Speckle Contrast as Retinal Tissue Integrity Biomarker in Patients with Type 1 Diabetes Mellitus with No Retinopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Suspects and Protocol
2.2. Data Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kempen, J.H.; O’Colmain, B.J.; Leske, M.C.; Haffner, S.M.; Klein, R.; Moss, S.E.; Taylor, H.R.; Hamman, R.F. The prevalence of diabetic retinopathy among adults in the United States. Arch. Ophthalmol. 2004, 122, 552–563. [Google Scholar] [CrossRef] [Green Version]
- Ewing, F.M.; Deary, I.J.; Strachan, M.W.; Frier, B.M. Seeing beyond retinopathy in diabetes: Electrophysiological and psychophysical abnormalities and alterations in vision. Endocr. Rev. 1998, 19, 462–476. [Google Scholar] [CrossRef]
- Sokol, S.; Moskowitz, A.; Skarf, B.; Evans, R.; Molitch, M.; Senior, B. Contrast sensitivity in diabetics with and without background retinopathy. Arch. Ophthalmol. 1985, 103, 51–54. [Google Scholar] [CrossRef]
- Di Leo, M.A.; Falsini, B.; Caputo, S.; Ghirlanda, G.; Porciatti, V.; Greco, A.V. Spatial frequency-selective losses with pattern electroretinogram in type 1 (insulin-dependent) diabetic patients without retinopathy. Diabetologia 1990, 33, 726–730. [Google Scholar] [CrossRef] [Green Version]
- Abrishami, M.; Daneshvar, R.; Yaghubi, Z. Short-wavelength automated perimetry in type I diabetic patients without retinal involvement: A test modification to decrease test duration. Eur. J. Ophthalmol. 2012, 22, 203–209. [Google Scholar] [CrossRef]
- Pinilla, I.; Ferreras, A.; Idoipe, M.; Sanchez-Cano, A.I.; Perez-Garcia, D.; Herrera, L.X.; Pinilla, M.J.; Abecia, E. Changes in frequency-doubling perimetry in patients with type I diabetes prior to retinopathy. Biomed Res. Int. 2013, 2013, 341269. [Google Scholar] [CrossRef] [Green Version]
- Spaide, R.F.; Koizumi, H.; Pozzoni, M.C.; Pozonni, M.C. Enhanced depth imaging spectral-domain optical coherence tomography. Am. J. Ophthalmol. 2008, 146, 496–500. [Google Scholar] [CrossRef]
- Coscas, G.; Zhou, Q.; Coscas, F.; Zucchiatti, I.; Rispoli, M.; Uzzan, J.; De Benedetto, U.; Savastano, M.C.; Soules, K.; Goldenberg, D.; et al. Choroid thickness measurement with RTVue optical coherence tomography in emmetropic eyes, mildly myopic eyes, and highly myopic eyes. Eur. J. Ophthalmol. 2012, 22, 992–1000. [Google Scholar] [CrossRef]
- Chihara, E.; Matsuoka, T.; Ogura, Y.; Matsumura, M. Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. Ophthalmology 1993, 100, 1147–1151. [Google Scholar] [CrossRef]
- Bronson-Castain, K.W.; Bearse, M.A.; Neuville, J.; Jonasdottir, S.; King-Hooper, B.; Barez, S.; Schneck, M.E.; Adams, A.J. Early neural and vascular changes in the adolescent type 1 and type 2 diabetic retina. Retina 2012, 32, 92–102. [Google Scholar] [CrossRef]
- Cabrera DeBuc, D.; Somfai, G.M. Early detection of retinal thickness changes in diabetes using Optical Coherence Tomography. Med. Sci. Monit. 2010, 16, MT15-21. [Google Scholar]
- Carpineto, P.; Toto, L.; Aloia, R.; Ciciarelli, V.; Borrelli, E.; Vitacolonna, E.; Di Nicola, M.; Di Antonio, L.; Mastropasqua, R. Neuroretinal alterations in the early stages of diabetic retinopathy in patients with type 2 diabetes mellitus. Eye 2016, 30, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Orduna-Hospital, E.; Sanchez-Cano, A.; Perdices, L.; Acha, J.; López Alaminos, E.M.; Pinilla, I. Changes in retinal layers in type 1 diabetes mellitus without retinopathy measured by spectral domain and swept source OCTs. Sci. Rep. 2021, 11, 10427. [Google Scholar] [CrossRef]
