Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options
Abstract
:1. Introduction
2. Genetic Mutations and Functional Phenotypes in MODY Subtypes
2.1. HNF4A-MODY1 (MODY1)
2.2. GCK-MODY (MODY2)
2.3. HNF1A-MODY 3
2.4. PDX1-MODY (MODY4)
2.5. HNF1B-MODY (MODY5)
2.6. NEUROD1-MODY (MODY6)
2.7. KLF11-MODY (MODY7)
2.8. CEL-MODY (MODY8)
2.9. PAX4-MODY (MODY9)
2.10. INS-MODY (MODY10)
2.11. BLK-MODY (MODY11)
2.12. ABCC8-MODY (MODY12)
2.13. KCNJ11-MODY (MODY13)
2.14. APPL-MODY (MODY14)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- George, D.C.; Chakraborty, C.; Haneef, S.A.; Nagasundaram, N.; Chen, L.; Zhu, H. Evolution- and structure-based computational strategy reveals the impact of deleterious missense mutations on MODY 2 (maturity-onset diabetes of the young, type 2). Theranostics 2014, 4, 366–385. [Google Scholar] [CrossRef] [Green Version]
- Langer, S.; Platz, C.; Waterstradt, R.; Baltrusch, S. Characterization of two MODY2 mutations with different susceptibility to activation. Biochem. Bioph. Res. Co. 2015, 464, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.A.; Kang, K.; Chi, Y.I.; Chang, I.; Lee, M.K.; Kim, K.W.; Shoelson, S.E.; Lee, M.S. Identification and functional characterization of a novel mutation of hepatocyte nuclear factor-1alpha gene in a Korean family with MODY3. Diabetologia 2003, 46, 721–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pramfalk, C.; Karlsson, E.; Groop, L.; Rudel, L.L.; Angelin, B.; Eriksson, M.; Parini, P. Control of ACAT2 liver expression by HNF4{alpha}: Lesson from MODY1 patients. Arter. Thromb. Vasc. Biol. 2009, 29, 1235–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Han, X.; Zhou, X.; Li, Y.; Gong, S.; Zhang, S.; Cai, X.; Zhou, L.; Luo, Y.; Li, M.; et al. A new clinical screening strategy and prevalence estimation for glucokinase variant-induced diabetes in an adult Chinese population. Genet. Med. 2019, 21, 939–947. [Google Scholar] [CrossRef]
- Stoffel, M.; Duncan, S.A. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4alpha regulates expression of genes required for glucose transport and metabolism. Proc. Natl. Acad. Sci. USA 1997, 94, 13209–13214. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, R.R.; Locke, J.; Colclough, K.; Wales, J.; Conn, J.J.; Hattersley, A.T.; Ellard, S.; Hussain, K. Persistent hyperinsulinemic hypoglycemia and maturity-onset diabetes of the young due to heterozygous HNF4A mutations. Diabetes 2008, 57, 1659–1663. [Google Scholar] [CrossRef] [Green Version]
- Lehto, M.; Tuomi, T.; Mahtani, M.M.; Widen, E.; Forsblom, C.; Sarelin, L.; Gullstrom, M.; Isomaa, B.; Lehtovirta, M.; Hyrkko, A.; et al. Characterization of the MODY3 phenotype Early-onset diabetes caused by an insulin secretion defect. J. Clin. Investig. 1997, 99, 582–591. [Google Scholar] [CrossRef] [Green Version]
- Behl, R.; Malhotra, N.; Joshi, V.; Poojary, S.; Middha, S.; Gupta, S.; Olaonipekun, A.B.; Okoye, I.; Wagh, B.; Biswas, D.; et al. Meta-analysis of HNF1A-MODY3 variants among human population. J. Diabetes Metab. Dis. 2022, 21, 1037–1046. [Google Scholar] [CrossRef]
- Macfarlane, W.M.; Frayling, T.M.; Ellard, S.; Evans, J.C.; Allen, L.I.; Bulman, M.P.; Ayres, S.; Shepherd, M.; Clark, P.; Millward, A.; et al. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J. Clin. Invest. 1999, 104, R33–R39. [Google Scholar] [CrossRef]
- Pruhova, S.; Dusatkova, P.; Sumnik, Z.; Kolouskova, S.; Pedersen, O.; Hansen, T.; Cinek, O.; Lebl, J. Glucokinase diabetes in 103 families from a country-based study in the Czech Republic: Geographically restricted distribution of two prevalent GCK mutations. Pediatr. Diabetes 2010, 11, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, C.; Sanchez, J.; Seeherunvong, T.; Ukarapong, S. Early Onset of Mody5 Due to Haploinsufficiency of Hnf1b. AACE Clin. Case. Rep. 2020, 6, e243–e246. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fang, Q.; Zhang, R.; Lin, X.; Xiang, K. Scanning for MODY5 gene mutations in Chinese early onset or multiple affected diabetes pedigrees. Acta Diabetol. 2004, 41, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Haliyur, R.; Tong, X.; Sanyoura, M.; Shrestha, S.; Lindner, J.; Saunders, D.C.; Aramandla, R.; Poffenberger, G.; Redick, S.D.; Bottino, R.; et al. Human islets expressing HNF1A variant have defective beta cell transcriptional regulatory networks. J. Clin. Invest. 2019, 129, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomberk, G.; Mathison, A.J.; Grzenda, A.; Seo, S.; DeMars, C.J.; Rizvi, S.; Bonilla-Velez, J.; Calvo, E.; Fernandez-Zapico, M.E.; Iovanna, J.; et al. Sequence-specific recruitment of heterochromatin protein 1 via interaction with Kruppel-like factor 11, a human transcription factor involved in tumor suppression and metabolic diseases. J. Biol. Chem. 2012, 287, 13026–13039. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Tanaka, D.; Muro, S.; Jambaljav, B.; Mori, E.; Yonemitsu, S.; Oki, S.; Inagaki, N. A Novel p.L145Q Mutation in the HNF1B Gene in a Case of Maturity-onset Diabetes of the Young Type 5 (MODY5). Intern. Med. 2018, 57, 2035–2039. [Google Scholar] [CrossRef] [Green Version]
- Ushijima, K.; Narumi, S.; Ogata, T.; Yokota, I.; Sugihara, S.; Kaname, T.; Horikawa, Y.; Matsubara, Y.; Fukami, M.; Kawamura, T.; et al. KLF11 variant in a family clinically diagnosed with early childhood-onset type 1B diabetes. Pediatr. Diabetes 2019, 20, 712–719. [Google Scholar] [CrossRef]
- El Jellas, K.; Dusatkova, P.; Haldorsen, I.S.; Molnes, J.; Tjora, E.; Johansson, B.B.; Fjeld, K.; Johansson, S.; Pruhova, S.; Groop, L.; et al. Two New Mutations in the CEL Gene Causing Diabetes and Hereditary Pancreatitis: How to Correctly Identify MODY8 Cases. J. Clin. Endocrinol. Metab. 2022, 107, e1455–e1466. [Google Scholar] [CrossRef]
- Xu, J.Y.; Chan, V.; Zhang, W.Y.; Wat, N.M.; Lam, K.S. Mutations in the hepatocyte nuclear factor-1alpha gene in Chinese MODY families: Prevalence and functional analysis. Diabetologia 2002, 45, 744–746. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Gong, S.; Wang, X.; Cai, X.; Xiao, X.; Gu, W.; Yang, J.; Zhong, L.; Xiao, J.; Li, M.; et al. New clinical screening strategy to distinguish HNF1A variant-induced diabetes from young early-onset type 2 diabetes in a Chinese population. BMJ Open Diabetes Res. Care 2020, 8, e000745. [Google Scholar] [CrossRef]
