Three-Arm Robotic Lung Resection via the Open-Thoracotomy-View Approach Using Vertical Port Placement and Confronting Monitor Setting: Focusing on Segmentectomy
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Surgical Indications and Assessment
2.3. Three-Arm Robotic OTVA Setting
2.3.1. System Setting
2.3.2. Port Placements
2.3.3. Assistants and CUD Monitor Setting
2.3.4. Selection of Instruments
2.4. Segmentectomy and Postoperative Management
2.5. Statistical Analysis
3. Results
3.1. Surgical Views
3.2. Surgical Outcomes and Comparison between Lobectomy and Segmentectomy
3.3. Prognostic Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sakakura, N.; Nakada, T.; Shirai, S.; Takahara, H.; Nakanishi, K.; Matsui, T.; Ueno, H.; Takahashi, Y.; Kuroda, H. Robotic open-thoracotomy-view approach using vertical port placement and confronting monitor setting. Interact. Cardiovasc. Thorac. Surg. 2021, 33, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Sakakura, N.; Nakada, T.; Shirai, S.; Takahara, H.; Suzuki, A.; Takahashi, Y.; Kuroda, H. Emergency rollout and conversion procedures during the three-arm robotic open-thoracotomy-view approach. Interact. Cardiovasc. Thorac. Surg. 2022, 34, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Sakakura, N.; Mizuno, T.; Arimura, T.; Kuroda, H.; Sakao, Y. Design variations in vertical muscle-sparing thoracotomy. J. Thorac. Dis. 2018, 10, 5115–5119. [Google Scholar] [CrossRef] [PubMed]
- Mun, M.; Ichinose, J.; Matsuura, Y.; Nakao, M.; Okumura, S. Video-assisted thoracoscopic surgery lobectomy via confronting upside-down monitor setting. J. Vis. Surg. 2017, 3, 129. [Google Scholar] [CrossRef] [Green Version]
- Cerfolio, R.J.; Watson, C.; Minnich, D.J.; Calloway, S.; Wei, B. One hundred planned robotic segmentectomies: Early results, technical details, and preferred port placement. Ann. Thorac. Surg. 2016, 101, 1089–1095. [Google Scholar] [CrossRef] [Green Version]
- Veronesi, G. Robotic lobectomy and segmentectomy for lung cancer: Results and operating technique. J. Thorac. Dis. 2015, 7, S122–S130. [Google Scholar]
- Eguchi, T.; Hara, D.; Matsuoka, S.; Miura, K.; Hamanaka, K.; Shimizu, K. Three-step strategy for robotic lung segmentectomy. Multimed Man Cardiothorac. Surg. 2022, 26, 2022. [Google Scholar]
- Zhou, N.; Corsini, E.M.; Antonoff, M.B.; Hofstetter, W.L.; Mehran, R.J.; Rajaram, R.; Roth, J.A.; Sepesi, B.; Swisher, S.G.; Vaporciyan, A.A.; et al. Robotic surgery and anatomic segmentectomy: An analysis of trends, patient selection, and outcomes. Ann. Thorac. Surg. 2022, 113, 975–983. [Google Scholar] [CrossRef]
- Veronesi, G.; Novellis, P.; Perroni, G. Overview of the outcomes of robotic segmentectomy and lobectomy. J. Thorac. Dis. 2021, 13, 6155–6162. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Hu, J.; Han, Y.; Huang, M.; Xiang, J.; Li, H. Early outcomes of robotic versus thoracoscopic segmentectomy for early-stage lung cancer: A multi-institutional propensity score-matched analysis. J. Thorac. Cardiovasc. Surg. 2020, 160, 1363–1372. [Google Scholar] [CrossRef]