- Pinilla, I.; Idoipe, M.; Perdices, L.; Sanchez-Cano, A.; Acha, J.; Lopez-Galvez, M.I.; Cuenca, N.; Abecia, E.; Orduna-Hospital, E. Changes in Total and Inner Retinal Thicknesses in Type 1 Diabetes With No Retinopathy After 8 Years of Follow-Up. Retina 2020, 40, 1379–1386. [Google Scholar] [CrossRef]
- Melancia, D.; Vicente, A.; Cunha, J.P.; Abegão Pinto, L.; Ferreira, J. Diabetic choroidopathy: A review of the current literature. Graefes Arch. Clin. Exp. Ophthalmol. 2016, 254, 1453–1461. [Google Scholar] [CrossRef]
- Cho, G.E.; Cho, H.Y.; Kim, Y.T. Change in subfoveal choroidal thickness after argon laser panretinal photocoagulation. Int. J. Ophthalmol. 2013, 6, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Esmaeelpour, M.; Považay, B.; Hermann, B.; Hofer, B.; Kajic, V.; Hale, S.L.; North, R.V.; Drexler, W.; Sheen, N.J. Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5311–5316. [Google Scholar] [CrossRef]
- Vujosevic, S.; Martini, F.; Cavarzeran, F.; Pilotto, E.; Midena, E. Macular and peripapillary choroidal thickness in diabetic patients. Retina 2012, 32, 1781–1790. [Google Scholar] [CrossRef]
- Cunha-Vaz, J.; Faria de Abreu, J.R.; Campos, A.J. Early breakdown of the blood-retinal barrier in diabetes. Br. J. Ophthalmol. 1975, 59, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Ciulla, T.A.; Harris, A.; Latkany, P.; Piper, H.C.; Arend, O.; Garzozi, H.; Martin, B. Ocular perfusion abnormalities in diabetes. Acta Ophthalmol. Scand. 2002, 80, 468–477. [Google Scholar] [CrossRef]
- Orduna-Hospital, E.; Perdices, L.; Sanchez-Cano, A.; Acha, J.; Cuenca, N.; Pinilla, I. Choroidal Changes of Long-Term Type 1 Diabetic Patients without Retinopathy. Diagnostics 2020, 10, 235. [Google Scholar] [CrossRef]
- Silva, V.B.; Andrade De Jesus, D.; Klein, S.; van Walsum, T.; Cardoso, J.; Brea, L.S.; Vaz, P.G. Signal-carrying speckle in optical coherence tomography: A methodological review on biomedical applications. J. Biomed. Opt. 2022, 27, 030901. [Google Scholar] [CrossRef] [PubMed]
- Jesus, D.A.; Iskander, D.R. Assessment of corneal properties based on statistical modeling of OCT speckle. Biomed. Opt. Express 2017, 8, 162–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jesus, D.A.; Majewska, M.; Krzyżanowska-Berkowska, P.; Iskander, D.R. Influence of eye biometrics and corneal micro-structure on noncontact tonometry. PLoS ONE 2017, 12, e0177180. [Google Scholar] [CrossRef] [Green Version]
- Iskander, D.R.; Kostyszak, M.A.; Jesus, D.A.; Majewska, M.; Danielewska, M.E.; Krzyżanowska-Berkowska, P. Assessing Corneal Speckle in Optical Coherence Tomography: A New Look at Glaucomatous Eyes. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2020, 97, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Niemczyk, M.; Danielewska, M.E.; Kostyszak, M.A.; Lewandowski, D.; Iskander, D.R. The effect of intraocular pressure elevation and related ocular biometry changes on corneal OCT speckle distribution in porcine eyes. PLoS ONE 2021, 16, e0249213. [Google Scholar] [CrossRef]