- De Leon, D.D.; Stanley, C.A. Permanent Neonatal Diabetes Mellitus. In GeneReviews((R)); Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Horikawa, Y. Maturity-onset diabetes of the young as a model for elucidating the multifactorial origin of type 2 diabetes mellitus. J. Diabetes Investig. 2018, 9, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Gaal, Z.; Szucs, Z.; Kantor, I.; Luczay, A.; Toth-Heyn, P.; Benn, O.; Felszeghy, E.; Karadi, Z.; Madar, L.; Balogh, I. A Comprehensive Analysis of Hungarian MODY Patients-Part I: Gene Panel Sequencing Reveals Pathogenic Mutations in HNF1A, HNF1B, HNF4A, ABCC8 and INS Genes. Life (Basel) 2021, 11, 755. [Google Scholar] [CrossRef] [PubMed]
- Fajans, S.S.; Brown, M.B. Administration of sulfonylureas can increase glucose-induced insulin secretion for decades in patients with maturity-onset diabetes of the young. Diabetes Care 1993, 16, 1254–1261. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.; Galler, A.; Raile, K. Meglitinide analogues in adolescent patients with HNF1A-MODY (MODY 3). Pediatrics 2014, 133, e775–e779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostoft, S.H.; Bagger, J.I.; Hansen, T.; Pedersen, O.; Faber, J.; Holst, J.J.; Knop, F.K.; Vilsboll, T. Glucose-lowering effects and low risk of hypoglycemia in patients with maturity-onset diabetes of the young when treated with a GLP-1 receptor agonist: A double-blind, randomized, crossover trial. Diabetes Care 2014, 37, 1797–1805. [Google Scholar] [CrossRef] [Green Version]
- Rose, K.; Christensen, A.S.; Storgaard, H.; Haedersdal, S.; Hansen, T.; Knop, F.K.; Vilsboll, T. Diagnosis and treatment of maturity onset diabetes of the young type 3. Ugeskr. Laeger. 2018, 180, 6. [Google Scholar]
- Park, G.M.; Lee, S.J.; Seo, J.Y.; Lim, K.I. A case of maturity-onset diabetes of the young type 4 in Korea. Ann. Pediatr. Endocrinol. Metab. 2022. [Google Scholar] [CrossRef]
- Mangrum, C.; Rush, E.; Shivaswamy, V. Genetically Targeted Dipeptidyl Peptidase-4 Inhibitor Use in a Patient with a Novel Mutation of MODY type 4. Clin. Med. Insights. Endocrinol. Diabetes 2015, 8, 83–86. [Google Scholar] [CrossRef]
- Roehlen, N.; Hilger, H.; Stock, F.; Glaser, B.; Guhl, J.; Schmitt-Graeff, A.; Seufert, J.; Laubner, K. 17q12 Deletion Syndrome as a Rare Cause for Diabetes Mellitus Type MODY5. J. Clin. Endocrinol. Metab. 2018, 103, 3601–3610. [Google Scholar] [CrossRef] [Green Version]
- Yamagata, K.; Furuta, H.; Oda, N.; Kaisaki, P.J.; Menzel, S.; Cox, N.J.; Fajans, S.S.; Signorini, S.; Stoffel, M.; Bell, G.I. Mutations in the hepatocyte nuclear factor-4alpha gene in maturity-onset diabetes of the young (MODY1). Nature 1996, 384, 458–460. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.H.; Min, J.W.; Choi, S.S.; Choi, H.S.; Kim, S.W. Identification of Maturity-Onset Diabetes of the Young Caused by Glucokinase Mutations Detected Using Whole-Exome Sequencing. Endocrinol. Metab. (Seoul) 2017, 32, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Nogues, A.; Garcia-Herrero, C.M.; Oriola, J.; Vincent, O.; Navas, M.A. Functional characterization of MODY2 mutations in the nuclear export signal of glucokinase. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Wabitsch, M.; Lahr, G.; Van de Bunt, M.; Marchant, C.; Lindner, M.; von Puttkamer, J.; Fenneberg, A.; Debatin, K.M.; Klein, R.; Ellard, S.; et al. Heterogeneity in disease severity in a family with a novel G68V GCK activating mutation causing persistent hyperinsulinaemic hypoglycaemia of infancy. Diabetes Med. 2007, 24, 1393–1399. [Google Scholar] [CrossRef] [PubMed]
- Capuano, M.; Garcia-Herrero, C.M.; Tinto, N.; Carluccio, C.; Capobianco, V.; Coto, I.; Cola, A.; Iafusco, D.; Franzese, A.; Zagari, A.; et al. Glucokinase (GCK) mutations and their characterization in MODY2 children of southern Italy. PLoS ONE 2012, 7, e38906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langer, S.; Waterstradt, R.; Hillebrand, G.; Santer, R.; Baltrusch, S. The novel GCK variant p.Val455Leu associated with hyperinsulinism is susceptible to allosteric activation and is conducive to weight gain and the development of diabetes. Diabetologia 2021, 64, 2687–2700. [Google Scholar] [CrossRef] [PubMed]
- Pace, N.P.; Rizzo, C.; Abela, A.; Gruppetta, M.; Fava, S.; Felice, A.; Vassallo, J. Identification of an HNF1A p.Gly292fs Frameshift Mutation Presenting as Diabetes During Pregnancy in a Maltese Family. Clin. Med. Insights Case Rep. 2019, 12, 1179547619831034. [Google Scholar] [CrossRef] [Green Version]
- Balamurugan, K.; Bjorkhaug, L.; Mahajan, S.; Kanthimathi, S.; Njolstad, P.R.; Srinivasan, N.; Mohan, V.; Radha, V. Structure-function studies of HNF1A (MODY3) gene mutations in South Indian patients with monogenic diabetes. Clin. Genet. 2016, 90, 486–495. [Google Scholar] [CrossRef]
- Hani, E.H.; Stoffers, D.A.; Chevre, J.C.; Durand, E.; Stanojevic, V.; Dina, C.; Habener, J.F.; Froguel, P. Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J. Clin. Invest. 1999, 104, R41–R48. [Google Scholar] [CrossRef] [Green Version]
- Wright, N.M.; Metzger, D.L.; Borowitz, S.M.; Clarke, W.L. Permanent neonatal diabetes mellitus and pancreatic exocrine insufficiency resulting from congenital pancreatic agenesis. Am. J. Dis. Child 1993, 147, 607–609. [Google Scholar]
- Hildebrand, J.M.; Lo, B.; Tomei, S.; Mattei, V.; Young, S.N.; Fitzgibbon, C.; Murphy, J.M.; Fadda, A. A family harboring an MLKL loss of function variant implicates impaired necroptosis in diabetes. Cell Death Dis. 2021, 12, 345. [Google Scholar] [CrossRef]
- Alvelos, M.I.; Rodrigues, M.; Lobo, L.; Medeira, A.; Sousa, A.B.; Simao, C.; Lemos, M.C. A novel mutation of the HNF1B gene associated with hypoplastic glomerulocystic kidney disease and neonatal renal failure: A case report and mutation update. Med. Baltim. 2015, 94, e469. [Google Scholar] [CrossRef] [PubMed]
- Domingo-Gallego, A.; Pybus, M.; Bullich, G.; Furlano, M.; Ejarque-Vila, L.; Lorente-Grandoso, L.; Ruiz, P.; Fraga, G.; Lopez Gonzalez, M.; Pinero-Fernandez, J.A.; et al. Clinical utility of genetic testing in early-onset kidney disease: Seven genes are the main players. Nephrol. Dial. Transpl. 2022, 37, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Duval, H.; Michel-Calemard, L.; Gonzales, M.; Loget, P.; Beneteau, C.; Buenerd, A.; Joubert, M.; Denis-Musquer, M.; Clemenson, A.; Chesnais, A.L.; et al. Fetal anomalies associated with HNF1B mutations: Report of 20 autopsy cases. Prenat. Diagn. 2016, 36, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Yang, M.; Gong, W.; Chen, W.; Dong, J.; Liao, L. Case Report: A case of HNF1B mutation patient with first presentation of diabetic ketosis. Front. Endocrinol. (Lausanne) 2022, 13, 917819. [Google Scholar] [CrossRef] [PubMed]