- Geraci, T.C.; Ferrari-Light, D.; Kent, A.; Michaud, G.; Zervos, M.; Pass, H.I.; Cerfolio, R.J. Technique, outcomes with navigational bronchoscopy using indocyanine green for robotic segmentectomy. Ann. Thorac. Surg. 2019, 108, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Cerfolio, R. Technique of robotic segmentectomy. J. Vis. Surg. 2017, 3, 140. [Google Scholar] [CrossRef] [PubMed]
- Dylewski, M.R.; Ohaeto, A.C.; Pereira, J.F. Pulmonary resection using a total endoscopic robotic video-assisted approach. Semin. Thorac. Cardiovasc. Surg. 2011, 23, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Cerfolio, R.J. Total port approach for robotic lobectomy. Thorac. Surg. Clin. 2014, 24, 151–156. [Google Scholar] [CrossRef]
- Veronesi, G.; Novellis, P.; Difrancesco, O.; Dylewski, M. Robotic assisted lobectomy for locally advanced lung cancer. J. Vis. Surg. 2017, 3, 78. [Google Scholar] [CrossRef] [Green Version]
- Cerfolio, R.J.; Ghanim, A.F.; Dylewski, M.; Veronesi, G.; Spaggiari, L.; Park, B.J. The long-term survival of robotic lobectomy for non-small cell lung cancer: A multi-institutional study. J. Thorac. Cardiovasc. Surg. 2018, 155, 778–786. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Suda, T.; Ikeda, N.; Okada, M.; Date, H.; Oda, M.; Iwasaki, A. Initial results of robot-assisted thoracoscopic surgery in Japan. Gen. Thorac. Cardiovasc. Surg. 2014, 62, 720–725. [Google Scholar] [CrossRef]
- Jiao, W.; Zhao, Y.; Qiu, T.; Xuan, Y.; Sun, X.; Qin, Y.; Liu, A.; Sui, T.; Cui, J. Robotic bronchial sleeve lobectomy for central lung tumors: Technique and outcome. Ann. Thorac. Surg. 2019, 108, 211–218. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Y.; Li, C.; Yang, S.; Li, H. Robotic lung cancer surgery: From simple to complex, from surgery to clinical study. J. Thorac. Dis. 2020, 12, 51–53. [Google Scholar] [CrossRef]
- Cerfolio, R.J.; Bess, K.M.; Wei, B.; Minnich, D.J. Incidence, results, and our current intraoperative technique to control major vascular injuries during minimally invasive robotic thoracic surgery. Ann. Thorac. Surg. 2016, 102, 394–399. [Google Scholar] [CrossRef] [Green Version]
- Sakakura, N.; Inaba, Y.; Yatabe, Y.; Mizuno, T.; Kuroda, H.; Yoshimura, K.; Sakao, Y. Estimation of the pathological invasive size of pulmonary adenocarcinoma using high-resolution computed tomography of the chest: A consideration based on lung and mediastinal window settings. Lung Cancer 2016, 95, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Nakada, T.; Shirai, S.; Oya, Y.; Takahashi, Y.; Sakakura, N.; Ohtsuka, T.; Kuroda, H. Four hours postoperative mobilization is feasible after thoracoscopic anatomical pulmonary resection. World J. Surg. 2021, 45, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Nakada, T.; Shirai, S.; Oya, Y.; Takahashi, Y.; Sakakura, N.; Ohtsuka, T.; Kuroda, H. The impact of same-day chest drain removal on pulmonary function after thoracoscopic lobectomy. Gen. Thorac. Cardiovasc. Surg. 2021, 69, 690–696. [Google Scholar] [CrossRef]
- Liu, C.; Liao, H.; Guo, C.; Pu, Q.; Mei, J.; Liu, L. Single-direction thoracoscopic basal segmentectomy. J. Thorac. Cardiovasc. Surg. 2020, 160, 1586–1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, K.; Umehara, T.; Maeda, K.; Suzuki, S.; Yokomakura, N.; Kariatsumari, K.; Sato, M. Three-incision robotic major lung resection for cancer. Transl. Cancer Res. 2021, 10, 4617–4623. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, K.; Toyokawa, G.; Shoji, F.; Takeo, S. A novel technique for robotic-assisted lobectomy for lung cancer: The anterior approach. Interact. Cardiovasc. Thorac. Surg. 2020, 30, 328. [Google Scholar] [CrossRef]