- Danielewska, M.E.; Antonczyk, A.; Andrade De Jesus, D.; Rogala, M.M.; Blonska, A.; Cwirko, M.; Kielbowicz, Z.; Iskander, D.R. Corneal Optical Coherence Tomography Speckle in Crosslinked and Untreated Rabbit Eyes in Response to Elevated Intraocular Pressure. Transl. Vis. Sci. Technol. 2021, 10, 2. [Google Scholar] [CrossRef]
- Niemczyk, M.; Iskander, D.R. Statistical analysis of corneal OCT speckle: A non-parametric approach. Biomed. Opt. Express 2021, 12, 6407–6421. [Google Scholar] [CrossRef]
- Motaghiannezam, R.; Fraser, S. Logarithmic intensity and speckle-based motion contrast methods for human retinal vasculature visualization using swept source optical coherence tomography. Biomed. Opt. Express 2012, 3, 503–521. [Google Scholar] [CrossRef]
- Early Treatment Diabetic Retinopathy Study Research, G. Photocoagulation for diabetic macular edema: Early Treatment Diabetic Retinopathy Study Report number 1. Arch. Ophthalmol. 1985, 103, 1796–1806. [Google Scholar]
- Ozdek, S.C.; Erdinç, M.A.; Gürelik, G.; Aydin, B.; Bahçeci, U.; Hasanreisoğlu, B. Optical coherence tomographic assessment of diabetic macular edema: Comparison with fluorescein angiographic and clinical findings. Ophthalmologica 2005, 219, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tocino, H.; Alvarez-Vidal, A.; Maldonado, M.J.; Moreno-Montañés, J.; García-Layana, A. Retinal thickness study with optical coherence tomography in patients with diabetes. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1588–1594. [Google Scholar]
- Gardner, T.W.; Antonetti, D.A.; Barber, A.J.; LaNoue, K.F.; Levison, S.W. Diabetic retinopathy: More than meets the eye. Surv. Ophthalmol. 2002, 47 (Suppl. S2), S253–S262. [Google Scholar] [CrossRef]
- Van Dijk, H.W.; Kok, P.H.B.; Garvin, M.; Sonka, M.; DeVries, J.H.; Michels, R.P.J.; van Velthoven, M.E.J.; Schlingemann, R.O.; Verbraak, F.D.; Abràmoff, M.D. Selective loss of inner retinal layer thickness in type 1 diabetic patients with minimal diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3404–3409. [Google Scholar] [CrossRef]
- Ng, D.S.; Chiang, P.P.; Tan, G.; Cheung, C.G.; Cheng, C.Y.; Cheung, C.Y.; Wong, T.Y.; Lamoureux, E.L.; Ikram, M.K. Retinal ganglion cell neuronal damage in diabetes and diabetic retinopathy. Clin. Exp. Ophthalmol. 2016, 44, 243–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krogsaa, B.; Lund-Andersen, H.; Mehlsen, J.; Sestoft, L. Blood-retinal barrier permeability versus diabetes duration and retinal morphology in insulin dependent diabetic patients. Acta Ophthalmol. 1987, 65, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.Z.; Le, Y.Z. Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2160–2164. [Google Scholar] [CrossRef]
- Mizutani, M.; Gerhardinger, C.; Lorenzi, M. Müller cell changes in human diabetic retinopathy. Diabetes 1998, 47, 445–449. [Google Scholar] [CrossRef]
- Zhu, T.; Ma, J.; Li, Y.; Zhang, Z. Association between retinal neuronal degeneration and visual function impairment in type 2 diabetic patients without diabetic retinopathy. Sci. China Life Sci. 2015, 58, 550–555. [Google Scholar] [CrossRef]
- Ismail, G.M.; Whitaker, D. Early detection of changes in visual function in diabetes mellitus. Ophthalmic Physiol. Opt. 1998, 18, 3–12. [Google Scholar] [CrossRef]
- Sun, T.S.; Zhang, M.N. Characters of contrast sensitivity in diabetic patients without diabetic retinopathy. Zhonghua Yan Ke Za Zhi 2012, 48, 41–46. [Google Scholar] [PubMed]