- Goknar, N.; Ekici Avci, M.; Uckardes, D.; Kelesoglu, E.; Tekkus Ermis, K.; Candan, C. Hepatocyte Nuclear Factor 1 Beta Mutation-associated Newborn Onset of Glomerulocystic Kidney Disease: A Case Presentation. Medeni. Med. J. 2021, 36, 352–355. [Google Scholar] [CrossRef]
- Lu, P.; Rha, G.B.; Chi, Y.I. Structural basis of disease-causing mutations in hepatocyte nuclear factor 1beta. Biochemistry 2007, 46, 12071–12080. [Google Scholar] [CrossRef] [Green Version]
- Clissold, R.L.; Hamilton, A.J.; Hattersley, A.T.; Ellard, S.; Bingham, C. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat. Rev. Nephrol. 2015, 11, 102–112. [Google Scholar] [CrossRef]
- Ang, S.F.; Lim, S.C.; Tan, C.; Fong, J.C.; Kon, W.Y.; Lian, J.X.; Subramanium, T.; Sum, C.F. A preliminary study to evaluate the strategy of combining clinical criteria and next generation sequencing (NGS) for the identification of monogenic diabetes among multi-ethnic Asians. Diabetes Res. Clin. Pr. 2016, 119, 13–22. [Google Scholar] [CrossRef]
- Han, X.Y.; Liu, C.Y.; Ji, L.N. Contribution of MODY6 gene in the pathogenesis of familial type 2 diabetes in Chinese population. Zhonghua Yi Xue Za Zhi 2005, 85, 2463–2467. [Google Scholar]
- Neve, B.; Fernandez-Zapico, M.E.; Ashkenazi-Katalan, V.; Dina, C.; Hamid, Y.H.; Joly, E.; Vaillant, E.; Benmezroua, Y.; Durand, E.; Bakaher, N.; et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc. Natl. Acad. Sci. USA 2005, 102, 4807–4812. [Google Scholar] [CrossRef] [Green Version]
- Tanahashi, T.; Shinohara, K.; Keshavarz, P.; Yamaguchi, Y.; Miyawaki, K.; Kunika, K.; Moritani, M.; Nakamura, N.; Yoshikawa, T.; Shiota, H.; et al. The association of genetic variants in Kruppel-like factor 11 and Type 2 diabetes in the Japanese population. Diabetes Med. 2008, 25, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Zapico, M.E.; van Velkinburgh, J.C.; Gutierrez-Aguilar, R.; Neve, B.; Froguel, P.; Urrutia, R.; Stein, R. MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet beta cells. J. Biol. Chem. 2009, 284, 36482–36490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuroda, E.; Horikawa, Y.; Enya, M.; Oda, N.; Suzuki, E.; Iizuka, K.; Takeda, J. Identification of minimal promoter and genetic variants of Kruppel-like factor 11 gene and association analysis with type 2 diabetes in Japanese. Endocr. J. 2009, 56, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, D.; Silvy, F.; Crenon, I.; Martinez, E.; Collignon, A.; Beraud, E.; Mas, E. Pancreatic adenocarcinoma, chronic pancreatitis, and MODY-8 diabetes: Is bile salt-dependent lipase (or carboxyl ester lipase) at the crossroads of pancreatic pathologies? Oncotarget 2018, 9, 12513–12533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, S.; Pipitone, G.B.; Cospito, A.; Manenti, F.; Poggi, G.; Lombardo, M.T.; Nano, R.; Martino, G.; Ferrari, M.; Carrera, P.; et al. Generation of beta Cells from iPSC of a MODY8 Patient with a Novel Mutation in the Carboxyl Ester Lipase (CEL) Gene. J. Clin. Endocrinol. Metab. 2021, 106, e2322–e2333. [Google Scholar] [CrossRef]
- Plengvidhya, N.; Kooptiwut, S.; Songtawee, N.; Doi, A.; Furuta, H.; Nishi, M.; Nanjo, K.; Tantibhedhyangkul, W.; Boonyasrisawat, W.; Yenchitsomanus, P.T.; et al. PAX4 mutations in Thais with maturity onset diabetes of the young. J. Clin. Endocrinol. Metab. 2007, 92, 2821–2826. [Google Scholar] [CrossRef] [Green Version]
- Shimajiri, Y.; Sanke, T.; Furuta, H.; Hanabusa, T.; Nakagawa, T.; Fujitani, Y.; Kajimoto, Y.; Takasu, N.; Nanjo, K. A missense mutation of Pax4 gene (R121W) is associated with type 2 diabetes in Japanese. Diabetes 2001, 50, 2864–2869. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Sun, J.; Cui, J.; Chen, W.; Guo, H.; Barbetti, F.; Arvan, P. INS-gene mutations: From genetics and beta cell biology to clinical disease. Mol. Asp. Med. 2015, 42, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Edghill, E.L.; Flanagan, S.E.; Patch, A.M.; Boustred, C.; Parrish, A.; Shields, B.; Shepherd, M.H.; Hussain, K.; Kapoor, R.R.; Malecki, M.; et al. Neonatal Diabetes International Collaborative, G.; Hattersley, A.T.; Ellard, S. Insulin mutation screening in 1,044 patients with diabetes: Mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 2008, 57, 1034–1042. [Google Scholar]
- Stoy, J.; Edghill, E.L.; Flanagan, S.E.; Ye, H.; Paz, V.P.; Pluzhnikov, A.; Below, J.E.; Hayes, M.G.; Cox, N.J.; Lipkind, G.M.; et al. Neonatal Diabetes International Collaborative, G. Insulin gene mutations as a cause of permanent neonatal diabetes. Proc. Natl. Acad. Sci. USA 2007, 104, 15040–15044. [Google Scholar] [CrossRef] [Green Version]
- Borowiec, M.; Liew, C.W.; Thompson, R.; Boonyasrisawat, W.; Hu, J.; Mlynarski, W.M.; El Khattabi, I.; Kim, S.H.; Marselli, L.; Rich, S.S.; et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc. Natl. Acad. Sci. USA 2009, 106, 14460–14465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.H.; Athanasopoulos, V.; Ellyard, J.I.; Chuah, A.; Cappello, J.; Cook, A.; Prabhu, S.B.; Cardenas, J.; Gu, J.; Stanley, M.; et al. Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat. Commun. 2019, 10, 2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Ma, X.; Weremowicz, S.; Ercolino, T.; Powers, C.; Mlynarski, W.; Bashan, K.A.; Warram, J.H.; Mychaleckyj, J.; Rich, S.S.; et al. Identification of a locus for maturity-onset diabetes of the young on chromosome 8p23. Diabetes 2004, 53, 1375–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Sun, Y.; Xu, C.; Liu, F.; Gao, Y.; Liu, C.; Qiao, Y.; Yang, J.; Li, G. ABCC8-related maturity-onset diabetes of the young: Clinical features and genetic analysis of one case. Pediatr. Diabetes 2022, 23, 588–596. [Google Scholar] [CrossRef]
- Timmers, M.; Dirinck, E.; Lauwers, P.; Wuyts, W.; De Block, C. ABCC8 variants in MODY12: Review of the literature and report of a case with severe complications. Diabetes Metab. Res. Rev. 2021, 37, e3459. [Google Scholar] [CrossRef]
