthma and the Effect of Mepolizumab Therapy" Journal of Personalized Medicine 12, no. 10: 1692. https://doi.org/10.3390/jpm12101692
APA StylePanagiotou, M., Koulouris, N., Koutsoukou, A., & Rovina, N. (2022). Daily Physical Activity in Asthma and the Effect of Mepolizumab Therapy. Journal of Personalized Medicine, 12(10), 1692. https://doi.org/10.3390/jpm12101692