The Current State of Donor-Derived Cell-Free DNA Use in Allograft Monitoring in Kidney Transplantation
Abstract
:1. Introduction
1.1. History of ddcfDNA in Kidney Transplantation
1.2. Overview of Commercially Available ddcfDNA Tests
2. Current Uses
Limitations to Current Use
3. Future Directions
3.1. Monitoring Response to Treatment for Chronic Rejection
3.2. Facilitating Transition of Immunosuppression Regimens
3.3. Identifying Graft Immuno-Quiescence
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiebe, C.; Rush, D.N.; Gibson, I.W.; Pochinco, D.; Birk, P.E.; Goldberg, A.; Blydt-Hansen, T.; Karpinski, M.; Shaw, J.; Ho, J.; et al. Evidence for the alloimmune basis and prognostic significance of Borderline T cell-mediated rejection. Am. J. Transplant. 2020, 20, 2499–2508. [Google Scholar] [CrossRef] [PubMed]
- Starzl, T.E.; Marchioro, T.L.; Waddell, W.R. The reversal of rejection in human renal homografts with subsequent development of homograft tolerance. Surg. Gynecol. Obstet. 1963, 117, 385–395. [Google Scholar] [PubMed]
- Starzl, T.E.; Demetris, A.J.; Murase, N.; Ildstad, S.; Ricordi, C.; Trucco, M. Cell migration, chimerism, and graft acceptance. Lancet 1992, 339, 1579–1582. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.M.; Tein, M.S.; Pang, C.C.; Yeung, C.K.; Tong, K.L.; Hjelm, N.M. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet 1998, 351, 1329–1330. [Google Scholar] [CrossRef]
- Gadi, V.K.; Nelson, J.L.; Boespflug, N.D.; Guthrie, K.A.; Kuhr, C.S. Soluble donor DNA concentrations in recipient serum correlate with pancreas-kidney rejection. Clin. Chem. 2006, 52, 379–382. [Google Scholar] [CrossRef] [Green Version]
- Snyder, T.M.; Khush, K.K.; Valantine, H.A.; Quake, S.R. Universal noninvasive detection of solid organ transplant rejection. Proc. Natl. Acad. Sci. USA 2011, 108, 6229–6234. [Google Scholar] [CrossRef] [Green Version]
- Schmutz, J.; Wheeler, J.; Grimwood, J.; Dickson, M.; Yang, J.; Caoile, C.; Bajorek, E.; Black, S.; Chan, Y.M.; Denys, M.; et al. Quality assessment of the human genome sequence. Nature 2004, 429, 365–368. [Google Scholar] [CrossRef] [Green Version]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Sharon, E.; Shi, H.; Kharbanda, S.; Koh, W.; Martin, L.R.; Khush, K.K.; Valantine, H.; Pritchard, J.K.; De Vlaminck, I. Quantification of transplant-derived circulating cell-free DNA in absence of a donor genotype. PLoS Comput. Biol. 2017, 13, e1005629. [Google Scholar] [CrossRef] [Green Version]
- Grskovic, M.; Hiller, D.J.; Eubank, L.A.; Sninsky, J.J.; Christopherson, C.; Collins, J.P.; Thompson, K.; Song, M.; Wang, Y.S.; Ross, D.; et al. Validation of a Clinical-Grade Assay to Measure Donor-Derived Cell-Free DNA in Solid Organ Transplant Recipients. J. Mol. Diagn. 2016, 18, 890–902. [Google Scholar] [CrossRef]
- DD-Cfdna Test for Detection of Kidney Transplant Injury: Allosure Kidney. CareDx. Available online: https://caredx.com/products-and-services/transplant-services/kidney/allosure/ (accessed on 22 September 2022).
- Prospera Overview. Natera. Available online: https://www.natera.com/organ-health/prospera-organ-transplantation-assessment/ (accessed on 27 June 2022).
- 30876—Viracor Trac® Kidney DD-Cfdna: Clinical: Eurofins-Viracor. Eurofins. Available online: https://www.eurofins-viracor.com/clinical/test-menu/30876-viracor-trac-kidney-dd-cfdna/ (accessed on 22 September 2022).