- Matsutani, N.; Furuta, H.; Matsuno, S.; Oku, Y.; Morita, S.; Uraki, S.; Doi, A.; Furuta, M.; Iwakura, H.; Ariyasu, H.; et al. Identification of a compound heterozygous inactivating ABCC8 gene mutation responsible for young-onset diabetes with exome sequencing. J. Diabetes Investig. 2020, 11, 333–336. [Google Scholar] [CrossRef] [Green Version]
- Tatsi, E.B.; Kanaka-Gantenbein, C.; Scorilas, A.; Chrousos, G.P.; Sertedaki, A. Next generation sequencing targeted gene panel in Greek MODY patients increases diagnostic accuracy. Pediatr. Diabetes 2020, 21, 28–39. [Google Scholar] [CrossRef]
- Massa, O.; Iafusco, D.; D’Amato, E.; Gloyn, A.L.; Hattersley, A.T.; Pasquino, B.; Tonini, G.; Dammacco, F.; Zanette, G.; Meschi, F.; et al. Early Onset Diabetes Study Group of the Italian Society of Pediatric, E.; Diabetology, KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes. Hum. Mutat. 2005, 25, 22–27. [Google Scholar] [CrossRef]
- He, B.B.; Li, X.; Zhou, Z.G. Continuous spectrum of glucose dysmetabolism due to the KCNJ11 gene mutation-Case reports and review of the literature. J. Diabetes 2021, 13, 19–32. [Google Scholar] [CrossRef]
- Webb, J.G.; Downar, E.; Harris, L.; Rossall, R.E. Direct endocardial recording and catheter ablation of an accessory pathway in a patient with incessant supraventricular tachycardia. Pacing. Clin. Electrophysiol. 1988, 11 (Pt 1), 1533–1539. [Google Scholar] [CrossRef]
- Gopi, S.; Kavitha, B.; Kanthimathi, S.; Kannan, A.; Kumar, R.; Joshi, R.; Kanodia, S.; Arya, A.D.; Pendsey, S.; Pendsey, S.; et al. Genotype-phenotype correlation of KATP channel gene defects causing permanent neonatal diabetes in Indian patients. Pediatr. Diabetes 2021, 22, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, F.M.; Puljung, M.C.; Vedovato, N. Neonatal Diabetes and the KATP Channel: From Mutation to Therapy. Trends Endocrinol. Metab. 2017, 28, 377–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prudente, S.; Jungtrakoon, P.; Marucci, A.; Ludovico, O.; Buranasupkajorn, P.; Mazza, T.; Hastings, T.; Milano, T.; Morini, E.; Mercuri, L.; et al. Loss-of-Function Mutations in APPL1 in Familial Diabetes Mellitus. Am. J. Hum. Genet. 2015, 97, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, K.K.; Lam, K.S.; Wu, D.; Wang, Y.; Sweeney, G.; Hoo, R.L.; Zhang, J.; Xu, A. APPL1 potentiates insulin secretion in pancreatic beta cells by enhancing protein kinase Akt-dependent expression of SNARE proteins in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 8919–8924. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhou, Y.; Wu, K.K.; Chen, Z.; Xu, A.; Cheng, K.K. APPL1 prevents pancreatic beta cell death and inflammation by dampening NFkappaB activation in a mouse model of type 1 diabetes. Diabetologia 2017, 60, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Ivanoshchuk, D.E.; Shakhtshneider, E.V.; Rymar, O.D.; Ovsyannikova, A.K.; Mikhailova, S.V.; Orlov, P.S.; Ragino, Y.I.; Voevoda, M.I. Analysis of APPL1 Gene Polymorphisms in Patients with a Phenotype of Maturity Onset Diabetes of the Young. J. Pers. Med. 2020, 10, 100. [Google Scholar] [CrossRef]
- Delvecchio, M.; Pastore, C.; Giordano, P. Treatment Options for MODY Patients: A Systematic Review of Literature. Diabetes 2020, 11, 1667–1685. [Google Scholar] [CrossRef]
- Gloyn, A.L.; Tribble, N.D.; van de Bunt, M.; Barrett, A.; Johnson, P.R. Glucokinase (GCK) and other susceptibility genes for beta-cell dysfunction: The candidate approach. Biochem. Soc. Trans. 2008, 36 (Pt 3), 306–311. [Google Scholar] [CrossRef]
- Bell, G.I.; Pilkis, S.J.; Weber, I.T.; Polonsky, K.S. Glucokinase mutations, insulin secretion, and diabetes mellitus. Annu. Rev. Physiol. 1996, 58, 171–186. [Google Scholar] [CrossRef]
- Osbak, K.K.; Colclough, K.; Saint-Martin, C.; Beer, N.L.; Bellanne-Chantelot, C.; Ellard, S.; Gloyn, A.L. Update on Mutations in Glucokinase (GCK), Which Cause Maturity-Onset Diabetes of the Young, Permanent Neonatal Diabetes, and Hyperinsulinemic Hypoglycemia. Hum. Mutat. 2009, 30, 1512–1526. [Google Scholar] [CrossRef]
- Pearson, E.R.; Velho, G.; Clark, P.; Stride, A.; Shepherd, M.; Frayling, T.M.; Bulman, M.P.; Ellard, S.; Froguel, P.; Hattersley, A.T. beta-cell genes and diabetes: Quantitative and qualitative differences in the pathophysiology of hepatic nuclear factor-1alpha and glucokinase mutations. Diabetes 2001, 50 (Suppl. S1), S101–S107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamagata, K.; Oda, N.; Kaisaki, P.J.; Menzel, S.; Furuta, H.; Vaxillaire, M.; Southam, L.; Cox, R.D.; Lathrop, G.M.; Boriraj, V.V.; et al. Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 1996, 384, 455–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyachi, Y.; Miyazawa, T.; Ogawa, Y. HNF1A Mutations and Beta Cell Dysfunction in Diabetes. Int. J. Mol. Sci. 2022, 23, 3222. [Google Scholar] [CrossRef] [PubMed]
- Kant, R.; Davis, A.; Verma, V. Maturity-Onset Diabetes of the Young: Rapid Evidence Review. Am. Fam. Physician 2022, 105, 162–167. [Google Scholar]
- Docena, M.K.; Faiman, C.; Stanley, C.M.; Pantalone, K.M. Mody-3: Novel HNF1A mutation and the utility of glucagon-like peptide (GLP)-1 receptor agonist therapy. Endocr. Pr. 2014, 20, 107–111. [Google Scholar] [CrossRef]
- Broome, D.T.; Tekin, Z.; Pantalone, K.M.; Mehta, A.E. Novel Use of GLP-1 Receptor Agonist Therapy in HNF4A-MODY. Diabetes Care 2020, 43, e65. [Google Scholar] [CrossRef] [Green Version]
- Low, B.S.J.; Lim, C.S.; Ding, S.S.L.; Tan, Y.S.; Ng, N.H.J.; Krishnan, V.G.; Ang, S.F.; Neo, C.W.Y.; Verma, C.S.; Hoon, S.; et al. Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant beta cells. Nat. Commun. 2021, 12, 3133. [Google Scholar] [CrossRef]
- Deng, M.; Xiao, X.; Zhou, L.; Wang, T. First Case Report of Maturity-Onset Diabetes of the Young Type 4 Pedigree in a Chinese Family. Front. Endocrinol. (Lausanne) 2019, 10, 406. [Google Scholar] [CrossRef] [Green Version]
- Taghavi, S.M.; Fatemi, S.S.; Rafatpanah, H.; Ganjali, R.; Tavakolafshari, J.; Valizadeh, N. Mutations in the coding regions of the hepatocyte nuclear factor 4 alpha in Iranian families with maturity onset diabetes of the young. Cardiovasc. Diabetol. 2009, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Verhave, J.C.; Bech, A.P.; Wetzels, J.F.; Nijenhuis, T. Hepatocyte Nuclear Factor 1beta-Associated Kidney Disease: More than Renal Cysts and Diabetes. J. Am. Soc. Nephrol. 2016, 27, 345–353. [Google Scholar] [CrossRef] [Green Version]