- Yamazaki, K.; Toyokawa, G.; Kozuma, Y.; Shoji, F.; Shimokawa, M.; Takeo, S. Cumulative experience of the anterior approach in robot-assisted thoracic surgery for lung cancer patients. J. Thorac. Dis. 2021, 13, 5487–5495. [Google Scholar] [CrossRef]
- Funai, K.; Kawase, A.; Mizuno, K.; Koyama, S.; Takanashi, Y.; Shiiya, N. Uniquely modified robotic-assisted thoracic surgery with good intrathoracic visual field. Ann. Thorac Surg. 2020, 110, e435–e436. [Google Scholar] [CrossRef]
Variables | All Patients (n = 114) | Lobectomy (n = 76) | Segmentectomy (n = 38) | p Value b | |
---|---|---|---|---|---|
Age (median, range; years) | 71 (36–86) | 69 (36–86) | 72 (56–86) | 0.165 | |
Sex | |||||
Male/female | 45 (39)/69 (60) | 30 (40)/46 (60) | 15 (39)/23 (61) | 1.000 | |
Smoking status | |||||
Never/former or current | 64 (56)/50 (44) | 42 (55)/34 (45) | 22 (58)/16 (42) | 0.843 | |
Brinkman index (median, range) | 0 (0–2040) | 0 (0–1920) | 0 (0–2040) | 0.675 | |
Body condition | |||||
Height (mean ± SD, range; cm) | 160 ± 9 (140–181) | 160 ± 9 (140–181) | 158 ± 8 (145–178) | 0.905 | |
Weight (mean ± SD, range; kg) | 59 ± 11 (37–114) | 59 ± 13 (37–114) | 59 ± 9 (45–90) | 0.579 | |
Body mass index (mean ± SD, range; kg/m2) | 23 ± 3 (15–35) | 23 ± 3 (15–35) | 24 ± 3 (18–34) | 0.162 | |
Respiratory function | |||||
%VC (mean ± SD, range; % predicted) | 102 ± 14 (62–152) | 102 ± 13 (70–136) | 101 ± 16 (62–152) | 0.608 | |
%FEV1 (mean ± SD, range; % predicted) | 99 ± 19 (40–172) | 101 ± 16 (50–143) | 96 ± 24 (40–172) | 0.172 | |
%DLCO (mean ± SD, range; % predicted) | 106 ± 23 (60–181) | 108 ± 22 (69–181) | 104 ± 25 (60–165) | 0.340 | |
HRCT findings and size | |||||
Pure GGO/partly solid/solid | 11 (10)/69 (60)/34 (30) | 6 (8)/45 (59)/25 (33) | 5 (13)/24 (63)/9 (24) | 0.469 | |
LD c (mean ± SD, range; cm) | 2.1 ± 0.9 (0.7–5.7) | 2.2 ± 0.9 (0.8–5.7) | 1.9 ± 0.8 (0.7–5.0) | 0.040 | |
CD c (mean ± SD, range; cm) | 1.4 ± 0.8 (0–3.7) | 1.5 ± 0.9 (0–3.7) | 1.2 ± 0.7 (0–2.7) | 0.065 | |
MD c (mean ± SD, range; cm) | 0.8 ± 0.8 (0–3.5) | 0.9 ± 0.9 (0–3.5) | 0.5 ± 0.5 (0–2.1) | 0.018 | |
Preoperative diagnosis | |||||
Lung cancer (c-stage 0/IA1/IA2/IA3/IB) | 110 (3/44/38/22/3) | 73 (2/28/23/17/3) | 37 (1/16/15/5/0) | 0.347 | |
Metastatic lung tumor or other | 4 | 3 | 1 |
Variables | All Procedures (n = 114) | Lobectomy (n = 76) | Segmentectomy b (n = 38) | p Value c | ||||
---|---|---|---|---|---|---|---|---|
Operating time (mean ± SD, range; minutes) | ||||||||
Total time | 215 ± 46 (128–368) | 225 ± 44 (128–348) | 195 ± 44 (138–368) | <0.001 | ||||
Console time | 162 ± 43 (86–311) | 173 ± 44 (89–311) | 140 ± 32 (86–210) | <0.001 | ||||
Surgical procedure | ||||||||
RU/RM/RL/LU/LL | 41/11/26/24/12 | 36/11/15/7/7 | 5/0/11/17/5 | |||||
RU S1/S1+2/S1+3/S3 | 1/2/1/1 | |||||||
RL S6/S8 | 9/1 | |||||||
LU S1+2+S3/S1+2/S3/S4+S5 | 7/8/2/0 | |||||||
LL S6/S8+9+10 | 3/1 | |||||||
Node dissection | ||||||||