- Roufosse, C.; Simmonds, N.; Clahsen-van Groningen, M.; Haas, M.; Henriksen, K.J.; Horsfield, C.; Loupy, A.; Mengel, M.; Perkowska-Ptasińska, A.; Rabant, M.; et al. A 2018 reference guide to the Banff classification to renal allograft pathology. Transplantation 2018, 102, 1795–1814. [Google Scholar] [CrossRef] [PubMed]
- Bloom, R.D.; Bromberg, J.S.; Poggio, E.D.; Bunnapradist, S.; Langone, A.J.; Sood, P.; Matas, A.J.; Mehta, S.; Mannon, R.B.; Sharfuddin, A.; et al. Cell-Free DNA and Active Rejection in Kidney Allografts. J. Am. Soc. Nephrol. 2017, 28, 2221–2232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigdel, T.K.; Archila, F.A.; Constantin, T.; Prins, S.A.; Liberto, J.; Damm, I.; Towfighi, P.; Navarro, S.; Kirkizlar, E.; Demko, Z.P.; et al. Optimizing Detection of Kidney Transplant Injury by Assessment of Donor-Derived Cell-Free DNA via Massively Multiplex PCR. J. Clin. Med. 2018, 8, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bixler, E. Donor-Derived Cell-Free DNA: Clinical Applications for the Diagnosis of Rejection; Viracor-Eurofin Clinical Diagnostics: Lees Summit, MO, USA, 2020. [Google Scholar]
- Halloran, P.F.; Reeve, J.; Madill-Thomsen, K.S.; Kaur, N.; Ahmed, E.; Cantos, C.; Al Haj Baddar, N.; Demko, Z.; Liang, A.; Swenerton, R.K.; et al. Combining Donor-derived Cell-free DNA Fraction and Quantity to Detect Kidney Transplant Rejection Using Molecular Diagnoses and Histology as Confirmation. Transplantation 2022. [Google Scholar] [CrossRef] [PubMed]
- Qazi, Y.; Patel, A.; Fajardo, M.; McCormick, S.; Fehringer, G.; Ahmed, E.; Malhotra, M.; Demko, Z.P.; Billings, P.R.; Tabriziani, H.; et al. Incorporation of Donor-derived Cell-free DNA Into Clinical Practice for Renal Allograft Management. Transplant. Proc. 2021, 53, 2866–2872. [Google Scholar] [CrossRef]
- Jordan, S.C.; Bunnapradist, S.; Bromberg, J.S.; Langone, A.J.; Hiller, D.; Yee, J.P.; Sninsky, J.J.; Woodward, R.N.; Matas, A.J. Donor-derived Cell-free DNA Identifies Antibody-mediated Rejection in Donor Specific Antibody Positive Kidney Transplant Recipients. Transplant. Direct. 2018, 4, e379. [Google Scholar] [CrossRef]
- Huang, E.; Sethi, S.; Peng, A.; Najjar, R.; Mirocha, J.; Haas, M.; Vo, A.; Jordan, S.C. Early clinical experience using donor-derived cell-free DNA to detect rejection in kidney transplant recipients. Am. J. Transplant. 2019, 19, 1663–1670. [Google Scholar] [CrossRef]
- Park, S.; Guo, K.; Heilman, R.L.; Poggio, E.D.; Taber, D.J.; Marsh, C.L.; Kurian, S.M.; Kleiboeker, S.; Weems, J.; Holman, J.; et al. Combining Blood Gene Expression and Cellfree DNA to Diagnose Subclinical Rejection in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2021, 16, 1539–1551. [Google Scholar] [CrossRef]
- Gielis, E.M.; Ledeganck, K.J.; De Winter, B.Y.; Del Favero, J.; Bosmans, J.L.; Claas, F.H.; Abramowicz, D.; Eikmans, M. Cell-Free DNA: An Upcoming Biomarker in Transplantation. Am. J. Transplant. 2015, 15, 2541–2551. [Google Scholar] [CrossRef] [Green Version]
- Melancon, J.K.; Khalil, A.; Lerman, M.J. Donor-Derived Cell Free DNA: Is It All the Same? Kidney360 2020, 1, 1118–1123. [Google Scholar] [CrossRef]
- Lawrence, E.L.; Nieves-Borrero, K.; Homkrailas, P.; Lee, S.; Danovitch, G.; Bunnapradist, S. Single center experience comparing two clinically available donor derived cell free DNA tests and review of literature. Transplant. Rep. 2021, 6, 100079. [Google Scholar]
- Stegall, M.D.; Gaston, R.S.; Cosio, F.G.; Matas, A. Through a glass darkly: Seeking clarity in preventing late kidney transplant failure. J. Am. Soc. Nephrol. 2015, 26, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goussous, N.; Xie, W.; Dawany, N.; Scalea, J.R.; Bartosic, A.; Haririan, A.; Kalil, R.; Drachenberg, C.; Costa, N.; Weir, M.R.; et al. Donor-derived Cell-free DNA in Infections in Kidney Transplant Recipients: Case Series. Transplant Direct. 2020, 6, e568. [Google Scholar] [CrossRef] [PubMed]