- Bain, S.C.; Klufas, M.A.; Ho, A.; Matthews, D.R. Worsening of diabetic retinopathy with rapid improvement in systemic glucose control: A review. Diabetes Obes. Metab. 2019, 21, 454–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terakawa, A.; Chujo, D.; Yasuda, K.; Ueno, K.; Nakamura, T.; Hamano, S.; Ohsugi, M.; Tanabe, A.; Ueki, K.; Kajio, H. Maturity-Onset diabetes of the young type 5 treated with the glucagon-like peptide-1 receptor agonist: A case report. Med. Baltim. 2020, 99, e21939. [Google Scholar] [CrossRef]
- Bohuslavova, R.; Smolik, O.; Malfatti, J.; Berkova, Z.; Novakova, Z.; Saudek, F.; Pavlinkova, G. NEUROD1 Is Required for the Early alpha and beta Endocrine Differentiation in the Pancreas. Int. J. Mol. Sci. 2021, 22, 6713. [Google Scholar] [CrossRef] [PubMed]
- Romer, A.I.; Singer, R.A.; Sui, L.; Egli, D.; Sussel, L. Murine Perinatal beta-Cell Proliferation and the Differentiation of Human Stem Cell-Derived Insulin-Expressing Cells Require NEUROD1. Diabetes 2019, 68, 2259–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanatsuka, A.; Tokuyama, Y.; Nozaki, O.; Matsui, K.; Egashira, T. Beta-cell dysfunction in late-onset diabetic subjects carrying homozygous mutation in transcription factors NeuroD1 and Pax4. Metabolism 2002, 51, 1161–1165. [Google Scholar] [CrossRef]
- Nkonge, K.M.; Nkonge, D.K.; Nkonge, T.N. The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin. Diabetes Endocrinol. 2020, 6, 20. [Google Scholar] [CrossRef]
- Arslanian, S.; El Ghormli, L.; Haymond, M.H.; Chan, C.L.; Chernausek, S.D.; Gandica, R.G.; Gubitosi-Klug, R.; Levitsky, L.L.; Siska, M.; Willi, S.M.; et al. Beta cell function and insulin sensitivity in obese youth with maturity onset diabetes of youth mutations vs. type 2 diabetes in TODAY: Longitudinal observations and glycemic failure. Pediatr. Diabetes 2020, 21, 575–585. [Google Scholar] [CrossRef]
- Yu, M.G.; Keenan, H.A.; Shah, H.S.; Frodsham, S.G.; Pober, D.; He, Z.; Wolfson, E.A.; D’Eon, S.; Tinsley, L.J.; Bonner-Weir, S.; et al. Residual beta cell function and monogenic variants in long-duration type 1 diabetes patients. J. Clin. Invest. 2019, 129, 3252–3263. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Jones, G.; Sevilla, W.A.; Stolz, D.B.; Magee, K.E.; Haughney, M.; Mukherjee, A.; Wang, Y.; Lowe, M.E. A Carboxyl Ester Lipase (CEL) Mutant Causes Chronic Pancreatitis by Forming Intracellular Aggregates That Activate Apoptosis. J. Biol. Chem. 2016, 291, 23224–23236. [Google Scholar] [CrossRef] [Green Version]
- Torsvik, J.; Johansson, B.B.; Dalva, M.; Marie, M.; Fjeld, K.; Johansson, S.; Bjorkoy, G.; Saraste, J.; Njolstad, P.R.; Molven, A. Endocytosis of secreted carboxyl ester lipase in a syndrome of diabetes and pancreatic exocrine dysfunction. J. Biol. Chem. 2014, 289, 29097–29111. [Google Scholar] [CrossRef] [Green Version]
- Raeder, H.; McAllister, F.E.; Tjora, E.; Bhatt, S.; Haldorsen, I.; Hu, J.; Willems, S.M.; Vesterhus, M.; El Ouaamari, A.; Liu, M.; et al. Carboxyl-ester lipase maturity-onset diabetes of the young is associated with development of pancreatic cysts and upregulated MAPK signaling in secretin-stimulated duodenal fluid. Diabetes 2014, 63, 259–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raeder, H.; Vesterhus, M.; El Ouaamari, A.; Paulo, J.A.; McAllister, F.E.; Liew, C.W.; Hu, J.; Kawamori, D.; Molven, A.; Gygi, S.P.; et al. Absence of diabetes and pancreatic exocrine dysfunction in a transgenic model of carboxyl-ester lipase-MODY (maturity-onset diabetes of the young). PLoS ONE 2013, 8, e60229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sujjitjoon, J.; Kooptiwut, S.; Chongjaroen, N.; Semprasert, N.; Hanchang, W.; Chanprasert, K.; Tangjittipokin, W.; Yenchitsomanus, P.T.; Plengvidhya, N. PAX4 R192H and P321H polymorphisms in type 2 diabetes and their functional defects. J. Hum. Genet. 2016, 61, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P. Recent Trends in Therapeutic Approaches for Diabetes Management: A Comprehensive Update. J. Diabetes Res. 2015, 2015, 340838. [Google Scholar] [CrossRef] [Green Version]
- Balboa, D.; Saarimaki-Vire, J.; Borshagovski, D.; Survila, M.; Lindholm, P.; Galli, E.; Eurola, S.; Ustinov, J.; Grym, H.; Huopio, H.; et al. Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. Elife 2018, 7, e38519. [Google Scholar] [CrossRef]
- Wang, J.; Takeuchi, T.; Tanaka, S.; Kubo, S.K.; Kayo, T.; Lu, D.; Takata, K.; Koizumi, A.; Izumi, T. A mutation in the insulin 2 gene induces diabetes with severe pancreatic beta-cell dysfunction in the Mody mouse. J. Clin. Invest. 1999, 103, 27–37. [Google Scholar] [CrossRef]
- Nishi, M.; Nanjo, K. Insulin gene mutations and diabetes. J. Diabetes Investig. 2011, 2, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, A.A.; Shirah, B.; Alzelaye, S. A homozygous mutation in the insulin gene (INS) causing autosomal recessive neonatal diabetes in Saudi families. Ann. Pediatr. Endocrinol. Metab. 2020, 25, 42–45. [Google Scholar] [CrossRef]
- Cascais, M.; Pereira, E.; Vieira, A.; Venancio, M.; Ramos, L.; Moleiro, P. Hyperglycemia in pediatric age: Could it be maturity onset diabetes of the young? Case reports and review of the literature. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Kettunen, J.L.T.; Tuomi, T. Human Physiology of Genetic Defects Causing Beta-cell Dysfunction. J. Mol. Biol. 2020, 432, 1579–1598. [Google Scholar] [CrossRef]
- Bonnefond, A.; Yengo, L.; Philippe, J.; Dechaume, A.; Ezzidi, I.; Vaillant, E.; Gjesing, A.P.; Andersson, E.A.; Czernichow, S.; Hercberg, S.; et al. Reassessment of the putative role of BLK-p.A71T loss-of-function mutation in MODY and type 2 diabetes. Diabetologia 2013, 56, 492–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrer, J. A genetic switch in pancreatic beta-cells: Implications for differentiation and haploinsufficiency. Diabetes 2002, 51, 2355–2362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Hu, S.; Huang, H.; Liu, J. A case report of Maturity-onset diabetes of the young 12: Large fragment deletion in ABCC8 gene with literature review. Ann. Transl. Med. 2022, 10, 378. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.F.; Lin, Y.W.; MacMullen, C.; Ganguly, A.; Stanley, C.A.; Shyng, S.L. Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: Identification and rescue. Diabetes 2007, 56, 2339–2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, V.; Light, P.E. The molecular mechanisms and pharmacotherapy of ATP-sensitive potassium channel gene mutations underlying neonatal diabetes. Pharmgenomics Pers. Med. 2010, 3, 145–161. [Google Scholar] [PubMed]