ND1/ND2a-1/ND2a-2 | 59 (52)/50 (44)/5 (4) | 30 (39)/41 (54)/5 (7) | 29 (76)/9 (24)/0 (0) | <0.001 | ||||
Bleeding (median, range; g) | ||||||||
5 (1–440) | 5 (1–290) | 3 (1–440) | 0.829 | |||||
Number of staplers d (mean ± SD, range) | ||||||||
7.1 ± 2.5 (3–17) | 6.6 ± 2.6 (3–16) | 8.2 ± 2.3 (5–17) | 0.003 | |||||
Fibrin glue and polyglycolic acid sheet | ||||||||
–/+ | 36 (32)/78 (68) | 24 (32)/52 (68) | 11 (29)/27 (71) | 0.832 | ||||
Conversion | ||||||||
To VATS/to open | 2/0 | 1/0 | 1/0 | |||||
Morbidity | ||||||||
Prolonged air leak (>5 days) | 1 | 1 | 0 | |||||
Subcutaneous emphysema | 1 | 0 | 1 | |||||
Chest tube reinsertion | 2 | 1 | 1 | |||||
Paroxysmal atrial fibrillation | 1 | 1 | 0 | |||||
Acute pyothorax | 1 | 1 | 0 | |||||
Postoperative course (median, range; days) | ||||||||
Chest tube removal | 0 (0–7) | 0 (0–7) | 0 (0–5) | 0.289 | ||||
Hospital stay | 3 (1–9) | 3 (1–9) | 3 (1–8) | 0.430 | ||||
Resection | ||||||||
R0/R1–2 | 114 (100)/0 | 76 (100)/0 | 38 (100)/0 | |||||
Histology | ||||||||
Primary lung cancer | 107 | 71 | 36 | |||||
Adenocarcinoma | 100 | 66 | 34 | |||||
Squamous cell carcinoma | 5 | 4 | 1 | |||||
Small cell carcinoma | 1 | 1 | 0 | |||||
Carcinoid | 1 | 0 | 1 | |||||
pT status | ||||||||
Tis/T1a/T1b/T1c/T2a/T2b/T3 | 4/33/45/15/9/0/1 | 2/17/33/13/5/0/1 | 2/16/12/2/4/0/0 | 0.076 | ||||
pN status | ||||||||
N0/N1/N2 | 105/2/0 | 69/2/0 | 36/0/0 | 0.148 | ||||
p-Stage | ||||||||
0/IA1/IA2/IA3/IB/IIA/IIB | 4/33/45/14/8/0/3 | 2/17/33/12/4/0/3 | 2/16/12/2/4/0/0 | 0.049 | ||||
Metastatic lung tumor | 4 | 2 | 2 | |||||
Other | 3 | 3 | 0 | |||||
Adjuvant chemotherapy | ||||||||
–/+ | 110/4 | 72/4 | 38/0 | |||||
Postoperative observation time (median, range; months) | ||||||||
21 (2–40) | 23 (2–40) | 16 (2–36) | ||||||
Prognosis | ||||||||
Local or distant recurrence | 0 | 0 | 0 | |||||
Dead/alive | 1 e/113 | 1 e/75 | 0/38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakakura, N.; Nakada, T.; Takahashi, Y.; Suzuki, A.; Shinohara, S.; Kuroda, H. Three-Arm Robotic Lung Resection via the Open-Thoracotomy-View Approach Using Vertical Port Placement and Confronting Monitor Setting: Focusing on Segmentectomy. J. Pers. Med. 2022, 12, 1771. https://doi.org/10.3390/jpm12111771
Sakakura N, Nakada T, Takahashi Y, Suzuki A, Shinohara S, Kuroda H. Three-Arm Robotic Lung Resection via the Open-Thoracotomy-View Approach Using Vertical Port Placement and Confronting Monitor Setting: Focusing on Segmentectomy. Journal of Personalized Medicine. 2022; 12(11):1771. https://doi.org/10.3390/jpm12111771
Chicago/Turabian StyleSakakura, Noriaki, Takeo Nakada, Yusuke Takahashi, Ayumi Suzuki, Shuichi Shinohara, and Hiroaki Kuroda. 2022. "Three-Arm Robotic Lung Resection via the Open-Thoracotomy-View Approach Using Vertical Port Placement and Confronting Monitor Setting: Focusing on Segmentectomy" Journal of Personalized Medicine 12, no. 11: 1771. https://doi.org/10.3390/jpm12111771
APA StyleSakakura, N., Nakada, T., Takahashi, Y., Suzuki, A., Shinohara, S., & Kuroda, H. (2022). Three-Arm Robotic Lung Resection via the Open-Thoracotomy-View Approach Using Vertical Port Placement and Confronting Monitor Setting: Focusing on Segmentectomy. Journal of Personalized Medicine, 12(11), 1771. https://doi.org/10.3390/jpm12111771