- Kant, S.; Bromberg, J.; Haas, M.; Brennan, D. Donor-derived Cell-free DNA and the Prediction of BK Virus-associated Nephropathy. Transplant. Direct. 2020, 6, e622. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Lopez-Verdugo, F.; Sanchez-Garcia, J.; Dong, L.; Fife, M.; Krong, J.; Morris, D.; Srinivas, T.R. Longitudinal variance of Donor-Derived Cell-Free DNA (dd-cfDNA) in Stable Kidney Transplant (KTx) patients are influenced by donor/recipient variables. Clin. Transplant. 2021, 35, e14395. [Google Scholar] [CrossRef] [PubMed]
- Sureshkumar, K.K.; Aramada, H.R.; Chopra, B. Impact of body mass index and recipient age on baseline donor-derived cell free DNA (dd-cfDNA) in kidney transplant recipients. Clin. Transplant. 2020, 34, e14101. [Google Scholar] [CrossRef]
- Bromberg, J.S.; Brennan, D.C.; Poggio, E.; Bunnapradist, S.; Langone, A.; Sood, P.; Matas, A.J.; Mannon, R.B.; Mehta, S.; Sharfuddin, A.; et al. Biological Variation of Donor-Derived Cell-Free DNA in Renal Transplant Recipients: Clinical Implications. J. Appl. Lab. Med. 2017, 2, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Hinojosa, R.J.; Chaffin, K.; Gillespie, M.; Villarreal, V.H., Jr. Donor-derived Cell-free DNA May Confirm Real-time Response to Treatment of Acute Rejection in Renal Transplant Recipients. Transplantation 2019, 103, e61. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Rostaing, L.; Grinyo, J.; Rice, K.; Steinberg, S.; Gaite, L.; Moal, M.C.; Mondragon-Ramirez, G.A.; Kothari, J.; Polinsky, M.S.; et al. Belatacept and Long-Term Outcomes in Kidney Transplantation. N. Engl. J. Med. 2016, 374, 333–343, Erratum in: N. Engl. J. Med. 2016, 374, 698. [Google Scholar] [CrossRef]
AlloSure (CareDx) | Prospera (Natera) | TRAC (Viracor Eurofins) | |
---|---|---|---|
Initial Validation Cohort | DART (NCT01299168, 2015–2016) [15] prospective 14 sites 102 patients | UCSF biobank (pre-2018) * [16] retrospective 1 site 178 patients | Undisclosed biobank (pre-2020) ** [17] retrospective 1 site 25 patients |
Calibration Standard | Histopathology (BPR) | Histopathology (BPR) | Histopathology (BPR) |
Targeted diagnosis | Acute rejection (AMR > TCR) | Acute rejection (AMR > TCR) | Acute rejection (AMR > TCR) |
Suggested threshold | 1% | 1% | 0.7% |
Reported sensitivity, specificity | 59%, 85% | 89%, 73% | 58%, 85% |
NPV, PPV *** | 84%, 61% | 95%, 52% | 86%, 55% |
Potential false positive rate *** | 15% | 27% | 15% |
Study Name and Design | Institution | Cohort | Exclusion Criteria | Primary Outcome | Secondary Outcome | Expected Results * |
---|---|---|---|---|---|---|
Kidney Allograft Outcomes Registry—NCT03326076 (Prospective Observational) | CareDx sponsored Multicenter | 4000 participants (18 years and older); planned surveillance biopsy vs unplanned surveillance biopsy | Multi-organ and bone marrow transplant recipient, identical twin organ recipient, pregnant, less than 14 days post-transplant | Biopsy-proven incidence of interstitial fibrosis/tubular atrophy, total number of biopsies—surveillance and diagnostic | Biopsy-proven transplant glomerulopathy, patient and graft survival, serum creatinine, eGFR, sensitivity and specificity of Allosure, NPV and PPV of Allosure, validation of KidneyCare | 12/2025 |
Trifecta-Kidney cfDNA-MMDx Study—NCT04239703 (Prospective Observational) | University of Alberta—Natera, Inc, One Lambda | 300 participants (all ages) | Multi-organ recipients | ddcfDNA measurements for TCMR, ABMR, AKI, CKI | DSA measurements, Renal Biopsy Results | 12/2024; currently recruiting |