- Martin, G.M.; Rex, E.A.; Devaraneni, P.; Denton, J.S.; Boodhansingh, K.E.; DeLeon, D.D.; Stanley, C.A.; Shyng, S.L. Pharmacological Correction of Trafficking Defects in ATP-sensitive Potassium Channels Caused by Sulfonylurea Receptor 1 Mutations. J. Biol. Chem. 2016, 291, 21971–21983. [Google Scholar] [CrossRef] [Green Version]
- Bohnen, M.S.; Ma, L.; Zhu, N.; Qi, H.; McClenaghan, C.; Gonzaga-Jauregui, C.; Dewey, F.E.; Overton, J.D.; Reid, J.G.; Shuldiner, A.R.; et al. Loss-of-Function ABCC8 Mutations in Pulmonary Arterial Hypertension. Circ. Genom. Precis Med. 2018, 11, e002087. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Hu, D.; Huang, C.; Nichols, C.G. Genetic Discovery of ATP-Sensitive K(+) Channels in Cardiovascular Diseases. Circ. Arrhythm. Electrophysiol. 2019, 12, e007322. [Google Scholar] [CrossRef]
- Ovsyannikova, A.K.; Rymar, O.D.; Shakhtshneider, E.V.; Klimontov, V.V.; Koroleva, E.A.; Myakina, N.E.; Voevoda, M.I. ABCC8-Related Maturity-Onset Diabetes of the Young (MODY12): Clinical Features and Treatment Perspective. Diabetes 2016, 7, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Gole, E.; Oikonomou, S.; Ellard, S.; De Franco, E.; Karavanaki, K. A Novel KCNJ11 Mutation Associated with Transient Neonatal Diabetes. J. Clin. Res. Pediatr. Endocrinol. 2018, 10, 175–178. [Google Scholar] [CrossRef]
- Malekizadeh, A.; Rahbaran, M.; Afshari, M.; Abbasi, D.; Aghaei Meybodi, H.R.; Hasanzad, M. Association of common genetic variants of KCNJ11 gene with the risk of type 2 diabetes mellitus. Nucl. Nucl. Nucleic Acids 2021, 40, 530–541. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.H.; Yoo, M.G.; Park, J.Y.; Lee, H.J.; Park, S.I. Association between KCNJ11 rs5219 variant and alcohol consumption on the effect of insulin secretion in a community-based Korean cohort: A 12-year follow-up study. Sci. Rep. 2021, 11, 4729. [Google Scholar] [CrossRef] [PubMed]
- Sachse, G.; Haythorne, E.; Hill, T.; Proks, P.; Joynson, R.; Terron-Exposito, R.; Bentley, L.; Tucker, S.J.; Cox, R.D.; Ashcroft, F.M. The KCNJ11-E23K Gene Variant Hastens Diabetes Progression by Impairing Glucose-Induced Insulin Secretion. Diabetes 2021, 70, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.W.; MacMullen, C.; Ganguly, A.; Stanley, C.A.; Shyng, S.L. A novel KCNJ11 mutation associated with congenital hyperinsulinism reduces the intrinsic open probability of beta-cell ATP-sensitive potassium channels. J. Biol. Chem. 2006, 281, 3006–3012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.W.; Bushman, J.D.; Yan, F.F.; Haidar, S.; MacMullen, C.; Ganguly, A.; Stanley, C.A.; Shyng, S.L. Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. J. Biol. Chem. 2008, 283, 9146–9156. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Potapov, V.A.; Khodirev, D.C.; Shamkhalova, M.S.; Shestakova, M.V.; Nosikov, V.V. Genetic variations in the pancreatic ATP-sensitive potassium channel, beta-cell dysfunction, and susceptibility to type 2 diabetes. Acta Diabetol. 2009, 46, 43–49. [Google Scholar] [CrossRef]
- Kim, S.H. Maturity-Onset Diabetes of the Young: What Do Clinicians Need to Know? Diabetes Metab. J. 2015, 39, 468–477. [Google Scholar] [CrossRef] [Green Version]
- Urakami, T. Maturity-onset diabetes of the young (MODY): Current perspectives on diagnosis and treatment. Diabetes Metab. Syndr. Obes. 2019, 12, 1047–1056. [Google Scholar] [CrossRef] [Green Version]
- Mitchel, M.W.; Moreno-De-Luca, D.; Myers, S.M.; Levy, R.V.; Turner, S.; Ledbetter, D.H.; Martin, C.L. 17q12 Recurrent Deletion Syndrome. In GeneReviews((R)); Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Karlsson, E.; Shaat, N.; Groop, L. Can complement factors 5 and 8 and transthyretin be used as biomarkers for MODY 1 (HNF4A-MODY) and MODY 3 (HNF1A-MODY)? Diabetes Med. 2008, 25, 788–791. [Google Scholar] [CrossRef]
- Sladek, F.M.; Dallas-Yang, Q.; Nepomuceno, L. MODY1 mutation Q268X in hepatocyte nuclear factor 4alpha allows for dimerization in solution but causes abnormal subcellular localization. Diabetes 1998, 47, 985–990. [Google Scholar] [CrossRef]
- Herman, W.H.; Fajans, S.S.; Smith, M.J.; Polonsky, K.S.; Bell, G.I.; Halter, J.B. Diminished insulin and glucagon secretory responses to arginine in nondiabetic subjects with a mutation in the hepatocyte nuclear factor-4alpha/MODY1 gene. Diabetes 1997, 46, 1749–1754. [Google Scholar] [CrossRef] [PubMed]
- Igudin, E.L.; Spirin, P.V.; Prasolov, V.S.; Zubkova, N.A.; Petryaikina, E.E.; Tyul’pakov, A.N.; Rubtsov, P.M. Functional characterization of two novel splicing mutations of glucokinase gene associated with maturity-onset diabetes of the young type 2 (MODY2). Mol. Biol. 2014, 48, 248–253. [Google Scholar] [CrossRef]
- Bonfig, W.; Hermanns, S.; Warncke, K.; Eder, G.; Engelsberger, I.; Burdach, S.; Ziegler, A.G.; Lohse, P. GCK-MODY (MODY 2) Caused by a Novel p.Phe330Ser Mutation. ISRN Pediatr. 2011, 2011, 676549. [Google Scholar] [CrossRef]
- Shammas, C.; Neodeous, V.; Phelan, M.M.; Lian, L.Y.; Skordis, N.; Phylactou, L.A. A report of 2 new cases of MODY2 and review of the literature: Implications in the search for type 2 Diabetes drugs. Metab. -Clin. Exp. 2013, 62, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Bellanne-Chantelot, C.; Carette, C.; Riveline, J.P.; Valero, R.; Gautier, J.F.; Larger, E.; Reznik, Y.; Ducluzeau, P.H.; Sola, A.; Hartemann-Heurtier, A.; et al. The type and the position of HNF1A mutation modulate age at diagnosis of diabetes in patients with maturity-onset diabetes of the young (MODY)-3. Diabetes 2008, 57, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Valkovicova, T.; Skopkova, M.; Stanik, J.; Gasperikova, D. Novel insights into genetics and clinics of the HNF1A-MODY. Endocr. Regul. 2019, 53, 110–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gragnoli, C.; Stanojevic, V.; Gorini, A.; Von Preussenthal, G.M.; Thomas, M.K.; Habener, J.F. IPF-1/MODY4 gene missense mutation in an Italian family with type 2 and gestational diabetes. Metabolism 2005, 54, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Yoshiji, S.; Horikawa, Y.; Kubota, S.; Enya, M.; Iwasaki, Y.; Keidai, Y.; Aizawa-Abe, M.; Iwasaki, K.; Honjo, S.; Hosomichi, K.; et al. First Japanese Family With PDX1-MODY (MODY4): A Novel PDX1 Frameshift Mutation, Clinical Characteristics, and Implications. J. Endocr. Soc. 2022, 6, bvab159. [Google Scholar] [CrossRef]