- Barton, F.B.; Fong, D.S.; Knatterud, G.L. Classification of Farnsworth-Munsell 100-hue test results in the early treatment diabetic retinopathy study. Am. J. Ophthalmol. 2004, 138, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Utku, D.; Atmaca, L.S. Farnsworth-Munsell 100-hue test for patients with diabetes mellitus. Ann. Ophthalmol. 1992, 24, 205–208. [Google Scholar]
- Hardy, K.J.; Lipton, J.; Scase, M.O.; Foster, D.H.; Scarpello, J.H. Detection of colour vision abnormalities in uncomplicated type 1 diabetic patients with angiographically normal retinas. Br. J. Ophthalmol. 1992, 76, 461–464. [Google Scholar] [CrossRef]
- Tavares Ferreira, J.; Alves, M.; Dias-Santos, A.; Costa, L.; Santos, B.O.; Cunha, J.P.; Papoila, A.L.; Abegão Pinto, L. Retinal Neurodegeneration in Diabetic Patients Without Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6455–6460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Rani, P.K.; Raman, R.; Pal, S.S.; Laxmi, G.; Gupta, M.; Sahu, C.; Vaitheeswaran, K.; Sharma, T. Is neuronal dysfunction an early sign of diabetic retinopathy? Microperimetry and spectral domain optical coherence tomography (SD-OCT) study in individuals with diabetes, but no diabetic retinopathy. Eye 2009, 23, 1824–1830. [Google Scholar] [CrossRef]
DM1 (n = 42) | Control (n = 32) | p-Value | |
---|---|---|---|
Age (years) | 38.95 ± 12.50 (22, 65) | 36.38 ± 10.02 (21, 62) | 0.33 |
AL (mm) | 23.59 ± 1.16 (20.82, 27.71) | 23.24 ± 0.96 (20.66, 25,01) | 0.15 |
Rx (D) | −1.03 ± 2.35 (−5.00, +5.00) | −0.94 ± 1.83 (−5.00, +4.50) | 0.24 |
DM1 (n = 42) | Control (n = 32) | p-Value | |
---|---|---|---|
IRL (µm) | 262 ± 18 (219, 319) | 254 ± 15 (228, 285) | 0.001 * |
ORL (µm) | 82 ± 2 (76, 92) | 82 ± 2 (76, 87) | 0.32 |
Choroid (µm) | 309 ± 73 (104, 475) | 298 ± 83 (159, 532) | 0.14 |
DM1 (n = 42) | Control (n = 32) | p-Value | |
---|---|---|---|
IRL (a.u.) | 0.20 ± 0.03 (0.13, 0.26) | 0.22 ± 0.03 (0.17, 0.31) | 0.02 * |
ORL (a.u.) | 0.34 ± 0.07 (0.19, 0.51) | 0.36 ± 0.06 (0.29, 0.54) | 0.15 |
Choroid (a.u.) | 0.19 ± 0.04 (0.13, 0.28) | 0.21 ± 0.05 (0.13, 0.30) | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orduna-Hospital, E.; Arcas-Carbonell, M.; Sanchez-Cano, A.; Pinilla, I.; Consejo, A. Speckle Contrast as Retinal Tissue Integrity Biomarker in Patients with Type 1 Diabetes Mellitus with No Retinopathy. J. Pers. Med. 2022, 12, 1807. https://doi.org/10.3390/jpm12111807
Orduna-Hospital E, Arcas-Carbonell M, Sanchez-Cano A, Pinilla I, Consejo A. Speckle Contrast as Retinal Tissue Integrity Biomarker in Patients with Type 1 Diabetes Mellitus with No Retinopathy. Journal of Personalized Medicine. 2022; 12(11):1807. https://doi.org/10.3390/jpm12111807
Chicago/Turabian StyleOrduna-Hospital, Elvira, Maria Arcas-Carbonell, Ana Sanchez-Cano, Isabel Pinilla, and Alejandra Consejo. 2022. "Speckle Contrast as Retinal Tissue Integrity Biomarker in Patients with Type 1 Diabetes Mellitus with No Retinopathy" Journal of Personalized Medicine 12, no. 11: 1807. https://doi.org/10.3390/jpm12111807
APA StyleOrduna-Hospital, E., Arcas-Carbonell, M., Sanchez-Cano, A., Pinilla, I., & Consejo, A. (2022). Speckle Contrast as Retinal Tissue Integrity Biomarker in Patients with Type 1 Diabetes Mellitus with No Retinopathy. Journal of Personalized Medicine, 12(11), 1807. https://doi.org/10.3390/jpm12111807