Blood Biomarkers in Pediatric Kidney Transplant Recipients (Omnigraf)—NCT05477082 (Prospective Observational) | University of Minnesota | 30 participants (up to 21 years) | - | Incidence of biopsy-proven ABMR; serum Creatinine | - | 12/2023 |
Study for the Prediction of Active Rejection in Organs Using Donor-derived Cell-free DNA Detection (SPARO)—NCT03984747 (Prospective Observational) | Natera, Inc; Multicenter | 500 participants (2 years and older); adult vs pediatric vs pregnant population | Identical twin organ recipient | Incidence of allograft rejection based on biopsy | cfDNA measurements | 10/2028 |
Dd-cdDNA and Treg in Prediction of Kidney Transplant Acute Rejection—NCT05084768 (Prospective Observational) | Loma Linda University | 150 participants (18 years and older); Rejection vs No Rejection groups | Multi-organ transplant recipient, +HIV, +HCV | Incidence of biopsy-proven ABMR | Incidence of graft failure | 10/2026 |
Noninvasive Blood Test to Diagnose Acute Rejection After Kidney Transplantation (DART)—NCT02424227 (Prospective Observational) | CareDx sponsored Multicenter | 401 participants (18 years and older) | Pregnant, multi-organ transplants, identical twin organ recipient | Incidence of ABMR, TCMR—clinical and subclinical | Serum GFR, allograft injury from BKV nephritis, CNI toxicity, Acute Pyelonephritis, Recurrent Disease | Completed 01/2019; no published results |
Study for detection of donor-derived cell-free DNA after renal transplantation using Devysers NGS-based chimerism assay—NCT05226936 (Prospective Observational) | Sheba Medical Center | 50 participants (20–70 years) | Multi-organ transplant recipient, graft loss within 3 months, enrolled in other study | Degree of chimerism of cd-DNA | - | 03/2024; not yet recruiting |
Donor-derived cell-free DNA for early diagnosis of antibody-mediated rejection—NCT04897438 (Randomized Interventional) | Charite University, Berlin, Germany | 40 participants (18 or older) | Pregnant, coagulopathy, multi-organ transplantation, previous history of biopsy-proven ABMR, enrolled in another study | Time from DSA to biopsy-proven rejection, time from start of study to rejection | Sensitivity, specificity, ROC analysis of ddcfDNA for ABMR detection; GFR, albuminuria, mortality, severe infection, graft failure at 12 and 24 months, morbidity from biopsy, rate of ABMR, DSA at 0,12,24 months, immunosuppressive regimen | 09/2024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kueht, M.L.; Dongur, L.P.; Cusick, M.; Stevenson, H.L.; Mujtaba, M. The Current State of Donor-Derived Cell-Free DNA Use in Allograft Monitoring in Kidney Transplantation. J. Pers. Med. 2022, 12, 1700. https://doi.org/10.3390/jpm12101700
Kueht ML, Dongur LP, Cusick M, Stevenson HL, Mujtaba M. The Current State of Donor-Derived Cell-Free DNA Use in Allograft Monitoring in Kidney Transplantation. Journal of Personalized Medicine. 2022; 12(10):1700. https://doi.org/10.3390/jpm12101700
Chicago/Turabian StyleKueht, Michael L., Laxmi Priya Dongur, Matthew Cusick, Heather L. Stevenson, and Muhammad Mujtaba. 2022. "The Current State of Donor-Derived Cell-Free DNA Use in Allograft Monitoring in Kidney Transplantation" Journal of Personalized Medicine 12, no. 10: 1700. https://doi.org/10.3390/jpm12101700
APA StyleKueht, M. L., Dongur, L. P., Cusick, M., Stevenson, H. L., & Mujtaba, M. (2022). The Current State of Donor-Derived Cell-Free DNA Use in Allograft Monitoring in Kidney Transplantation. Journal of Personalized Medicine, 12(10), 1700. https://doi.org/10.3390/jpm12101700