- Moede, T.; Leibiger, B.; Pour, H.G.; Berggren, P.; Leibiger, I.B. Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett. 1999, 461, 229–234. [Google Scholar] [CrossRef]
- Stanojevic, V.; Yao, K.M.; Thomas, M.K. The coactivator Bridge-1 increases transcriptional activation by pancreas duodenum homeobox-1 (PDX-1). Mol. Cell Endocrinol. 2005, 237, 67–74. [Google Scholar] [CrossRef]
- Kim, S.K.; Selleri, L.; Lee, J.S.; Zhang, A.Y.; Gu, X.; Jacobs, Y.; Cleary, M.L. Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nat. Genet. 2002, 30, 430–435. [Google Scholar] [CrossRef]
- Ahlgren, U.; Jonsson, J.; Jonsson, L.; Simu, K.; Edlund, H. beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes. Dev. 1998, 12, 1763–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonsson, J.; Carlsson, L.; Edlund, T.; Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994, 371, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Stoffers, D.A.; Zinkin, N.T.; Stanojevic, V.; Clarke, W.L.; Habener, J.F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 1997, 15, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Abreu, G.M.M.; Tarantino, R.M.; da Fonseca, A.C.P.; de Souza, R.B.; Soares, C.; Cabello, P.H.; Rodacki, M.; Zajdenverg, L.; Zembrzuski, V.M.; Campos Junior, M. PDX1-MODY: A rare missense mutation as a cause of monogenic diabetes. Eur. J. Med. Genet. 2021, 64, 104194. [Google Scholar] [CrossRef] [PubMed]
- Mancusi, S.; La Manna, A.; Bellini, G.; Scianguetta, S.; Roberti, D.; Casale, M.; Rossi, F.; Della Ragione, F.; Perrotta, S. HNF-1beta mutation affects PKD2 and SOCS3 expression causing renal cysts and diabetes in MODY5 kindred. J. Nephrol. 2013, 26, 207–212. [Google Scholar] [CrossRef]
- Lanes Iglesias, S.; Ares Blanco, J.; Bellido Castaneda, V.; Sanchez-Ragnarsson, C.; Menendez-Torre, E. Effectiveness of sulfonylurea treatment in a patient with a mutation in ABCC8 (MODY12). Endocrinol. Diabetes Nutr. (Engl. Ed.) 2020, 67, 682–683. [Google Scholar] [CrossRef]
- Horikawa, Y.; Enya, M. Genetic Dissection and Clinical Features of MODY6 (NEUROD1-MODY). Curr. Diab. Rep. 2019, 19, 12. [Google Scholar] [CrossRef]
- Brodosi, L.; Baracco, B.; Mantovani, V.; Pironi, L. NEUROD1 mutation in an Italian patient with maturity onset diabetes of the young 6: A case report. BMC Endocr. Disord. 2021, 21, 202. [Google Scholar] [CrossRef]
- Horikawa, Y.; Enya, M.; Mabe, H.; Fukushima, K.; Takubo, N.; Ohashi, M.; Ikeda, F.; Hashimoto, K.I.; Watada, H.; Takeda, J. NEUROD1-deficient diabetes (MODY6): Identification of the first cases in Japanese and the clinical features. Pediatr. Diabetes 2018, 19, 236–242. [Google Scholar] [CrossRef]
- Bouillet, B.; Crevisy, E.; Baillot-Rudoni, S.; Gallegarine, D.; Jouan, T.; Duffourd, Y.; Petit, J.M.; Verges, B.; Callier, P. Whole-exome sequencing identifies the first French MODY 6 family with a new mutation in the NEUROD1 gene. Diabetes Metab. 2020, 46, 400–402. [Google Scholar] [CrossRef] [PubMed]
- Sagen, J.V.; Baumann, M.E.; Salvesen, H.B.; Molven, A.; Sovik, O.; Njolstad, P.R. Diagnostic screening of NEUROD1 (MODY6) in subjects with MODY or gestational diabetes mellitus. Diabetes Med. 2005, 22, 1012–1015. [Google Scholar] [CrossRef] [PubMed]
- Demirci, D.K.; Darendeliler, F.; Poyrazoglu, S.; Al, A.D.K.; Gul, N.; Tutuncu, Y.; Gulfidan, G.; Arga, K.Y.; Cacina, C.; Ozturk, O.; et al. Monogenic Childhood Diabetes: Dissecting Clinical Heterogeneity by Next-Generation Sequencing in Maturity-Onset Diabetes of the Young. OMICS 2021, 25, 431–449. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Qu, J.; Wang, J.; Zhao, R.; Wang, C.; Chen, L.; Hou, X. Clinical and Functional Characteristics of a Novel KLF11 Cys354Phe Variant Involved in Maturity-Onset Diabetes of the Young. J. Diabetes Res. 2021, 2021, 7136869. [Google Scholar] [CrossRef]
- Johansson, B.B.; Fjeld, K.; El Jellas, K.; Gravdal, A.; Dalva, M.; Tjora, E.; Raeder, H.; Kulkarni, R.N.; Johansson, S.; Njolstad, P.R.; et al. The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology 2018, 18, 12–19. [Google Scholar] [CrossRef]
- Brun, T.; Franklin, I.; St-Onge, L.; Biason-Lauber, A.; Schoenle, E.J.; Wollheim, C.B.; Gauthier, B.R. The diabetes-linked transcription factor PAX4 promotes {beta}-cell proliferation and survival in rat and human islets. J. Cell Biol. 2004, 167, 1123–1135. [Google Scholar] [CrossRef]
- Rezende, L.F.; Stoppiglia, L.F.; Souza, K.L.; Negro, A.; Langone, F.; Boschero, A.C. Ciliary neurotrophic factor promotes survival of neonatal rat islets via the BCL-2 anti-apoptotic pathway. J. Endocrinol. 2007, 195, 157–165. [Google Scholar] [CrossRef]
- Hu He, K.H.; Lorenzo, P.I.; Brun, T.; Jimenez Moreno, C.M.; Aeberhard, D.; Vallejo Ortega, J.; Cornu, M.; Thorel, F.; Gjinovci, A.; Thorens, B.; et al. In vivo conditional Pax4 overexpression in mature islet beta-cells prevents stress-induced hyperglycemia in mice. Diabetes 2011, 60, 1705–1715. [Google Scholar] [CrossRef] [Green Version]
- Sujjitjoon, J.; Kooptiwut, S.; Chongjaroen, N.; Tangjittipokin, W.; Plengvidhya, N.; Yenchitsomanus, P.T. Aberrant mRNA splicing of paired box 4 (PAX4) IVS7-1G>A mutation causing maturity-onset diabetes of the young, type 9. Acta Diabetol. 2016, 53, 205–216. [Google Scholar] [CrossRef]
- Lei, S.Q.; Wang, J.Y.; Li, R.M.; Chang, J.; Li, Z.; Ren, L.; Sang, Y.M. MODY10 caused by c.309-314del CCAGCT insGCGC mutation of the insulin gene: A case report. Am. J. Transl. Res. 2020, 12, 6599–6607. [Google Scholar]
- Yan, J.; Jiang, F.; Zhang, R.; Xu, T.; Zhou, Z.; Ren, W.; Peng, D.; Liu, Y.; Hu, C.; Jia, W. Whole-exome sequencing identifies a novel INS mutation causative of maturity-onset diabetes of the young 10. J. Mol. Cell Biol. 2017, 9, 376–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Liu, Y.; Li, M.; Ge, X.; Wang, Y.; Huang, X.; Yang, D.; Zhang, R.; Chen, Y.; Lu, M.; et al. Identification of Ala2Thr mutation in insulin gene from a Chinese MODY10 family. Mol. Cell. Biochem. 2020, 470, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Quan, H.; Chen, K.; Chen, D.; Lin, D.; Fang, T. ABCC8-Related Maturity-Onset Diabetes of the Young (MODY12): A Report of a Chinese Family. Front. Endocrinol. (Lausanne) 2020, 11, 645. [Google Scholar] [CrossRef]
- Laver, T.W.; Wakeling, M.N.; Knox, O.; Colclough, K.; Wright, C.F.; Ellard, S.; Hattersley, A.T.; Weedon, M.N.; Patel, K.A. Evaluation of evidence for pathogenicity demonstrates that BLK, KLF11, and PAX4 should not be included in diagnostic testing for MODY. Diabetes 2022, 71, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
Subtype | Gene Name | Gene Symbol | Locus | Mutation | Clinical Significance | Ref. | |
---|---|---|---|---|---|---|---|
DNA | Amino Acid | ||||||
MODY 1 | Hepatocyte nuclear factor 4α | HNF4A | 20q13.12 | 763C>T 826G>C | Gln255Ter Glu276Gln | Mild hyperglycemia | [3,31] |
MODY 2 | Glucokinase | GCK | 7p13 | 89T>C 203G>T 748C>T 905T>A 1363G>C | Leu30Pro Gly68Val Arg250Cys Val302Glu Ala455Leu | Mild hyperglycemia | [5,32,33,34,35,36] |
MODY 3 | Hepatocyte nuclear factor 1α | HNF1A | 12q24.31 | 511C>G 733G>C 788G>A 1460G>A | Arg171Gly Gly245Arg Arg263His Ser487Asn | Neonatal hypoglycemia | [19,20,37,38] |
MODY 4 | Insulin promoter factor 1 | PDX1 | 13q12.2 | 176A>T 188del 533A>G 590G>A 947G>A | Gln59Leu Pro63fs* Glu178Gly Arg197His Gly316Asp | Neonatal hypoglycemia | [10,21,39,40,41] |
MODY 5 | Hepatocyte nuclear factor 1β | HNF1B | 17q12 | 335G>C 406C>G 490A>C 494G>A 884G>A | Arg112Pro Gln136Glu Lys164Gln Arg165His Arg295His | Renal disease Diabetic ketosis Glomerulocystic kidney disease | [22,42,43,44,45,46,47,48] |
MODY 6 | Neuronal differentiation 1 | NEUROD1 | 2q31.3 | 34G>C 590C>A | Gly12Arg Pro197His | Adult onset (mid-20s) | [49,50] |
MODY 7 | KLF transcription factor 11 | KLF11 | 2p25.1 | 86G>A 185A>G 659C>T 1039G>T | Arg29Gln Gln62Arg Thr220Met Ala347Ser | Pancreatic malignancy | [51,52,53,54] |
MODY 8 | Carboxyl ester lipase | CEL | 9q34.13 | 1402G>A 1454T>C | Ala468Thr Ile485Thr | Adult onset (36 years) Hypoglycemia | [18,55,56] |
MODY 9 | Paired box 4 | PAX4 | 7q32.1 | 385C>T 514C>T 539G>A | Arg129Trp Arg172Trp Ser180Asn | Nephrological diseases | [57,58] |
MODY 10 | Insulin | INS | 11p15.5 | 25C>T 130G>A 137G>A 155C>A 290C>G | Pro9Ser Gly44Arg Arg46Gln Pro52His Thr97Ser | Neonatal hypoglycemia | [59,60,61] |
MODY 11 | BLK proto-oncogene, Src family tyrosine kinase | BLK | 8p23.1 | 41C>T 116C>T 164A>G 177C>G 187G>A 311G>T 391C>T 713G>A | Pro14Leu Pro39Leu His55Arg Asp59Glu Val63Met Arg104Ile Arg131Trp Arg238Gln | Neonatal hypoglycemia obesity | [62,63,64] |
MODY 12 | ATP binding cassette subfamily C member | ABCC8 | 11p15.1 | 502C>T 2477G>A 3158G>A 3202T>A 4148G>C 4500C4A | Arg168Cys Gly826Asp Ser1053Asn Phe1068Ile Gly1383Ala Ser1500Arg | Renal diabetes | [65,66,67,68] |
MODY 13 | Potassium inwardly rectifying channel subfamily J member 11 | KCNJ11 | 11p15.1 | 67A>G 679G>A 808C>G 902G>A 964G>A 973C>A 1034C>T 1040G>A | Lys23Glu Glu227 Lys Leu270Val Arg301His Glu322Lys Arg325Ser Thr345Met Arg347His | Renal diabetes Hyperinsulinemic hypoglycemia Neonatal diabetes | [69,70,71,72,73] |
MODY 14 | Leucine zipper containing 1 | APPL1 | 3p14.3 | 280G>A 1655T>A 1926A>G | Asp94Asn Leu552Ter Ile642Met | Wolfram or DIDMOAD syndrome | [74,75,76,77] |
Subtype | Pathophysiology | Phenotype | Treatment | Ref. | |
---|---|---|---|---|---|
Glucose | Insulin | ||||
MODY 1 | Progressive decrease in insulin secretion β-cell dysfunction Worsening of glucose control Low levels of apolipoproteins and triglycerides Neonatal hypoglycemia | ↑ | ↓ | Sulfonylureas, insulin | [78] |
MODY 2 | Higher glucose threshold for insulin release Glucose-sensing defects β-cell dysfunction Mild hyperglycemia (HbA1c 7.3–7.5%) | ↑ | ↓ | Treatment is unnecessary | [78,79,80,81,82] |
MODY 3 | Insufficient glucose-mediated insulin secretion β-cell dysfunction Low glucose renal threshold | ↑ | ↓ | Sulphonylureas (additional meglitinides, GLP-1 RA, SGLT-2 inhibitors), insulin | [25,82,83,84,85,86,87,88] |
MODY 4 | β-cell dysfunction Impaired glucose-mediated insulin secretion Mild form of diabetes Overweight/obesity in some patients | ↑ | NA | Sulphonylureas, insulin, metformin, dipeptidyl peptidase-4 inhibitors | [29,78,89] |
MODY 5 | β-cell dysfunction Decreased insulin secretion with progressive worsening of glucose control Genitourinary malformations | ↑ | NA | Sulfonylurea, repaglinide, GLP-1 RA, insulin | [45,46,78,90,91,92,93] |
MODY 6 | β-cell dysfunction Insulinopenia or insulin resistance Different degrees of hyperglycemia | ↑ | NA | Insulin | [94,95,96] |
MODY 7 | Decreased glucose sensitivity of β-cells Decreased sensitivity to insulin Mild hyperglycemia | ↑ | ↓ | Insulin | [51,53,97,98,99] |
MODY 8 | Impaired endocrine Exocrine pancreatic insufficiency (dysfunction of the mature acinar cell) | ↑ | ↓ | OHAs or insulin | [78,100,101,102,103] |
MODY 9 | β-cell dysfunction Progressive hyperglycemia Occurrences of ketoacidosis | ↑ | NA | OHAs or insulin | [96,97,104,105] |
MODY 10 | Hyperglycemia β-cell dysfunction | ↑ | ↓ | Insulin | [61,106,107,108,109] |
MODY 11 | Hyperglycemia β-cell dysfunction Affected insulin secretion | ↑ | NA | OHAs or insulin | [62,110,111,112,113] |
MODY 12 | Impaired insulin secretion ATP-sensitive potassium channel dysfunction | ↑ | ↓ | Insulin, sulfonylureas | [67,78,114,115,116,117,118,119,120] |
MODY 13 | Impaired insulin secretion ATP-sensitive potassium channel dysfunction | ↑ | NA | Sulfonylureas | [121,122,123,124,125,126,127,128,129] |
MODY 14 | Impaired glucose-mediated insulin secretion Hyperglycemia Reduced beta cell survival | ↑ | ↓ | OHAs or insulin | [74,75,76,77,130] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younis, H.; Ha, S.E.; Jorgensen, B.G.; Verma, A.; Ro, S. Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options. J. Pers. Med. 2022, 12, 1762. https://doi.org/10.3390/jpm12111762
Younis H, Ha SE, Jorgensen BG, Verma A, Ro S. Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options. Journal of Personalized Medicine. 2022; 12(11):1762. https://doi.org/10.3390/jpm12111762
Chicago/Turabian StyleYounis, Hazar, Se Eun Ha, Brian G. Jorgensen, Arushi Verma, and Seungil Ro. 2022. "Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options" Journal of Personalized Medicine 12, no. 11: 1762. https://doi.org/10.3390/jpm12111762
APA StyleYounis, H., Ha, S. E., Jorgensen, B. G., Verma, A., & Ro, S. (2022). Maturity-Onset Diabetes of the Young: Mutations, Physiological Consequences, and Treatment Options. Journal of Personalized Medicine, 12(11), 1762. https://doi.org/10.3390/jpm12111762